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Ginzburg-Landau theory of ternary amphiphilic systems.
I. Gaussian interface fluctuations
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Using a Ginzburg-Landau approach, we study the interface fluctuations in ternary mixtures of
oil, water, and an amphiphile. The capillary wave spectra can be understood in terms of interfacial
tension and bending rigidity of the amphiphilic monolayers. For large interface widths, the distortion
of the interface profile due to curvature lowers the bending rigidity. The interfacial tension is found to
depend crucially on the distance to neighboring membranes or walls. In particular, we show exactly
that the interfacial tension vanishes in the in6nite lamellar phase. The variation of the interfacial
tension has observable consequences for a lamellar phase between walls, where we calculate the effect
of the wall separation on fluctuation spectra and scattering intensities.

PACS number(s): 82.70.—y, 61.20.Gy, 05.40.+j

I. INTRODUCTION

When a small amount of an amphiphile is added to a
system of oil and water, the interfacial tension between
these two phases decreases due to the formation of an
amphiphilic monolayer at the oil-water interface [1]. The
reduction is proportional to the amount of amphiphile,
until the interfacial tension levels ofF as soon as the am-
phiphiles form a saturated two-dimensional fluid at the
interface; a further increase of the amphiphile concen-
tration leads to the formation of micelles in oil or water.
When the amphiphile concentration is increased even fur-
ther, new phases can be formed, phases which are charac-
terized by an extensive amount of interface between oil-
rich and water-rich regions. The most prominent of these
phases are the lamellar phase, a regular one-dimensional
stacking of monolayers separated alternatively by sheets
of oil and water, and the microemulsion, a random array
of monolayers.

The effects of fluctuations in amphiphilic systems are
traditionally studied by an effective interface model, in
which the monolayer is described by a two-dimensional
mathematical surface, with given elastic properties [2,
3]. Since the interfacial tension between oil and water
is drastically reduced by the presence of the amphiphile,
interfacial fluctuations are controlled by the elastic bend-
ing energy [3] of the monolayers in these systems. The
fluctuations can be investigated most easily in the lamel-
lar phase, where they give rise to a universal repulsive
force between neighboring monolayers [4].

Here, we want to describe a difFerent approach. Our
starting point is a Ginzburg-Landau theory for a single,
scalar order parameter, which describes the local con-
centration difFerence between oil and water [5]. This
model has been shown to describe several properties of
oil-water-surfactant mixtures correctly. In particular, it
can be used to calculate the elastic bending moduli of sur-
factant monolayers [6, 7], to describe lamellar, hexagonal,
and cubic phases [6, 7], to study the wetting behavior of
the oil-water interface by the microemulsion [5, 8, 9], and

of a wall-oil interface by the lamellar phase [7].
Our motivation for using this approach is threefold.

First, we want to show that the elastic moduli of the
oil-water interface, calculated in Ref. [6] by comparing
planar, cylindrical, and spherical interfaces, are the same
moduli which determine the spectrum of capillary waves.
We are also able to derive expressions for the elasticity
of the oil-microemulsion interface, which was not possi-
ble by the method of Ref. [6]. Second, we want to show
that while the oil-water interfacial tension is small but
nonzero at oil-water coexistence (in the vicinity of the
lamellar phase), the interfacial tension vanishes identi-
cally in the lamellar phase. Thus, the spectrum of capil-
lary waves we obtain from the Ginzburg-Landau model is
identical with the spectrum used in the interfacial models
[4]. Finally, we consider fluctuations in a lamellar phase,
which is con6ned between two parallel walls, with a small
number of interfaces in the system. We show that the in-
terfacial tension is a function of the wall separation, and
is negative for depressed layers. This effect should show
up in scattering experiments as a peak at nonzero wave
vectors.

II. GINZBURG-LANDAU MODEL

Our analysis is based on the free-energy functional [5]

d'r [c(&C')'+ g(@)(&c')'+f(C') —pc']

for a scalar order-parameter field C (r), which is propor-
tional to the local difFerence of the oil and water con-
centrations. Here, p, is the chemical potential difference
between oil and water. In this approach, the amphiphile
degrees of freedom are considered as being integrated out
[10]. However, the properties of the amphiphile and its
concentration determine the form of the functions f and
g, as well as the magnitude of the constant c. In the
absence of amphiphilic molecules, f(C ) has two minima
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at C = C, and C = C, which describe the oil and
water phases, and g(4) is a positive constant. When
an amphiphile is added to the system, a third minimum
of f appears at C' = 0, which describes the disordered
microemulsion phase. Simultaneously, a minimum of g
develops at 4 = 0. For strong amphiphiles g(O) be-
comes negative in the microemulsion phase; this leads a
scattering peak at nonzero wave vector q as observed in
many neutron-scattering experiments [11,12]. The locus
of points where this first occurs is called a Lifshitz line
(LL). In the Ornstein-Zernike approximation, the scat-
tering intensity S(q) has the form

bo

2 -"" DOL

0 -"
micro-

LL

emulsion

-2

4 lamella

oil —water

j.
S(q)

cq +g(0)q + 2f"(0) (2)

The Lifshitz line is then given by g(0) = 0. The Fourier
transform of S(q) is the correlation function G(r). It
also shows interesting behavior in the microemulsion [11,
5]: for g(0) ) /2cf"(0)—:gDO, the correlation func-
tion decays monotonically (weak amphiphiles), while for
g(0) ( gDO it decays with exponentially damped oscilla-
tions (strong amphiphiles). The boundary line between
these behaviors is called the disorder line (DOL).

