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Electric-field-induced phase transition in electrorheological Auids
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We study an electrorheological fluid consisting of spherical dielectric particles in a liquid of low
dielectric constant. At a fixed temperature, there are two critical electric fields E,2 & E„. When the ap-
plied field E & E,2, the system is a fluid with no long-range order. When E,2 & E & E,&, the particles form
chains between two electrodes, but the distribution of these chains is random. This state is similar to an
induced nematic liquid crystal. As E exceeds E,&, the system is a solid whose ideal structure is a body-
centered tetragonal lattice with a& =&6ax, a2=&6ay, and a3=2az, where a is the radius of dielectric
spheres and z is the field direction.

PACS number(sj: 82.70.Gg, 61.90.+d, 64.75.+g

An electrorheological (ER) Quid consists of a suspen-
sion of fine dielectric particles in a liquid of low dielectric
constant [1—6]. Its apparent viscosity increases dramati-
cally in the presence of an applied electric field. If the
electric field exceeds a critical value, the ER Auid turns
into a solid whose yield stress increases as the field is fur-
ther strengthened. The phenomenon is reversible. Upon
electric-field cutoff, the system immediately resumes its
original liquid state. The time scale for the transition is
of the order of milliseconds. This property makes ER
Auids of potential use in industries and technologies,
especially in the automotive and aerospace industries.

What role does the base liquid play in ER Auids? It
has been found that a good ER Quid requires that the
dielectric particles and the base liquid have almost the
same density. Otherwise, the sedimentation effect weak-
ens the ER effect considerably. Therefore, one main role
of the base liquid is to provide a buoyant force to reduce
the gravity and create an effective low-gravity environ-
ment. The physics of ER Auids is, therefore, related to
the physics of electric-field-induced phase transition in a
low-gravity environment.

This paper examines the phase transition in ER fluids.
We consider an ER system that has small spherical
dielectric particles of dielectric constant e in a liquid of
dielectric constant ef Gf & E'p The whole system is
confined between two parallel plates, upon which a volt-
age is applied to produce an electric field. The field
directions is in the z direction. The two plates are at
z =0 and z =L. We assume that the buoyancy neutral-
izes the gravity.

We have found that this system will experience two
phase transitions as the applied electric field increases.
At a fixed temperature, there are two critical electric
fields E,2&E,&. When the electric field E &E,2, the sys-
tem is a fluid with no long-range order. When
E„&E&E„, the system begins to form chains between
two electrodes, but the distribution of these chains is ran-
dom. This is a state similar to an induced nematic liquid
crystal, because the chains have the orientation in the
field direction [7]. As E exceeds E„,the system is a solid
whose ideal structure is a body-centered tetragonal (bct)
lattice with conventional Bravais vectors ai =&6ax,

az =&6a y, and a3 =2a z, where a is the radius of dielec-
tric spheres (Fig. 1).

As the electric field is applied, the particles obtain an
induced dipole moment p =o,'a e&EI, where
ct =(ez eI) I(—@~+2' ) and Et is the local eft'ective field
acting on the particles. EI=E+AE, where E is the ap-
plied external field and AE is the induced dipole field.
Two dipoles at r; and r have an interaction

v(1 —3cos 0,, ) jr;, = —v 2+p
Bp

where v=(p) leI, p=[(x; —x,. ) +(y; yj) ]
r, =[p2+("z; —z )2]'~2, and 8," is the angle between the
joint line of the two dipoles and the z direction. As di-
poles cannot overlap, w also add a hard-core interaction
to the above dipolar interaction.

The competition between the thermal energy and the
dipolar interaction determines the state of our ER sys-
tem. From Eq. (1), the dipolar interaction is proportional
to E&. In a low electric field, the thermal motion dom-
inates and the system remains a Quid. When the dipolar
interaction is dominated as the field increases, the dielec-

6

FIG. 1. Three-dimensional body-centered tetragonal (bct)
structure, which can be regarded as a compound of chains of
class A and chains of class B. The particles have radius a and
are not shown to scale.
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tric particles stop ignoring each other and begin to form
structures between the two electrodes [3]. It is well
known that a detailed study of phase transition needs to
define order parameters that are nonvanishing only in the
ordered state [9]. In an early work, we pointed out that
the ideal structure of the induced ER solid is a bct lattice
that can be regarded as a compound of chains of class 3
and class 8, where a chain of class A has its dipoles at
z =2ja, (j =1,2, . . . ) and a chain of class B has its di-

poles at z. =(2j —l)a, (j =1,2, . . . ) [3]. The applied
electric field makes the space anisotropic. The dipolar
force is also anisotropic, which leads to additional effects.
The bct structure is the state benefited by the anisotropic
interactions. This prediction has been verified by Monte
Carlo simulations [5] and laser diffraction experiments
[6]. In the experiments, the measured structure constants
match the bct structure very well. In a real ER system,
there are higher-order induced multipoles. A recent cal-
culation by Friedberg and Yu, including contributions
from higher multipoles, also confirms the bct lattice ob-
tained from the dipolar approximation [8].

