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Lattice Bhatnagar-Gross-Krook models for miscible fluid flow in two (2D) and three (8D) dimen-
sions are introduced. The convection-diffusion (CD) equation and the Navier-Stokes (NS) equation
describing the macroscopic behavior of the models are derived using the Chapman-Enskog expansion
technique. Corrections to the CD equation of higher order in the Bow velocity are obtained, and it is
shown how the present models are linked with the existing Boltzmann model. It is also shown how
the Navier-Stokes dynamics is explicitly decoupled from the diffusive behavior of the model. The
results obtained from both 2D and 3D simulations are observed to be in excellent agreement with
the analytic predictions. In particular it is shown that the models are well described by theory for
high-Peclet-number flows. We also present simulation results confirming the anomalous (but small)
velocity dependence of the CD equation, and we investigate the models' sensitivity to large gradients
in the concentration profile.

PACS number(s): 68.10.—m, 47.10.+g, 02.70.—c, 51.10.+y

INTRODUCTION

Since the first lattice-gas automaton (LGA) for the
simulation of two-dimensional (2D) fluid dynamics was
introduced by Frisch, Hasslacher, and Pomeau [1] in 1986,
a rich variety of related cellular automaton-type models
have appeared.

The original model is a genuine cellular automaton re-
lying on a fully discretized picture of a fluid. Particles
move on a triangular lattice and are only allowed to in-
teract at the lattice nodes. Every time step thus con-
tains a movement (streaming) and a collision part. When
the collisions satisfy mass and momentum conservation it
can be shown that the lattice gas develops macroscopic
dynamics which is very close to incompressible Navier-
Stokes behavior. The macroscopic dynamics is obtained
by taking either spatial or time averages of the particle
velocities.

Since the updating rules are strictly local and very sim-

ple, the introduction of complex boundaries is a simple
matter. The model has been successfully applied to sim-
ulations of flow in porous media [2]. The LGA is a mi-
croscopic model in the sense that the fluid flow may be
viewed as an averaged flow of interacting particles. Due
to this natural physical interpretation the LGA is eas-
ily extended to deal with a number of phenomena that
are more complicated than incompressible single phase
flow. There exist extensions of the model that deals with
miscible [3,4] and immiscible [5] fluid flow, flow with tem-
perature variations [6], and osmotic flow across semiper-
meable membranes [7].

In the LGA model particles are represented by single-
bit occupation numbers n, (x, t) = 0 or 1, corresponding
to the presence or absence respectively of a particle at the
position x at time t with velocity in the direction labeled
i. Thus, information about 32 particles can be stored
in a single computer word. This property was called bit
democracy by von Neumann since every bit contains the

same amount of information. It makes the model very
memory eFicient, and, since there are no roundoK errors
involved in single-bit manipulations, numerical stability
is guaranteed. However, the inherent statistical fluctu-
ations require a large amount of averaging in. order to
obtain smoothly varying macroscopic quantities.

In order to avoid these fluctuations the lattice Boltz-
mann (LB) models [8] use the mean occupation numbers
N, = (n, ) instead of the occupation numbers themselves,
as the basic quantities. The algorithms for these mod-
els are given by the Boltzmann equation which describes
the time evolution of the distribution functions of LGA
model. There is a tradeofF, however, between the absence
of noise in the hydrodynamic quantities and memory ef-
ficiency, because the N, 's need to be represented by 32
bits each.

Both the LGA and the LB models sufFer from some
deficiencies that are due to the exclusion principle (there
can be at most one particle in a given direction at a
given site) and the discreteness of the velocities: The
Navier-Stokes equation describing the models contains
an anomalous prefactor in the convection term, which
therefore breaks Galilean invariance [9], and the pressure
term depends on the flow velocity. Also, in the LGA
and LB models the viscosity is determined by the choice
of collision rules. This restricts these models to a rather
limited range of Reynolds numbers. This constraint is re-
moved in the linearized lattice Boltzmann (LLB) model
first introduced by Higuera and co-workers [10—12], where
it is observed that the collision operator can be linearized
around a local equilibrium, and need not correspond to
the detailed choice of collision rules of the LGA, as long
as it conserves mass and momentum. Contrary to the
LB model this model is also easily extended to 3D. In
both the LGA and the (L)LB models the isotropy of the
hydrodynamic equations is due to the structure of the
underlying lattice. In 2D simulations the lattice is trian-
gular whereas in 3D a projection of the 4D face centered
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hypercubic lattice [13] must be used.
Recently gian, d'Humieres, and Lallemand [14] pro-

posed an alternative to the lattice Boltzmann mod-
els called lattice Bhatnagar-Gross-Krook (BGK) models
[15]. In these models isotropy is ensured through the
particular choice of equilibrium values for the average
occupation numbers N, , and simple cubic lattices are
used. The equilibrium distribution functions are chosen
to recover Galilean invariance and to remove the veloc-
ity dependence in the pressure term. The collision step
is reduced to a multiplication by a relaxation parameter
whereas a full collision matrix with the same rank as the
number of directions on the lattice is employed in the
LLB models. Compared with the LGA, from which the
lattice Boltzmann models evolved, the BGK models rep-
resent a further abstraction of the original model. The
collision operator of the LLB models may be constructed
to correspond to a specific choice of collision rules in the
LGA. This is not the case for the BGK models. How-
ever, the conservation of mass and momentum, necessary
to obtain hydrodynamic behavior, is kept in the collision
step of the BGK models.