Many results of the model can be obtained without
specifying the detailed form of the functions f and g.
For analytical purposes it is convenient to use a piece-
wise parabolic (constant) form of f (g) (for calculational
details see the Appendix). In this case we have

~z(C —C )z,
f(C) = ( (up@2+ fp,

cuz (C —C, )2,

C' & C'o, ~
C'o, o & @ & C'o, u
4 (@p,

where 4p ~ and C'p, are chosen such that f is continuous,
and

b2,

g(C) = & bp,

bg,

C &Co
Cp, (C (4p
C &Cp,

(4)

We will focus here on systems with oil-water symme-
try, so that C C'~ 1 C'b„&k) and p 0. The
other parameters are taken to be c = 1, cup = 1, and
u2 ——4. Phase diagrams are then calculated in the pa-
rameters fp and bp The param. eter 62 is chosen such as
to give monotonically decaying correlations functions for
the bulk oil and water phases.

The mean-field phase diagram [7] (which is obtained by
minimizing the free-energy functional P) for our model
is shown in Fig. l. In addition to the three homogeneous
phases, oil, water, and microemulsion, inhomogeneous
phases can be computed by solving the Euler-Lagrange
(EL) equation

2cE C —2g(C)44 —g'(C)(V'O)z + f'(@) = 0.
A lamellar phase appears at large enough negative bo.
Other ordered spatially modulated phases, such as a
hexagonal or a droplet phase, have been shown to be
stable only when the oil-water symmetry is broken [7].

The order-parameter profile of an interface between
two homogeneous phases, located at z = 0, is obtained

f 2

FIG. 1. Mean-field phase diagram of the piecewise
parabolic model (3). The locus of the transition lines does
not depend on the choice of b2. The Lifshitz line (LL), where
the scattering intensity of the microemulsion phase loses its
peak at q ) 0, and the disorder line (DOL), where the oscil-
lations in the correlation function vanish, are indicated. The
lamellar phase can be stable for bo & —gDo = —+4cldp.

as the solution of the Euler-Lagrange equation (5), with
the boundary conditions 4?~(Boo) = +4b„~kfor the oil-
water interface, and 4y(+oo) = 4b„g„4y(—oo) = 0 for
the microemulsion-water inter face.

For general solutions C(z) of (5) varying in only one
dimension there is a first integral of the Euler-Lagrange
equation [5],

2c[C C —2(C ) ]
—g(4)(4 ) + f(4) = const (6)

with C = dC/dz. It is clear that if C ~ Cb„~kfor z ~ oo,
as is the case for 4y (but not for the lamellar phase), the
constant in (6) will be f(4b„ik). Then, by using (6) to
substitute f(4) in Eq. (1), one finds [6]

cr = —= dz [2g(C g)(VC p) + 4c(b, C p) ]

for the interfacial free energy per unit area.

III. FLUCTUATIONS OF INTERFACES
BETWEEN TWO HOMOGENEOUS PHASES

A. Curvature Hamiltonian

dS[cr ~ 2r.(H —Hp) + RK],

On length scales much larger than the intrinsic thick-
ness, an interface can be described by a two-dimensional
mathematical surface. The shapes and fluctuations of
this surface are determined by a Hamiltonian, which
can be derived from symmetry arguments. For inter-
faces in fluid systems, the Hamiltonian must be invari-
ant under translations and rotations in three-dimensional
space, and reparametrization invariant because the fluid-
ity ensures that no coordinate system is preferable to any
other. This leads to the well-known Helfrich Hamiltonian
[3]
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where the integral is taken over the whole surface. Here,
H = (ci + c2)/2 is the mean curvature and K = cic~ the
Gaussian curvature, both expressed in terms of the local
principal curvatures c~ and c2. The elastic properties
of the interface are thus determined by the interfacial
tension cr, the spontaneous curvature Hp, the bending
rigidity K, and the saddle splay modulus K. We focus
our attention here on oil-water-symmetric systems, where
Hp ——0.

Almost flat configurations can be described by a single-
valued function u(x), which measures the displacement
of a membrane from a planar reference state. In this case,
the Hamiltonian can be expanded to second order in the
displacements, which gives in Fourier space

'M =oA+) [2io.q~+ ~ir.q ]uqu q+O(u ),
q

where A is the projected area of the membrane.

solution,

@(r) = C'(z) +'0(r) (14)

and expand the free-energy functional to second order
in rI(r). Since the linear term in g vanishes due to the
stationarity of C', we find

&(C) = &P) + (~ D~), (15)

—2g" (C')(&C')'+ &f"(C') . (16)

The fluctuations can now be expressed as a linear com-
bination of eigenfunctions of D,

D q), (r) = Eg gp(r) .

where (, ) is the usual scalar product. The differential
operator D can be written in the self-adjoint form [5]

D = cA —g (O)4 —g'(C ) (VC&) V' —g'(C )EC

B. EfFective interface model

C (r) = C&~(z —u(x)), r = (x, z) . (10)

An efFective interface model can also be derived from
the Ginzburg-Landau free-energy functional (1). It is
possible to derive a simple approximation for the spec-
trum of capillary waves of the interface by introducing
a "collective coordinate, " such that the order-parameter
field of an almost flat interface is given by

gP(r) = rl„q(z) e'q'"

so that

(18)

q(r) = ) d'Q t.'nq rlnq(z) e (19)

Due to the translational symmetry of the mean-field so-
lution parallel to the interface, the eigenmodes can be
written in the form

By inserting this ansatz into the free-energy functional,
and expanding to second order in the fluctuations u(x),
we find

which leads to the simple form

(il Drj) = ) d q I( ql + q(n q rj q) (20)

P(u) =o d x[1+ 2(V')(u) ]

+ harp d x (A~~u) +O(u ),

where

"z[c(&@+) + g(C'+)(VC'+)'+ f(@+)] (12)

is the interfacial tension of the kink profile, and

Kp = 2c dz (C~)2

for the contribution of the fluctuations to the free energy.
Here, the index n stands for both the discrete and the
continuous parts of the spectrum.