The reciprocal lattice of the above bct lattice has three
primitive vectors b, =2mx/&6a —itz/a, b2=2my/
&6a —ttz/a, and b3=2itz/a. The order parameters are
then given by [9]

f (x,y)= g [x +(y 2—jL) ]
J — 00

(7)

u, (z)= —vg(3)/(4L ) —vf(0, 2z), (8)

where the constant g(3)=g = i 1/n =1.2020569. . . .
The interaction of a dipole at (x,y, z) with another dipole
and its infinite number of images at (x',y', 2Lj+z'),
(j =0, +1,+2, . . . ) is given by

u;(p, z, z') = —v 2+p [f(p, z —z')+ f(p, z +z')],a

p
(9)

where p=[(x —x') +(y —y') ]'~ . Because of the
periodicity, f (x,y) =f (x,y +2L), we can expand f into
the form f (x,y) =g, „f,(x)e " ~t with

f, (x)= J dy e" ~ f(x,y)/(2L)
0

=rtsK, (sttx/L) l(L x ), (10)

where Ki(x) is a modified Bessel function. Equation (7)
now reads as

The interaction between a dipole inside the capacitor at
(x,y, z) with its infinite number of images at (x,y, 2Lj +z),
(j=+1,+2, . . . ), is given by

N

p = g exp(ib r, )/X, (j =1,2, 3) . (2) f (x,y)=1/(Lx )+ g 2n.sKi(sax/L)
s = 1

The order parameter p3 characterizes the formation of
chains in the z direction because chains of both class A
and class 8 have a coherent contribution to p3. The other
two parameters p, and p2 characterize the structure in
the x-y plane. All the three order parameters are unity if
the ER system is the ideal bct lattice. When the dielec-
tric particles are randomly distributed, p (j =1,2, 3) are
all vanishing. We introduce a dimensionless quantity

Xcos(stty/L)!(L x) .

u;(p, z, z')=v g 4' s Ko(sap/L)cos(sm. z/L)
s=i

X cos(s7tz'/L) /L (12)

Since Eo is divergent at p=0, for the case ofp=0, we use

The formula d [xK, (x)]/dx = —xKO(x) enables us to
write u; in Eq. (9) as

H=kTd ef/(p) (3)
u;(O, z, z') = —2v[f (O, z —z')+f(O, z +z') ] . (13)

U= ——'g(E+b, E) p (5)

where Ud = —1/2+3, E p is the dipolar interaction ener-
gy. We note that Ud is the dip olar approximation,
neglecting higher-order multipoles [10]. Since the ap-
plied external field is uniform, Eq. (4) can be written as

p, = g(e "p, } g(e '} . (6)

To calculate the dipolar interaction, we introduce a func-
tion

which characterizes the competition between the dipolar
interaction and the thermal energy. Here d =2a is the
diameter of the spherical particles.

To study the phase transition, we need the canonical
ensemble average of p. ,

P, =g(e ~
p, ) g(e ~ ), (4)

where the summations are taken over all configurations
of the ER system and P= 1 lkT. The Coulomb energy of
the system Uis given by

The total dipolar interaction energy of the system is now
given by

Ud= g u, (z )+—,
' g u;(p k, zj,zk) . (14)

j jwk

To calculate p in Eq. (6), we apply the Metropolis al-
gorithm [11]. Our simulations take N =178 dielectric
particles inside a capacitor with spacing L =28a. In the
x and y directions, the system has 360a X360a and a
periodic boundary condition. We start at 0=0, then in-
crease 0 slowly. The state of 6I=O represents an ex-
tremely strong electric field that has the ideal bct lattice
structure. For each 8, the simulations repeat
1000K =178000 Monte Carlo steps. In each step, we
pick a particle in the configuration to make a trial move
to a position randomly distributed in the space, then cal-
culate the change of dipolar interaction of the system due
to the random move 5Ud. If 6Ud ~0, we accept the new
configuration. If 5Ud &0, the probability to accept the
new configuration is exp( —5UdlkT). When the new
configuration is accepted, we calculate the new p.
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(j= 1,2, 3 ) for statistical average. If the new
configuration is rejected, the previous configuration is re-
tained and the previous values of p. are counted again in
statistical average. Then, the next random trial will be ei-
ther on the newly accepted configuration or the retained
previous configuration. After 1000' Monte Carlo steps
are completed for one 8, we calculate the average values
of p. . Then, we increase 8 by 0.01 and repeat the above
procedure. The starting configuration at 8+0.01 is the
final configuration at 8. To make sure that our average
obtained on the Metropolis sampling is the true canonical
ensemble average, we examine the results after 200%,
4001V, 600', 800%, and 1000%Monte Carlo steps and see
how they are stabilized. This examination convinces us
that the Metropolis sampling is effective.