During recent years several models for two-phase flow
have been introduced. A linearized lattice Boltzmann
model corresponding to the original lattice-gas model for
immiscible Huids [5] exists due to Gunstensen et at. [16].
Recently a linearized 2D lattice Boltzmann model for
miscible fluids was introduced by Holme and Rothman

In this paper we propose BGK models for miscible Huid
flow in both 2D and 3D. Keeping the algorithmic sim-
plicity of the BGK models as well as the extra richness
associated with having two Huids, these models rely on
a combination of the ideas of both Holme and Rothman,
and gian, d'Humieres, and Lallemand. The two relax-
ation parameters of the models may be identified with the
eigenvalues of the LLB collision operator corresponding
to the transport of color and momentum.

To apply these models to the simulation of realistic
systems it is often necessary to work at high Reynolds or
Peclet numbers. This can be achieved in one of two ways:
either by using large lattices, and thereby a large amount
of computational resources, or by performing the simula-
tions with small transport coefBcients. The latter strat-
egy is clearly preferable, and in the model of Holme and
Rothman, as well as in the present models, the transport
coefficients are continuously tunable parameters. How-
ever, the use of small transport coefBcients will support
large gradients in the corresponding hydrodynamic quan-
tities. If these quantities develop detailed structure on
a scale below the cutoK given by the lattice constant,
the models will fail to produce physical results. This is
a problem inherent to all numerical models where the
physical space is represented by a discrete lattice. The
lattices must therefore be large enough to sample the rel-
evant fields with a close enough spacing.

The 3D model employs the cubic lattice with 15 veloc-
ity directions on each node as used by gian, d'Humieres,
and Lallemand. However, for the sake of direct compar-
ison with the existing Boltzmann model, the 2D model
is implemented using the same triangular lattice as the

Frisch-Hasslacher-Pomeau (FHP) models. Using the tri-
angular lattice for the 2D model, the velocity depen-
dence in the pressure is still present. As shown by gian,
d'Humieres, and Lallemand, this could be avoided by us-
ing a different lattice.

The fluids are distinguished as either "red" or "blue. "
The basic variables of the models are the distribution
functions

¹=R,+B, ,

A, =R, —B, ,

(1)
(2)

where R, (B,) is the mean occupation number for red
(blue) particles in direction i at a given node. This
choice of. variables decouples the information on mass
density and How (N;) from the information on the rel-
ative amount of color (4,) in the sense that the time
evolution of the N, 's is independent of the 6, 's. Thus,
the fluid dynamics, as seen by a colorblind observer, is
the same as in the models proposed by gian, d'Humieres,
and Lallemand [14]. The diffusive behavior of the mixing
Huids is superimposed on the underlying Navier-Stokes
dynamics.

Although the convection diffusion equation describing
these models has been derived within the context of the
LGA [3], an analysis of the corrections to this equation
due to terms of higher order in the flow velocity seems to
be lacking. At a high Peclet number, when the diffusive
transport of color is small compared to the convective
transport, these corrections are potentially of crucial im-
portance. However, it is shown in this paper that they
are proportional to D, and hence do not dominate even
when D is small.

For the models to be well described by theory the corre-
sponding systems must be in a state of local equilibrium.
We derive the time of relaxation to local equilibrium as
a function of the transport coefficients and show how the
transients may be removed by initializing the distribu-
tion functions with a dependence on the gradients in the
conserved quantities (color and momentum).

A comparison between the present BGK models and
the Boltzmann model proposed by Holme and Rothman
is given, and it is shown how the latter may be reduced
to the former by a proper decomposition of the collision
operator. In both models a large amount of the compu-
tation time is consumed by the calculation of the equilib-
rium distributions, which is done at every node at every
time step. However, the simplification represented by the
BGK models becomes particularly clear in 3D. The col-
lision step of the BGK model consists of a multiplication
by two parameters, whereas the Boltzmann model would
require a multiplication by a 48 x 48 collision matrix.

The simulations were performed in the high-Peclet-
number (low diffusion constant) regime and the results
show good agreement with theory.