Equation (17) has a solution happ(z) = C& (z) with eigen-
value Ep ——0 because it costs no energy to displace the
interface in the z direction. We are mainly interested
in the wave-vector dependence of the translational mode
gpq(z), which is the zero mode for q = 0.

our aim is to derive expressions for the coefBcients of
the q2 and q4 contributions of the spectrum. Thus, we
expand

n-q(z) = n."'(z) + g'n."'(z) + g'n.'"(z) + O(g'). (»)

can be identified with the bending rigidity of the inter-
face. These expressions agree with the results of a calcu-
lation of the bending elasticity of the oil-water interface
by comparing the free energy of planar interfaces, and of
cylinders and spheres [6].

C. Gaussian fluctuations

We want to go now beyond the approximation (10) and
calculate the exact spectrum of Gaussian fluctuations of
the interface [13,5]. To do so, we consider a small fluctu-
ation of the order-parameter field around the mean-field

We choose the normalization

(Qn & 9~q) =(p) dz[C (z)] (22)

C (z —u) = C (z) —u@ (z) + (23)

The expansion (21) can be inserted back into Eq. (17) to
give

which implies in particular (q~~, il ) = f dz[C (z)] and

(rj~ l, q~ l) = 0; in this case happ can be identified with the
displacement u(x) of Eq. (10),
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Dry, (r) = e'~'" [D,i&„~(z)+ q ([g(4(z)) —2cA, ]rl~( (z) ) + q (col„+[g(4(z)) —2cA, ]r&„&(z) ) + O(q )]
= e''i "['D, + q~l'+ cq4 + .]i&„~(z), (24)

where we have introduced an operator

I' = g(C (z)) —2cA, . (25)

The operator D, in (24) is the operator D for q = 0, i.e. , D, &i„o(z)= E„oi&„o(z).Since D is self-adjoint, we obtain
for the contribution of a single mode to the free energy

+q'((«'&, I &&'&) + (&('&, I'~('&) + (&('&, D,g( &)) + O(q ). (26)

D g(p) /(0) g(o)

D () ~() ()+@() () Iq()
D q( ) —E(o)g( ) + E( )g~~) + @(4)g(P)

Equation (29) yields

(28)

(29)

(30)

The first term in q is just ro/2, compare Eq. (13). The
other terms of order q in this equation can be simplified
further by taking into account that il„~is an eigenfunc-
tion of D. By expanding the eigenvalue E„~in the form

@( &+q @( &+q @( &+O(q )

together with Eq. (17) we obtain a hierarchy of inhomo-
geneous differential equations,

to calculate the third term in (32) from the full solution
as

(«'&, i«'&) = »m, [(~, i~) —(«'&, I «'&)].
q —+0 2q2

The results for the piecewise parabolic model (3) are
shown in Fig. 2(a) for the oil-water interface, and in Fig.
2(b) for the oil-microemulsion interface. We see that for
the oil-mater interface, the approximation of the local
order-parameter profile by the mean-field profile gives
very good results for bp + —1, i.e. , in a region of the
phase diagram, where the correlation function in the mi-

2.5-

~(2& (i&~ ~ ~9~ )
(o) - (0)

n (p) (p)(gn, gA )
(31)

When the equation for r& is used in Eq. (26), we finally
arrive at

(&(o& &(o&) + i& (&(o& &(o&)q2

+ —'+ g(') I'g(') q'+ q'
2 1

water - microemulsion
(b&

For the translational mode we have Eo ——0. Thus we(o)

can write (32) in the form

with

(i&op D'Oog) = ~~creq + i2rq + O(q ), (33) 0
0

-2 0 bo

and

« = &o(r&o no ) = (no I'i&o )
(o) (o) (o) " (o)

~ = ~. + 2(~,"&,I q,"&) . (35)

In the following we shall refer to both O.
q and pp as "inter-

facial tension, " keeping in mind that the two are related
by a normalization constant (r&o, i&o ). For a free inter-

' ~ (0) (0)

face Eq. (7) gives crq ——o..
Numerically, the eigenvalues E = (i&, Dg)/(g, i&) are in-

distinguishable from the eigenvalues determined by solv-
ing Eq. (17) directly (for details see the Appendix). It
turns out that instead of solving (29) for i&(2&, it is easier

FIG. 2. Interfacial tension cr and bending rigidity
of the interface between two homogeneous phases at oil-
microemulsion-water coexistence, as calculated from the spec-
trum of capillary waves, with b2 = 4.5 and fo = 0. (a) Oil-
water interface. (b) Water-microemulsion interface. The val-
ues for o and K calculated from the direct solution of (17)
and from (32) agree perfectly. The tension cr is positive at
oil-water coexistence; for o. ( 0, the lamellar phase is stable.
Note that K, which takes into account the curvature-induced
change of the profile, can differ significantly from Kp (dashed
lines). Terms of order q (dotted lines) in the spectrum are
very small, and contribute only for the water-microemulsion
interface near bo ———2, where K is negative, so that the exci-
tation energy is always positive.
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croemulsion has strong oscillations, so that the inter-
face can be considered to be covered by a saturated am-
phiphilic monolayer. In this case, the (rI(~l, I'g(p)) term
in (32) can be neglected, and the bending rigidity is given
to a very good approximation by (13). For larger values
of bp, the (g(z), I'q(P)) term, which arises from the devia-
tion of the profile of the curved interface from the simple
form (10), becomes more and more important. We have
to keep in mind that the width of the interface grows
when the wetting transition [5], which occurs at bp = 2,
is approached; at this point, a second zero mode appears
in the spectrum. This second zero mode describes fluc-
tuations of the interface width.

For the mater-rnicroemulsion interface, on the other
hand, the simple approximation (10) never gives good
results. Thus, we conclude that this interface is a much
more complicated object, with an interfacial profile which
is strongly distorted when the interface is bent. Its de-
scription by means of a curvature model breaks down
completely near bp ———2, where the term of order q
ensures the stability of the interface.

IV. FLUCTUATIONS OF THE LAMELLAR
PHASE

We want to consider now the Buctuations of an infinite
stack of oil-water interfaces, i.e. , of the lamellar phase.
In this case, the undulation modes have an additional
degree of freedom, the phase shift y between the capil-
lary waves of neighboring monolayers. It is well known
that the undulation modes destroy the long-range order
in lamellar phases [14]. We want to focus in this section
on the modes with y = 0. We will show that the interfa-
cial tension term o& in the spectrum vanishes identically
in this case. To do so, we study the variational prob-
lem of minimizing the free-energy functional (1) in more
detail. In the case of a spatially modulated phase, the
free-energy density is not only minimized with respect to
the order-parameter profile, but also with respect to the
periodicity length. Thus, the vanishing of the interfacial
tension means physically that the system is stationary
with respect to the formation of interfacial area.

Let us consider a general functional of the form

ti, and z = &', ) 0 for 0 ( t & ti. This yields

dCl

dz

dC dt C

dt dz z
(38)

C fI

dz ~zJ

~ ~

Cz —Cz
Z3

(39)

8(C, C', C', z, z) =-
Zl

dt l:(C, C, C, z, z), (4o)

~ ~ t

l:(C, @,C, z, z) = zl: C, —, (41)

Here and below we use the notation C' = dC/dz and
C = dC'/dt. 8 can now be minimized by a variation of
C(t) and z(t),

C (t, ei) = C (t) + eig(t),
z(t, ez) = z(t) + ez((t).

(42)
(43)

d Bl: d Bl:
d + .. rlt

dt B@ dt B@

Bl: Bl:. d (Bl l

dt (B@)
= 0. (44)

The boundary terms in g vanish due to the boundary
conditions; the i) contribution is

Bl: . 1 Bl: . Bl'

Bc ~ z B@/I ~ B@/I ~ (45)

and thus vanishes identically due to the periodicity of
C. Finally, the integral vanishes for all functions C, for
which

We have already discussed the boundary conditions for
z; C is taken to be a periodic function with continuous
first and second derivatives. The stationarity of 8 with
respect to C' leads to

Bl: BC Bl: BC Bl: BC
t + ~ +

BC' Bei BC Bel B4 Bel

18=-
Zl

l:(O', C", C") dz. (37)
. /Bl: d Bl: dz Bl:)

BC dz BC' dz2 BC") (46)

To obtain a variational problem with fixed boundaries,
we reparametrize [15]: a continuous function z = z(t) is
chosen with the periodicity of Cl, z(ti) = zi with fi~ed

which is (since z ) 0) just the Euler-Lagrange equation
for the mean-field profile [see Eq. (5)].

The stationarity of 8 with respect to z leads to

0
8(C, z) +-g(t, ) — 1

Zl Zl

8(C, z) +-4(ti)
Zl

'
Zl

OZ Dz M. Oz
dt . +

p Bz Beg Bz Be2

dM d~M
&())

0 dt Bz dt t9z

1 BL Bl: d (Bl:
zi Bz Bz dt (Bz j - 0
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We first study the integral, where we have The free-energy density is therefore given by

d (Bl: d Bl )
dt (Bz dt Bz)

8=—1
Z]

Z1

dz [2g(C)(C )2 + 4c(C )z] + R . (54)

d Bl:, Bl: „,d (Bl:l
dt B4' B4" dz (B4")
d—:——'8 =0.
dt (48)

Together with (51) this implies

Z1

dz [g(~)(C')'+2c(~ ) ]
=

Z1

dz C'I'C' = 0.

(55)

Bl: Bl: 41,Bl: (
Bz BC" ~z2) BC" z (49)

and vanishes due to the periodicity of C and z. Thus,
the only terms left are those containing ((ti), so that

(Bl: d Bl l—$(Cz)+ . —— .. (ti) =0.
i Bz dt Bz) (50)

We conclude that for periodic phases the first integral of
the EL equation equals the free-energy density,

$(C, z) = 'R.

We can now return to our Ginzburg-Landau model. In
this case the first integral is [see Eq. (6)]

f(C)+2c[C C ——,(C ) ]
—g(C)(C ) =»

so that

(52)

Z1

dz f(C) =
Z1

dz [g(C)(C ) +3c(C )2+ &].

Here, 'M is just the first integral of the EL equation [which
is Eq. (5) for our functional (1)]. Therefore, the integral
vanishes.

The boundary term in g is written as

This is just the result we were looking for. A comparison
with Eq. (34) shows that (55) is the interfacial tension
term oq in the spectrum of capillary waves. Our result
shows that in the lamellar phase, the leading term in
the spectrum is controlled by the bending energy. We
want to emphasize that the absence of q~ contributions
does not imply that the interfacial free energy of a single
oil-water interface vanishes. Quite the contrary is true:
the interfacial free energy is essentially always nonzero,
and usually negative in the region of the phase diagram,
where the lamellar phase is stable.