THE MODELS AND THEIR FLUID DYNAMIC
EQUATIONS

We will derive the macroscopic equations for the color
densities and, for the sake of completeness, briefly re-
view how the corresponding Navier-Stokes equations for
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N, (x + c, , t + 1) = N, (x, t) + A„N,."'q(x, t),
6;(x + c;, t + 1) = b„(x, t) + Aii 6",'q(x, t),

(3)
(4)

where A and Aii are the relaxation parameters which
determine the kinematic viscosity v and the diffusion co-
eKcient D, respectively. Within the context of the FHP
model these parameters will be identified with the eigen-
values of the linearized collision operator corresponding
to the color and momentum current, respectively. The
nonequilibrium distributions are given as

mass and momentum densities are obtained [14]. A de-
tailed derivation of the Navier-Stokes equations within
the context of the LGA models can be found in Ref. [9],
and it has also been derived by gian, d'Humieres, and
Lallemand [14] within the context of the BGK models.

The starting point will be the Boltzmann equations
[9] which describe the time evolution of the distribution
functions. Since these equations obey color and momen-
tum conservation, the macroscopic equations follow from
a (Chapman-Enskog) expansion in the gradients of the
conserved densities. The 2D model will in the following
be referred to as the FHP model because of its trian-
gular lattice whereas, conforming to the terminology of
gian, d'Humieres, and Lallemand, the 3D model will be
referred to as the D3@15 (3 dimensions, 15 velocities)
model.

The updating scheme is contained in the Boltzmann
equations

7z when /c, [
= ~.1 1

The G factor will reappear in the prefactor of the con-
vection term of the Navier-Stokes equation. For Galilean
invariance to hold this prefactor must equal one. The
corresponding values for 0 are 4 and 4.5 for the FHP
model and BGK models, respectively. The tensor Q,~p
is given by

2
Qinp = ciacip cgtNap~ (12)

where n and P are Cartesian indices and 6~@ is the Kro-
necker delta function.

Every update of the lattice is thus a three-step process:
First the equilibrium distributions are calculated from
the above expressions. Then the collision step, given by
the multiplication by A~ and A in Eqs. (3) and (4),
is performed before, finally, the occupation numbers are
propagated to the neighboring sites.

We will need the following relations:

isotropy of the fourth-order velocity moments and de-
pend only on the lengths of the c,'s. For the FHP model
t, = 1/6, and for the D3@15model,

when ~c,
~

= 0

when [c, [
= 1

N =N —N

~neq g geq
i

where

(5) ) tc, =0,

) tQ; p=0,
N,'q=t, p(1+c, u c;+GQ; pu up),

2',q=t, Ap(1+c, u c,).

Here the mass density per site is defined as

p=).Ni (8)

and the momentum density as

pu=) c N, . (9)

The density difference Ap = p„—pb, where p„(pb) is the
site density of red (blue) particles, is defined as

Ap=) (10)

The vectors c, are the velocity vectors on the lattice con-
necting neighboring nodes. On the triangular lattice they
all have unit length. On the cubic lattice one of the c, 's
have zero length, the eight c,'s connecting nearest neigh-
bors have unit length, and the six velocities connecting
next nearest neighbors have length ~3. The speed of
sound [18] c, = 1/~2 for the FHP model and c, = 1/i/3
for the D3@15 model. The t, 's are chosen to obtain

which are derived in Refs. [9] and [14]. The first relation
gives the normalization of the equilibrium distributions.
The second relation is a consequence of the parity sym-
metry of the lattice. Due to this symmetry all odd-order
velocity moments vanish. The last of the above relations
can be viewed as a completeness relation.

The time and spatial dependence of the equilibrium
distributions appear through the hydrodynamic densities
only. It should be observed that 4;.q contains no second-
order terms in u. This second-order term must be in-
cluded in the N s in order to get the convection term in
the Navier-Stokes equation. But since the convection dif-
fusion equation contains no second-order velocity terms,
6', q can be of first order in u.

The convection diffusion equation

The nonequilibrium terms defined in Eq. (5) represent
the response in the distribution functions to gradients
in the macroscopic densities Ap, p, and u. Using the
relations (13) it is seen that

(14)
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and therefore

~neq

the gradients in Ap and u. Using the relations (13) and
substituting from Eq. (7), the above equation reduces to

B,,Ap+ V' (~pu) =0. (22)

By summing Eq. (4) over i it is seen that conservation of
color can be expressed as

) [6,(x + c, , t + 1) —A, (x, t)] = 0 .