V. INTERFACES IN FINITE SYSTEMS

A. Mean-Beld theory and Gaussian Buctuations

In experiments on lamellar phases, the system is usu-
ally confined between walls. The walls orient the stack
of monolayers, so that "monocrystalline" samples can be
obtained. Furthermore, the walls introduce an impor-
tant new variable into the system: the distance between
monolayers can be varied by changing the wall separa-
tion.

To describe a ternary mixture between walls, the inter-
actions of the molecules with the walls have to be added
to our Ginzburg-Landau free-energy functional (1). We
study here the case of two parallel walls, located at z = z„
and z = z~, with the free-energy functional

X(4) = ('(&C')'+ g(C')(&C')'+ f(C') + ~( — ) [f (C') + g (C')(&C')'+ I OI

+~(z —z ) If~(O) +»(C')(&C')'+ p2C']) (56)

fii2(C') = ~i(2C",
giig(C') = gii2 = const

(57)
(58)

The order-parameter profile, which minimizes the free-
energy functional (56), satisfies the EL equation (5) with
the boundary conditions [7]

~2cV'2C +2g(C)C + f,'i2(C)+g', (2(O)(C )

+pii2 . . = 0, (59)

Here, pqyq is a chemical potential which describes the
hydrophobicity of the wall. The functions fi~z(C) and
giga(4) arise from the change in the interaction ener-
gies of the various molecules near the walls, and from
the change in entropy due to the missing neighbors. We
choose

+2cg' 4 + 2gii2(4) 4 = 0,
Z=Z~/f

(60)

&(C') =&(C')+(& D&)+&+.u+&.u

where D is the self-adjoint operator (16) of the infinite
system, and

where the upper (lower) sign applies to the right (left)
wall.

We want to consider again Gaussian fluctuations by
expanding the free-energy functional to second order in
the deviations g from the mean-field profile C,
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d2x [~cgVsq + cV2rlVrl + g(C)@VS + g'(C )(VC )rl + giy2(C))(V)7)

+2gigz(C')(VC')nVn+ z»(z(C')(VC') & + 2fi)2(C')& l =..„. (62)

Due to the presence of the walls, the translational
mode has now a finite energy even at zero wave vector
q; this allows the calculation of correlation functions. In
particular we are interested in the pair-correlation func-
tion

G(r, r') = (C(r)C(r')) —(4(r))(C(r'))
= ('9(r)rl(r )) .

In the Gaussian approximation, G(r, r') can be written
as

G(,) ) rl), (r) ilg (r')

It satisfies the differential equation

DG(r, r') = 6(r —r') (65)

and is therefore the Green's function of the operator D.
Equation (64) indicates that the boundary conditions

for G(r, r'), with fixed r', and for rl(r) must be identical.
When a spatially inhomogeneous chemical potential term
J'dsr p(r)4(r) is added formally to the functional (56),
the average order-parameter profile is obtained as

~(r) = (C'(r)) = &[C' ~l6p(r)
(66)

and similarly the correlation function as

6G(»») =
~

(C'(»))
6p I'i - p,=O

(67)

Thus a functional derivative of the boundary conditions
[16] for the order-parameter profile yields the boundary
conditions for the fluctuations and for the correlation
functions in the harmonic approximation,

I

mean-field proFile itself,

s(g}= ( dr e*~'"&&(r) dr' e*~'" c&(r'))
=A dz dz' e'~ ' '

[C (z)C (z') 6(q~~)

+G(q, ~, z, z')]. (71)

B. Phase diagram for lamellar phase between walls

The order-parameter profile now depends on the sep-
aration of the walls, as well as on the boundary con-
ditions. We study systems for which the infinite sys-
tem is in the lamellar phase, not too far from the three-
phase coexistence with the oil-rich and water-rich phases.
To study the behavior of the system near the walls, we
have determined the effective wall-interface interaction
V by calculating the free energy of the oil-water inter-
facial profile as a function of the distance to the wall,
see Fig. 3. For p, ~y2

——0 the interaction is purely attrac-
tive. The free energy is minimized by a configuration,
where 4(z,gi) = +O(), the interface is adsorbed at the
wall. For piy2 ( 0 an intermediate maximum develops
and it depends on the values of giga and ai~2 whether
an adsorbed or a free interface is more favorable. Thus
the adsorption transition is first order. In the following,
the boundary conditions are always chosen such that the
interface is desorbed, i.e. , the surface order parameters
are C)(z„gi)) Co or C(z„gi)( —4().

When the separation of the walls is increased, the sys-
tem will try to maintain the interface separation of the
infinite system as closely as possible. Figure 4 shows the

~2cV' rl' + 2g'(C))C rl + 2g(C))rl'+ f,"&2(O)rl

+gi'(q (C )(4 ) rl + 2gi)2 (4)O )7' = 0, (68)

+2cV' rl + 2gi&z(C)C rl+ 2gii2(C))7' = 0, (69)

where q' = drl/dz. By comparing with (62), we see that
these boundary conditions imply

-2-
1= 2

wall (70) 3

This relation ensures that D can be diagonalized as usual
[»1.