This continuity equation expresses what was anticipated
above: that rapid variations in Ap are due to convection.
From Eq. (20) it is seen that Eq. (22) also takes the form

B„Ap+u V'Ap= 0. (23)
We will derive the continuity and convection diffusion
equations from Eq. (16) using the multiscale Chapman-
Enskog expansion [9]. This is an expansion of the distri-
bution functions in the gradients of the conserved quan-
tities. It relies on the assumption that the lattice may
be set up with a scale separation between the scale of
spatial variations in Bp, defined as e, and the lattice
constant. It is also assumed that ~u~ varies on the same
scale e . This means that (c, V'+ Bi, )h', qne

D
(24)

In order to obtain the diffusive contribution to the trans-
port of color, corresponding to the slower time depen-
dence, we need to go to second order in e. For this 6,"'~
must be determined. When the system has reached local
equilibrium this can be done directly from the Boltzmann
equation (4), which gives

B~Ap ~ 6,

iB ui

(17)

where B~ is the derivative with respect to z~. A two-time
formalism is used, i.e. , we set

Bi = Biz + Biz

This splitting in two time scales, as done in Ref. [9], is
really not necessary to obtain the transport equations. It
can be viewed merely as a convenient (and instructive)
way of dividing the expansion procedure in two steps.
The final results are obtained by summing the equations
containing Bi, and Bi„respectively. We assume that

to first order in s. On the right-hand side 6, has been
replaced by 6,', since 4,"'q is itself of 0(e).

We now proceed to collect all the terms of Eq. (16)
that are of second order in e. This gives

) B„a,'q+) (c, V+ Bi,)6,""

+) —,'(c, . V+B„)'a; =0, (25)

where the last term is the second-order term in the Taylor
expansion. Inserting the expression for 4,"'~ given in Eq.
(24) and using Eqs. (14) and (15), the above equation
takes the form

Bg1ll = 0)

Bi~ u ~ 0 1l,2

Btg +p
Bi~Ap~ t

(19)

Bi, &p+
~

—+ ) (c, V+Bi, ) 6; =0.
(2 Aii

Using Eqs. (13) and (20), and Eq. (23) to replace time
derivatives with spatial derivatives, we obtain

This implies that there are no rapid time variations in
the velocity field. This is the same assumption that
is made in the derivation of the incompressible Navier-
Stokes equation. There, however, it is also required to
assume that ~u~ e. For the present derivation we will
keep all orders in u and we must therefore allow for rapid
variations in the color field due to convection. We will
assume that we are in the incompressible regime, i.e. ,
that

V' u =0. (20)

The first continuity equation follows from an expansion
to first order in e. Performing a Taylor expansion of Eq.
(16) around (x, t) we get

) (c, V+ Bi, )Ap'q = 0, (21)

where higher order terms in e are neglected, and where we
have used that 4,"'q e since 4,". '~ is a function only of

Bi,&p = Do(& d p —c, (u . V') i-'p),

where we have introduced the diffusion coefficient

, (1 lb
Do ———c, I

+ —
I' (A~ 2)

(27)

(28)

as in Ref. [17]. Adding Eqs. (23) and (27) to obtain the
full time dependence in Ap, we get

(Bi+ u. V')Ap = Do(V' Ap —c, (u V') Bio} .

This is the convection diffusion equation with the re-
quired velocity corrections. It expresses conservation of
the quantity Lp = p„—pg. Supplemented with the con-
servation of the mass density p = p„+pp conservation of
the density difference is seen to be equivalent to conserva-
tion of the individual amounts of red and blue. Moreover,
in the low Mach number regime p is essentially constant,
so derivatives of Ap in Eq. (29) can be replaced by twice
the derivatives of p„or pb.

The validity of the convection diffusion equation in the
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form above is limited by the incompressibility and scale
assumptions, as is the validity of the Navier-Stokes equa-
tion. The last term in Eq. (29) breaks Galilean invari-
ance. But this symmetry breaking will be very weak since
u must be small in order to stay in the regime where the
incompressibility assumption holds. Being proportional
to u2 the last term will typically represent only a 1$&'&

correction. The important feature of Eq. (29) is that the
velocity correction terms are multiplied by the diffusion
constant Do, hence they do not dominate when Do is
small.

The Nazi er-Stokes equation

We now turn to the derivation of the Navier-Stokes
equation. The scale assumptions made in this case is
that u and p have spatial variations on the scale e
and time variations on the scale e 2. It is also assumed
that the flow velocity itself is small, i.e., u e, and that
deviations in p from its average value is also of the order
e. These assumptions can be written as

B~u~cu ~ t 2

B)u~E3

and momentum, i.e. ,

) N; (x + c;, t + 1) —N, (x, t) = 0,

) c,(N, (x+ c, , t+ 1) —N, (x, t)) =0. (34)

Following exactly the same lines as in the derivation of
the transport equations for color, the continuity equation
(20) may be derived from an order-e expansion of Eq.
(33), and the incompressible Navier-Stokes equation from
an order es expansion of Eq. (34). In this case o(e2) is
the lowest order expansion of Eqs. (33) and (34) which
are nontrivial. The o(e2) expansion of Eq. (34) gives

Vp= 0. (35)