For the piecewise parabolic model, the correlation
function G(q~~, z, z') can be calculated most easily from
Eq. (65) after a Fourier-transform parallel to the walls.
A few details are given in Appendix A. The scattering
intensity S(q) has an additional contribution from the

FIG. 3, ER'ective wall-interface potential V for p, y)2 E
(0, —1, —2), gqy2 ——0 (full lines), and g&~2 ——2 (dashed lines).
E is the distance from the wall to the first matching point,
where C = Co. For small pq and gq, V has a minimum at a
finite distance d, which indicates adsorption of a monolayer
to the wall. The other parameters are aqgq ——0, bp = —2.1,
b2 = 4.25, and f() = 0.
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5 7p

0.1

0.0

account the interaction between the membrane and the
wall.

The upper part of Fig. 4 shows the coefBcient po of the
translational mode, whose spectrum now reads

Ep(a, d) = Ep(d) + Vp(d) V'+ m'+ &(C')

-2.0-

-2.5- 6

10 20

FIG. 4. The lamellar phase between two parallel walls, as
a function of the wall separation d. The lower part shows the
d dependence of the free energy for various numbers of mono-
layers. The full lines correspond to antisymmetric boundary
conditions (pi ———p2), and therefore to an odd number of
monolayers, while the dotted lines correspond to symmetric
boundary conditions with an even number of monolayers. The
upper part shows the interfacial tension po. Note that po ——0
always occurs when the configuration is stable. The parame-
ters are bp = —2.1, b2 = 4.25, fp = 0, aig2 ——0, pi = —1, and
gy =2.

where d is the wall separation. The optimal separation
of interfaces is given by po ——0. Due to boundary ef-
fects, this separation only approximately equals the pe-
riodicity of the infinite lamellar phase. For smaller inter-
face separations, pp becomes positive, i.e. , the interfacial
area decreases due to a reduced amplitude of capillary
waves, while for larger interface separation, the interfa-
cial tension po becomes negative, i.e., the interfacial area
increases due to an increased amplitude of the capillary
waves. When the distance between interfaces is made
very large and 4cEO & po, negative-energy eigenvalues
appear. In this case, the stack of planar membranes be-
comes unstable with respect to a new phase, in which
the undulations of wave vector q;„=g—pp/2c form
a regular pattern with long-range correlations. This in-
stability occurs only in the metastable region, where a
system with the same wall separation but a larger num-
ber of interfaces is stable, and may therefore be difficult
to observe experimentally.

C. Fluctuations of a single membrane between walls

free energies of systems with a diferent number of oil-
water interfaces as a function of the wall separation. It
can be seen that as the wall separation increases, the in-
terface separation also increases until at some point it
becomes more favorable to squeeze an additional pair of
interfaces into the system. A very similar behavior of the
free energy has been observed experimentally for a sys-
tem of a small number of membranes, studied with the
surface force apparatus [18—20].

The spectrum of capillary waves of a single oil-water
interface, and of the lamellar phase, is changed by the
presence of the walls. We have shown in Sec. III C that
the effective interface model (the curvature Hamiltonian)
describes the fluctuations of the oil-water interfaces very
well for systems where the lamellar phase is stable. In
particular, we have found that modes other than the un-
dulation modes have a much higher energy and can there-
fore be completely ignored. However, we have to take into

I

We now want to study the consequences of the d de-
pendence of the coefficients Ep(d) and pp(d) for a single
membrane in detail. When only the translational mode,
Eq. (72), is taken into account, the correlation function
in a plane parallel to the walls can be written as

G(x, z, z) = gp(z)rip(z) (2) ""E( d)

For large x and 4cEO ) po, the correlations decay expo-
nentially with oscillations, with a (parallel) correlation
length

1

pp 1 E() l—+-
i4c 2 c) (74)

The perpendicular correlation length is determined by
the displacement of the interface perpendicular to the
walls. For a single membrane between two walls at z =
+d/2, it is found from (73) to be

(i =2

Eo

d Q
G(q, 0, 0)

~ —acccac(»/o/'4cEn —»n) ) /(2cocc4cEo —»n),
oc &

O/» — ' o) '"((»+ V'» —4 o)/(» —V'» —4cEo)), 4cEo &»
(75)

The simplest case is certainly pp = 0, where the following scaling relations [21, 22] can be obtained easily (in D
dimensions):
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E—1/4
(76) 10

1
(~ OC g 4OC ~+

ii

(5—D dD i(—()
(&~II)4

(77)

10

Therefore, in three-dimensional systems (~ oc (~~ oc

E0 . However, we have to keep in mind that due to
-X/4

the d dependence of p0 shown in Fig. 4, p0(d) vanishes
for att d nowhere in the phase diagram.

We can now determine the eigenvalues Es(q, d) numer-
ically, and thus calculate the two correlation lengths (74)
and (75), using the expression (31) for p0. At coexistence
of the oil-rich, water-rich, and lamellar phases, where

p0(d = oo) = 0, the scaling relation (~ oc (~~ oc E0
—i/4

is found to be satisfied quite well.
We want to consider next the d dependen. ce of the free

energy and the coefBcients of the spectrum (72). Due
to the exponential decay of the order-parameter profile
towards the bulk value, the (mean-field) free energy also
converges exponentially towards the free energy of a free
interface, plus boundary contributions. The characteris-
tic length scale must be the bulk correlation length of the
homogeneous oil and water phases. We have to remem-
ber that the asymptotic decay of the profile actually has
two length scales, even for b2 ) bDo = /4nu2. For large
d, the larger of the two dominates; this is the length scale
to be identified with the bulk correlation length. Figure
5 shows the excess free energy (without fluctuation con-
tributions, see Sec. IVD) I"g = F(d) —F(oo), the energy
eigenvalue E0(d), and the interfacial tension p0(d). All
three quantities are found to decay exponentially with
the distance of the interface from the wall, i.e. , d/2. The
length scale is essentially the bulk correlation length, as
expected. The agreement becomes better the further b2

gets away from bDo, where the two length scales sepa-
rate. This can be seen clearly in Fig. 5(b). Thus, we
have

10
10 20 Cl

1.0-

0.8-

4.0 4.5 5.0 b2

the peak position as a function of d the distance depen-
dence of the interfacial tension can be determined.