For the o(P) expansions of Eqs. (33) and (34) we need to
determine N,

"'~ to o(e ). As with 4,"' this can be done
directly from Eq. (3), which gives

N,
"'q = (c, V+ B,)N,'~ .ne

(36)

With this result at hand the third-order expansions of
Eqs. (33) and (34) can be derived in the same way as
the convection difFusion equation. To this order Eq. (33)
simply gives

B~p~ t
(30)

Bqp = 0. (37)

Bypast

Observing that

) N,'q=p

) c,N,'. ~ = pu,
(31)

This means that deviations in p from its average value
must be smaller than first order in ~. The Navier-Stokes
equation emerges from the third-order expansion of the
momentum conservation relation (34). Performing this
expansion using Eqs. (13), (20), (35), and (37), we get

pB~u~ + GpT~p~qBpu~uq

2(1 1)
caB~p ca

I
+

I p+~p~~BpB~u~l

which implies that

) N118q ) Nlleq 0

where T~p~~ is defined [19] as

TAp y$
=

~ tj,cjcxcppQj+$' (39)

it is seen that the Boltzmann equation (3) conserves mass
It can be shown [9, 20] that this tensor is isotropic and
takes the following form:

T~pp$

, s' (~ ~~p~ + ~ ~~p~) for the D3@15 model.

s (6~&bpg + 6~p6p& —~6~p6&b) for the FHP model
(40)

Inserting these formulas in Eq. (38), we obtain the in-
compressible Navier-Stokes equation

—
4 & + 2 for the FHP mo el

(42)

Bqu + (u V')u = VP + vV' u,——1 2

p

where the kinematic viscosity is given as

(41) 3 & + 2 for the D3 15 model.

When A is identified as the eigenvalue of the collision
operator corresponding to transport of momentum, this
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is the result obtained in Ref. [9]. The pressure is given This relation gives, upon iteration, the full time depen-
dence

2p(1 —u ) for the FHP model

for the D3Q15 model.
(43) 6",'q(A~, t) = —) (1+Az))"t, c; VEp(x)

This is the equation of state of the gas. The velocity cor-
rection in the FHP version of the Navier-Stokes equation
coming from the pressure term is small, like the corre-
sponding correction in the convection diffusion equation.
It stems from the last term in the expression for the T p~p
tensor given in Eq. (40). As Qian, d'Humieres, and Lalle-
mand shows, it can be removed by a proper choice of
velocities, c, 's, and normalization factors t, 's.

= [1 —(1+A~)'] i

' c, VAp(x) i,, (t, )'
(46)

where we have used that 4,"'~(A~, 0) = 0. The last factor
may be recognized as the value of 6,"'~ given in Eq. (24).
It is seen that 6,". 'q will converge to the value given by
Eq. (24) only when

AD e(—2, 0). (47)
The approach to local equilibrium

4," ~(A~, t+ 1) = (1+Az))A,"'q(A~, t)
[LV' (x+ c ) 6 (x)]. (44)

Performing a Taylor expansion of the last term and sub-
stituting from Eq. (7), we obtain the recursion relation

6,""(AD, t + 1) = (1+A&)6,""(A&,t) —t,c; VAp(x) .

(45)

The superscript (neq) labeling the parts of the dis-
tribution functions that are due to the gradients in the
macroscopic quantities refers to the fact that the sys-
tem is evolving in time towards a homogeneous steady
state. However, when the distribution functions are ini-
tialized with their equilibrium values (or any arbitrary
values), there will also be a development towards a lo-
cal equilibrium characterized by the expressions given for
the nonequilibrium distributions in Eqs. (24) and (36).
There are thus two types of equilibria: the local equilib-
rium that depends on the size of the gradients and the
overall, thermodynamic, equilibrium which has no time
development. The system must reach local equilibrium
before it will behave according to the macroscopic equa-
tions obtained, and the time scale for the approach to lo-
cal equilibrium must therefore be much smaller than the
hydrodynamic time scale on which overall equilibrium is
approached.

We will now obtain the time dependence of the dis-
tribution functions when they are initialized with their
equilibrium values. This will also give the stability cri-
teria of the model in terms of the relaxation parameters
A and AD.

For the sake of simplicity we consider the situation
where there is a constant color gradient, vanishing fiow
velocity, and constant density p. The distribution func.-
tions are initialized with their equilibrium values given
by Eqs. (6) and (7), and the color gradient is maintained
at a constant value by suitable boundary conditions. We
will consider only the time variation in 4, since the N, s
will keep their equilibrium values.

With the assumptions made above, we may assume
that the equilibrium part of 4, depends only on x, and
that the nonequilibrium part depends only on t and AD.
Therefore, from Eq. (4) we may write

A typical time scale for the decay of transients is given
by the quantity

—1

»11+A~
I

(48)

t.i —2pc, Qiap ~nup~

neq ti' c, (Q, p Bp(Apup)
D

—(u up —c b p)c, OpAp). (51)

The gradients in the conserved quantities must be com-
puted as finite differences prior to the initialization.

The above analysis is easily extended to more general
situations. In particular, by introducing nonvanishing
gradients in the velocity field, results for the evolution of
the ¹ s, which are exactly similar to those given in Eq.
(46), can be obtained. The stability condition on A is

A„e (—2, 0)

as shown in Ref. [14].

(52)

THE CONNECTION WITH THE
BOLTZMANN MODEL

Having analyzed the BGK models we now establish
the connection with the existing Boltzmann model [17].
We show how the collision operator of this model may be
decomposed to make explicit the decoupling between the
N, 's and the 6, 's. We also derive the second-order veloc-
ity corrections to the transport equations describing the

When D is small (and A~ is close to —2) we have

1

2+ AD

This means that for low diffusivities, t, might approach
the hydrodynamic time scale and the system fails to pro-
duce physical results. In order to avoid this, the distri-
bution functions may be initialized with their predicted
dependence on gradients as given in Eqs. (24) and (35).
A closed form for the nonequilibrium distributions is ob-
tained using (23) to replace time derivatives with spatial
derivatives. This gives
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Boltzmann model and compare with those of the BGK
model.

In order to simplify the algebra and some of the con-
ceptual points we introduce a bra-ket notation for vectors
with components labeled by the direction index i T.he
Boltzmann FHP model works with the 12-vector

I

Y') = (Ry, Bg, Rz, Bz, . . . ) Rs) Bs)', (53)

where R, and B, are the mean occupation numbers for
red and blue, respectively, and t denotes the transpose.
The collision part of the algorithm is given as

f 11
Ix+) = ~ I ~1 I (60)

with corresponding eigenvalues n+ ——r' + s'. Since these
eigenvectors are independent of u' the collision operator
given in Eq. (58) may be written as

cosities by making A a function of the relative concen-
tration. With the above form of u' the collision matrix
0 is both real and symmetric and thus possesses a com-
plete set of orthonormal eigenvectors. The u"s have the
eigenvectors

l&(x ~+)) = l&(x ~)) + ~l&"") (54)

where t+ denotes the time after collision, but before prop-
agation, 0 is the 12x12 collision matrix, and IY"'~) is
calculated from the equilibrium distributions,

& = ~'Ix+)(a+I+~ Ix-)(x-I
where the 6 x 6 matrices 0+ are given as

(61)

(62)

R,'q = —"(1 + 2u c, + 4Q, pu up),

B,'~ = —(1+2u c;+4Q, pu up) .

(55)

(56)

i=o

Inserting this expression for the collision operator in Eq.
(54), we get

The quantities p„and pb are the site densities of red and
blue, and the rest of the notation is as defined above.
The streaming step is performed in the ordinary way as
described in Eqs. (3) and (4). The collision operator is
given as

l&(x, ~+)) = l&(x, ~)) + (~+IN"") Ix+)
2

+~ I&"")Ix-)),
(63)

((do
~60
~120
180
~120

(~so

60 ~120 ~180 ~120
~0 ~60 ~120 ~180
~60 ~0 60 120
~120 ~60 ~0 60
~180 ~120 60 0
~120 ~180 ~120 60

~so )
120
~180
(d120

~so
~

IN(x, t )) = IN(x, t)) +0+IN"' ),
l&(x ~+)) =l&(x ~))+~ I&"")

(64)
(65)

where the definitions given in Eqs. (1) and (2) have been
used. Taking the projection of the above equation on

Iy+) and Iy ), respectively, we obtain an explicit decou-
pling between the mass and color information:

where the indices on the 2x2 matrices ~ are the an-
gles between different lattice directions. We will also use
the notation u' where i = 0, 1, . . . , 5, and the relation

' = ~' reflects the isotropy of the collisions. The
above matrix is seen to be block circulant [17,21], which,
by definition, means that it can be written as

vk) = (1,Ak ~ A2k ~
~ ~ ~ ) Ask) (66)

' gal
with corresponding eigenvalues A~k where Ak = e' 6 ".
The orthogonal set of vectors ivk), k = 0, 1, . . . , 5, are
thus eigenvectors of 0+ as well, with eigenvalues

It can be shown that all the shift matrices r~ have
common eigenvectors

5

0= ) I"@~',
i=o

(58)
5

P~ =) m~A, k.
j=o

(67)

where I" is the 6x 6 matrix performing a circular leftshift
by i places and denotes the direct product

In the work of Holme and Rothman, the action of cu'

on the pair (R, , B;)~ is required to reduce to a scalar
multiplication when the two colors are summed to give
the noncolored occupation number N, . If this is the only
requirement that is made, A may be constructed to give
the red and blue phases different viscosities. We also im-
pose that the interaction between red and blue particles
be symmetric. In that case cu' is constrained to be of the
form

The two difFerent fluids may still be given diferent vis-

It can be shown from the above equation that the relation
' = u' must also hold for these eigenvalues:

6—k A:

Y+ ' (68)

5
0+ = —) p~k ivk)(vki,6„ (69)

where s is a normalization factor. Equation (68) gives

the only constraint on the eigenvalues p+, and there are
thus four eigenvalues that can be chosen independently
for each of the two collision operators.