D. Fluctuation-induced interaction

When the Gaussian fluctuations of the order parame-
ter are taken into account, the free energy of an interface
between walls, compared to the free energy of an uncon-

FIG. 5. (a) Exponential decay with wall separation d of
excess free energy Fd, = F(d) —E(oo), energy eigenvalue Eo,
and interfacial tension yo of the translation mode, at coexis-
tence of the oil, water, and lamellar phases. The parameters
are bo = —2.5, fo = 0.1346, hi = —1, gi = 2, and b2 = 4.25.
(b) The typical lengths of exponential decay of excess free
energy F&, energy eigenvalue Eo, and interfacial tension po,
compared with the larger of the two bulk correlation lengths
in the homogeneous oil-water phases (full line), as a function
of b2.

70(d) =7 +Pe " (78)

with p & 0. Exactly the same behavior of the interfa-
cial tension has been derived recently by Fisher and Jin
[23] in the context of the wetting phenomena. In our
model, the interfacial tension of the free oil-water inter-
face, p, is negative (in the region of the phase diagram
where the lamellar phase is stable); when the wall sep-
aration decreases, p0(d) increases and equals zero when
the optimal membrane distance is reached.

Experimentally, the fluctuations of a membrane can
be studied by x-ray and neutron scattering. We calcu-
late the scattering intensity (71) by Fourier transforming
the correlation function; it contains all eigenmodes. Fig-
ure 6 shows S(q) for wave vectors q parallel to the walls,
and various wall separations. The negative interfacial
tension p0 leads to a peak in the scattering intensity at
finite wave vector for wall separations larger than the
optimal lamellar distance. The peak position is given by

pp(d)/2c = g oq—(d)/2K. Thus, by s—tudying

) p3

d=14
12

10

6

)p1

~ ~ ~ ~ ~

log q

FIG. 6. Scattering intensity S(q) for a single monolayer
between walls, with wave vector q parallel to the walls, for
various wall separations d, as indicated. For separations d &

10, a peak appears at q & 0, indicating a negative sign of the
interfacial tension. Parameters are the same as in Fig. 3.
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strained interface, has the additional contribution

AF, (d) = AF(d) —AF(oo)

=2). &n+'7nq +~q2 4

„~+p„q+cq
ln

2 4

For pp ——0 this excess free energy scales as

4+(—4

dD —1 l II

q4
103

0.0
I

0.5
I

1.0

(80)

Thus, &F, oc QEp for D = 3. Since Ep depends expo-
nentially on the wall separation, so does Q+, . By numer
ically evaluating (79), we have checked that the excess
free energy indeed decays exponentially with increasing
wall separation.

Thus, on the level of Gaussian fluctuations, interfaces
with po = 0 between walls do not lead to a fluctuation-
induced steric interaction with an algebraic d 2 decay,
as expected from an analysis of the effective curvature
Hamiltonian [4]. This can be easily traced back to the
exponential dependence of the perpendicular correlation
length $~ on the wall separation d, whereas $~ oc d in the
curvature model. To arrive at such a relation, the inter-
action of capillary waves, which is neglected on the level
of Gaussian fluctuations studied here, has to be taken
into account.

E. Fluctuations of a stack between walls

When the wall separation is much larger than the spac-
ing of the infinite lamellar phase, a stack of oil-water
interfaces is present between the walls. In the case of
N membranes, there are now N undulation modes at
fixed wave vector q parallel to the walls. The transla-
tional mode, where the undulations of all membranes are
in phase, is still the excitation of lowest energy at small
q. However, for large distances between membranes, the
other modes have only slightly larger energies; the diKer-
ence E„(q= 0) —Eo(q = 0) decreases exponentially with
increasing wall separation (with a fixed number of mem-
branes in the stack).

The spectrum of undulation modes for five membranes
is shown in Fig. 7, in the case of the optimal lamellar
spacing, so that pp = 0. It can be seen that the coef-
ficient p„ofall undulation modes except for the trans-
lational mode are negative. For suKciently large q, the
energies of all undulation modes increase as Kq4; in this
case the spectrum is determined by the curvature energy
and depends only very weakly on the interaction between
membranes. Thus, all these modes have a minimum in
their spectrum as a function of q.

We have calculated the scattering intensity of the stack
for two cases, q~ = 0 (i.e. , the wave vector is parallel to
the walls) and q~ =

qll (i.e. , the wave vector is tilted
by 45 from the normal). In the first case antisymmet-
ric modes do not contribute to the scattering intensity.

FIG. 7. Energy eigenvalues of the undulation modes for a
stack of five amphiphilic monolayers with "ideal" separation

(pe = 0). The antisymmetric modes are shown by dotted
lines. Parameters are the same as in Fig, 3.

For an even number of interfaces this is in particular
the translational mode, so that the scattering intensity
is considerably smaller than for an odd number of inter-
faces. The scattering intensity for five and six membranes
is shown in Fig. 8 for various wall separations. We have
checked numerically that the scattering intensity is domi-
nated by the undulation modes, so that in the expression

S(q~ qll) = d~

2000' n=5

qg ——0

1000

0.0 0.5 q o.o 0.5

n=6

qua=0

100.