Being real and symmetric A+ can be written in terms of
its eigenvectors as
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+—((c B + voB~, ) 8 (c B + voBi, )l&' ) = 0 (7 )

where we have introduced the product O, defined as the
multiplication component by component of two vectors
to form a third vector of the same dimension, and (I )
denotes the ordinary inner product corresponding to the
summation over i in Eq. (16). Note that since IA"'q) is
orthogonal to lvo) we need only determine the product
(c IA"'q). A first-order Taylor expansion of the Boltz-
mann equation (65) gives

(lc )B + Ivo)Bi, ) S I&'~) = & IA"' ) .

TABLE I. Eigenvectors and corresponding eigenvalues to
the collision operators 0+ and 0

Eigenvector

fm) = fvp)

Ici) = —,'(I») + I»))
Iqii) = 4(fvz) + lv4))
Iv, )

12 4i V2 V4

C2 —
2 ' Vl V5

Eigenvalue
of 0+

A

A„
A

A+

A

A„

Eigenvalue
of 0

Ac
A~
A2

A3

A2

AD

The linear combinations of the vectors Iv~) given in
Table I form an alternative orthogonal set of eigenvec-
tors to 0+ with a natural physical interpretation. The
vector lvo) is denoted Im) since it projects out the mass
density p from IN) (and the density difference Ap from
IA) ). The vectors Ic~) and IQ p) can be seen to have the
components c, and Q,~p, respectively. When the inner
product of IN) and IA) is formed with lc ) the mass and
color currents are obtained. The vectors IQ p) give the
momentum transport when combined with IN) while Ivs)
seems to have no obvious physical interpretation. Since
IQ») = IQ») and IQ») = —IQ») th«ul»«of IQ ii)
are represented above.

It is customary to set the eigenvalues A~, A„, and Ac
equal to zero, thus ensuring that the collision operator
conserves mass, momentum, and color. This, however,
is not really necessary since, by construction, IN"'i) has
no components along lvo) and lc, ), and IE"'q) has no
components along lvo). The eigenvalues Az and As are
often set equal to —1 in order to remove the correspond-
ing (unphysical) components in IN) and IA).

The Boltzmann collision operator will reduce to the
scalar multiplication of the BGK models if all the eigen-
values of 0+ are set equal to A and all the eigenvalues
of 0 are set equal to A~,

The derivation of the convection diffusion equation is
very similar to that given in the previous section. The
first-order continuity equation (23) is exactly the same,
whereas the convection diffusion equation receives veloc-
ity corrections which are slightly different due to the dif-
ferent choice of equilibrium distributions.

To second order in e, Eq. (16) takes the form

B,, (volA'q) + (c~B~ + voBi, I&"'~)

Taking the inner product of this equation with (c I
and

letting 0 act to the left, we obtain

(c IA IA"'~) =A (c IA"'q)
= (c.l((lc.)B.+ Ivo) B„)o I&")). (72)

which is exactly the same as Eq. (26) except for the pres-
ence of the terms of second order in the velocity in IE'q).
The convection diffusion equation now takes the form

(B, + u V') 4p = DiiV'(ap(1 —u')),

where Dp 2 A + 2 as before.AD

It follows from Eq. (70) that, since only the compo-
nents of IA"'q) along lc ) enter the transport equation,
the eigenvalues A&, Az, and As do not influence the hy-
drodynamic or diffusive behavior of the model.

The Navier-Stokes equation describing the Boltzmann
model is the same as that describing the (2D) BGK
model. The components of IN"'~) that enter the Navier-
Stokes equation are those along IQ~p), and therefore the
only eigenvalue of 0+ that is relevant for the macroscopic
behavior is A .

When the transport coefficients D and v are small the
relaxation time to local equilibrium will be controlled by
the parameters A~ and A . The relaxation time should
therefore not be seriously afFected by choosing all the
eigenvalues of 0+ and 0 equal to Aii and A, respec-
tively.

SIMULATIONS

The simulations were performed in order to verify the
theory presented in the previous sections, and to estab-
lish the practical limits of the model. We determine the
diffusion coeKcient D as a function of the control pa-
rameter A~ by measuring the relaxation of a sinusoidal
concentration wave both at rest and moving with a flow
velocity u. The predicted uz dependence in the convec-
tion difFusion equation (29) is verified and the response
to large gradients in the concentration field is examined.