0.0 0.5 1.0 q oo 0.5 1.0

FIG. 8. Scattering intensities S(q) for five and six mono-

layers between walls, with wave vector g parallel to the walls,
as well as with an angle of 45 . Parameters are the same as in

Fig. 3. For Ave layers, the wall separations d = 18, 20, 22, 24
are used; for six layers d = 20, 22, 24 (from bottom to top).

(8i)

terms other than the undulation modes can be essen-
tially neglected. However, alt undulation modes con-
tribute appreciably to the scattering intensity; the neg-
ative coefficients p„ofthe spectrum of these modes
leads to additional peaks in the intensity at wave vec-
tor q „=g—p„(d)/2c. In the range of wall separa-
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tions studied in Fig. 8, the peak position decreases with
d; however, the expected exponential behavior could not
be observed, since the p„(d)have not yet reached their
asymptotic exponential regime for large d.

VI. SUMMARY AND CONCLUSIONS

The fluctuations of interfaces in ternary oil-water-
surfaetant mixtures have been studied for a simple
Ginzburg-Landau model. On the level of Gaussian fluc-
tuation theory, we find that the bending rigidity e, which
controls the fluctuations of the oil-water interface, agrees
very well with the rigidity obtained from the free en-
ergy of cylinders and spheres. Furthermore, we confirm
that the modification of the intrinsic interfacial profile
due to curvature can be neglected for the calculation
of K for saturated monolayers. On the other hand, the
bending rigidity of the water-mieroemulsion interface is
dominated by the curvature-induced distortion of the in-
trinsic profile. We have also shown that the interfacial
tension term in the spectrum of the translational mode
in the lamellar phase vanishes identically. Thus, we have
shown that our Ginzburg-Landau model correctly repro-
duces the spectrum expected from general symmetry ar-
guments.

The Ginzburg-Landau model has then been used to
study fluctuations of several interfaces between two par-
allel walls. This geometry is accessible to experiments,
and has already been investigated in some detail exper-
imentally. We find that the interfacial tension is now a
function of the distance between the walls, and thus a
function of the distance between interfaces. When the
interfaces are pulled apart, the tension becomes nega-
tive, signaling the system s desire to increase its inter-
facial area, whereas the tension becomes positive under
compression. The negative tension leads to a peak in the
scattering intensity, which should be possible to detect
in x-ray or neutron-scattering experiments. By follow-
ing the peak position as a function of the wall separation
d, the d dependence of the interfacial tension could be
measured.

Gaussian fluctuation theory is limited to the investi-
gation of small fluctuations. This condition is fulfilled in
the lamellar phase between walls, as long as the number
of interfaces is small, and the distance between the inter-
faces is not too large. Thus, it cannot be used, for exam-
ple, to calculate the scattering intensity for a large stack
near the Bragg positions, where an algebraic singularity
appears [14,4, 24]. It also cannot be used to calculate the
structure and fluctuations of microemulsions with strong
amphiphiles. Therefore, we use Monte Carlo simulations
to investigate large fluctuations in ternary amphiphilic
systems in the second paper of this series [25].
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APPENDIX: CALCULATIONS IN THE
PIECEWISE PARABOLIC MODEL

In the piecewise parabolic model, the Euler-Lagrange
equation (5) reduces to a piecewise linear equation [5, 7].
The amplitudes of the resulting exponential functions are
determined by matching conditions at the points z = zp

where C = Op. The matching conditions at C = Cp are
the continuity of the profile, its first two derivatives, and
of the first integral (6).

The eigenvalue equation (17) for the Gaussian fluctu-
ations also reduces to a piecewise linear equation,

(cE —bA+cu —E)q = 0. (Al)

This equation can be solved by the ansatz

4

q(z) = ) L„e"",cA' —b2A' + ~, —E = 0,

4

q(z) = ) M,e"", cp —bpp, +~p —E = 0,

V'q = A b'(z —zp) + B 6(z —zp) +
To solve Eq. (17) at z = zp, we demand

Zp+6

lim [(D —E)q(z)]h(z) dz = 0
Zp —6

(A3)

(A4)

for an arbitrary test function h. After partial integration
and with the use of the fact that h(zp) and h'(zp) should
be independent, we arrive at

b2 —bo
A = g(zp),

b2 —bp f C' (zp)
( ) q( )r

2c ( C' (zp)+, rj(zp).
Cdg —Mp O(Zp)

C (zp)

(A5)

We conclude that at the matching points g(zp) and g'(zp)
must be continuous, and

n".(Zp) = n."g (Zp) +»
g'", (zp) = q"] (zp) + B, (AS)

where the subscripts "me" and "o/m" denote the phase

(C/ (@p.
At the points z = zp with 4(zp) = @p, we again need
matching conditions, from which we can determine the
amplitudes L, and M, . Because of the discontinuity of
g(C'), D contains terms proportional to b'(z zp) and
6"(z —zp). These singular contributions have to be com-
pensated by similar terms in the highest derivative of g,
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4

rl(q, z)e'~" = ) (A9)

in which the functions are evaluated. Since A and B are
linear functions of ri and ri', respectively, we have to solve
a system of homogeneous linear equations in the ampli-
tudes L, and M, . This determines the energy eigenvalues
En.

After a Fourier transform parallel to the interface, (A2)
can be generalized to modes with wave vectors q P 0,

+] ———2q IA +]q + —q +(b,l, (4 b, ~ —Zl
i

=0.
c )

(A10)

The matching conditions remain unchanged. The full
spectrum can be calculated numerically.

The correlation function G(q~~, z, z') can be obtained
using the same ansatz The b function in Eq. (65) be-
comes an additional matching point at z = z', where
A = 0 and B = l.
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