The simulations were performed on a Connection Ma-
chine (CM2) with 32768 processors and a memory of
about 1 GByte distributed among the processors. The
speed is 1.25 and 0.84 million site updates per second
for the two- and three-dimensional models, respectively.
The three-dimensional model will use about two-thirds of
the memory when run on a 128s lattice. A flow simula-
tion with a lattice of this size in which the Huids traverse
the system at a speed u = 0.1 will consume less than
1 CPU hour. The models thus seem to lend themselves
to rather large-scale simulations. For the present sim-
ulations, however, the lattice size was chosen so as to
give one processor per lattice site when a fourth of the

Thus, substituting the expression for (c IA"'q) given
from the above equation in Eq (.70), we obtain

(1 1&
Bi &p+ I

—+
A

I B~(c~l(lc~)B~ + Ivo)Bi ) Q IA ~) = 0(2 Aii)
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Pe=

where L, is a length that is characteristic of the flow. It is
seen from Fig. 3 that by setting u = 0.15 and D = 10
we are well within the regime where the model is ade-
quately described by theory. Taking L to be the lattice
dimension, and setting L = 1024 and L = 128 for the
2D and 3D models, respectively, we get the following es-
timates:

10 in 2D
10 in 3D.

We also observed excellent agreement between simu-
lations and theory for D as a function of A& for a flow
velocity u„= 0.2 perpendicular to the color gradient. In
that case the velocity corrections vanish.

In Fig. 4 D is shown as a function of the maximum
value of VAp(x, t). These values are obtained by increas-
ing the number of waves from one to 32. Single precision
was used and deviations from theory due to roundoff er-
rors are observed for small values of (VAp) „, when

1.5 x 10

1.25

1.0

0.75

0.5

0.25

0.1 0.2 0.3 0.4 0.5 0.6
U

of the position x after a time t = 220 at a flow velocity
u = 0.15. The solid curve shows the theoretical predic-
tion from Eqs. (78) and (77). The circles show the sim-
ulation values. With the orientation of the lattice used,
where one lattice direction is parallel to the 2: axis, it is
possible to sample two values of C„per unit length. In
Fig. 2 there are thus 256 points.

In Fig. 3 the velocity dependence in the efFective difFu-

sion coefficient D given in Eq. (77) is compared with sim-
ulations. The simulated values of D are obtained through
the formula given in Eq. (80). The agreement is seen to
be good also for values of u which must be assumed to
lie outside the Navier-Stokes regime.

It is of considerable interest to estimate the available
Peclet numbers for the models. The Peclet number, Pe,
measuring the ratio of convective to difFusive transport,
is defined as

(82)

1.50 x 10

1.25 0~~aaaa~ ~ a ~ a a

~ ~ ~

1.0

0.75

~ ~
a S a ~ '~ ~ ~~ ~ ~ ~ ~err~-r — -r

0.5

0.25

0 t

0 0.2 0.4 0.6 0.8 1
grad(hp)

I

1.2 1.4 1.6

FIG. 4. The difFusion coefficient D as a function of
the maximum value of the gradient of the color difference,
(Vb,p) „.The upper and lower graphs show results from 2D
and 3D simulations, respectively. The dots represent results
from simulations whereas the solid lines show the constant
analytic value.

the diffusive transport is very small. These deviations
disappear when double precision is used. For the largest
gradients there are only four sampling points per wave-
length, and discretization effects become important. It is
in fact remarkable that agreement between simulations
and theory within 10% is observed even when Ap is of
the order unity.

CONCLUSIONS

We have developed BGK models for two-component
miscible fluid flow in both 2D and 3D, and shown that
they behave according to the analytic predictions. The
computational performance of the models has been in-
vestigated, particularly in the regime of high Peclet num-
bers and large gradients in the color field. It has been
confirmed that the value of the difFusion coefficient, D,
obtained by measuring the relaxation of a sinusoidal con-
centration profile, is very close to the theoretical value, at
least for diffusion coeKcients greater than 10 . The cor-
rections to the convection diffusion equation stemming
from terms of higher order in u in the Chapman-Enskog
expansion have been confirmed by simulations. It has
been shown how the present BGK models are connected
to the Boltzmann model of Holm and Rothman, and how
the latter may be reduced to the former by a proper
choice of eigenvalues of the collision operator. Finally,
we have examined the model sensitivity to large gradients
in the concentration profile, and shown that the theoret-
ical values for the diffusion coefn.cient can be reproduced
quite closely even when these gradients are very large.

FIG. 3. The effective diffusion coefFicient D as a function
of the flow velocity u when A~ ———1.99. The upper and lower
graphs show results from 2D and 3D simulations, respectively.
The dots represent results from simulations whereas the solid
lines show the analytic values given in Eq. (77).
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