The absolute values of p are plotted in Fig. 2. It is
clear that ~Pi~ and ~pz~ have almost identical behavior,
while ~p3~ is noticeably different. At 8=0, all the three
order parameters equal to unity. As 8 increases, ~P~~

(j = 1,2, 3) remains unity for a while. Then, near
8=0.16, ~p, ~

and ~Pz~ drop quickly, while ~p3~ does not
drop quickly until 8 reaches 0.22. Afterwards, ~P, ~

and

~pi~ tend to zero much faster than ~pz~. There are two
important quantities, 8, =0.28 and 82=0.67, as marked
in Fig. 2. When 8 reaches 8i, ~p&~ and ~pz~ are essentially
vanishing and their fluctuation after 8) 8, is due to the
finite-size effect. However, ~P3~ does not vanish until 8
reaches 82. As 8) 8z, ~p3~ is essentially vanishing and
Auctuating due to the finite-size effect.

The above results indicate three regions of 8. For
0 ~ 8 (8i, all three ~pj ~

are nonvanishing; the ER system
is a solid whose ideal structure is the bct lattice. When
8, & 8 & 82, ~pi ~

=
~p2~ =0, while ~P& ~

)0. Since p3 charac-
terizes the formation of chains in the z direction, the ER
system in this state has chains in the field direction, but
the distribution of these chains is random, no ordering in
the x and y directions. It is clear that this state is similar
to an induced nematic liquid crystal, because the chains
have orientation in the z direction. As 8 & 82,

3$aefE [(1—a7)', /8) —(1—ai)i/8) ]/(8n ), (15)

where / =4m.a n /3 is the volume fraction of the particles
in the system. This latent heat is very small for a typical
ER Quid. As a rough estimation, we take g, =0 and
t)', =6, /=0. 4, E=10 kV/cm, ef =2.2 (for petroleum
oil), a =0.5, the latent heat is only about 180 erg/cm .

We can consider inducing the phase transitions in the
ER fluid by two different approaches: (i) At a fixed tem-
perature, increase the applied electric field; and (ii) at a

p& =p2=p3=0, the ER system is a Quid with no ordering
at all.

The canonical ensemble average of the dipolar interac-
tion per particle Ud/N is plotted in Fig. 3. Though our
system is small, Ud /N clearly shows a jump as 8 crosses
8„ indicating the first-order phase transition from the
nematic liquid-crystal state to the solid state. Since
Ud /N is smooth at 82 with no jump, the phase transition
from the Quid state to the liquid-crystal state is of the
second order. At 8=0, Ud/N= —2.711 88p /(efd ),
which is slightly higher than —3.050144p /(efd ), the
value for the infinite bct lattice. This deviation is due to
the finite-size effect, since a system of 178 particles plus
their images is a finite bct lattice with defects and sur-
faces [3]. We also note that a face-centered-cubic lattice
of the same small size has dipolar energy—2.654 65p /(ef d ) per particle, still higher than that of
the bct lattice.

Let us estimate the latent heat for the first-order phase
transition. We define a parameter rI= 2Udd ef /—(Np ).
Then the average dipole field is given by b E=rIp/(ef d ).
Our results indicate that the dipole field and hence g is
sensitive to the distribution of dielectric particles [3,10].
Using the Lorentz self-consistent method, we have the
average EI =E/(1 —arI/8), the quantity v=p /ef
=a a E ef /(1 —anal/8), and the average Coulomb ener-

gy per particle U/N= —
—,'aa efE / (1—arl/8) . If t)

decreases from g& to q& when 8 passes 8„ the latent heat
per unit volume is given by
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FIG. 2. Change of ~p, (, (p2(, and ~p3( vs 8. The curves of (p~)
and (pz( are almost identical, while ~p, ~

decreases much slower
than (p, (

and Ipzl as 8 increases.
FICs. 3. Change of Ud/N vs 8. When 8 crosses 8&, Ud!Nhas

a jurnp. There is no jump at 8&.
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T„=a ef. a E 8;(I—ag;/8) /(8k), (i =1,2), (17)

if ef and E'p have little change in the temperature range
under our consideration. When T & T,z, the ER system
is a liquid. When T,z) T) T„, the ER system is similar
to the nematic crystal state. When T & T,&, the ER sys-
tem is the solid bct lattice.

E„and E,z estimated from Eq. (16) are in a good range
for experiments. For example, they are about 653 and
422 V/cm, respectively, for alumina particles of a = 1 pm
in air at T =300 K in the microgravity space. However,
the above values are for the ideal case where the buoyan-

constant applied electric field, lower the temperature of
the ER system. When the ER fluid has a fixed tempera-
ture, two critical electric fields are given by

E„=(1—arl;/8)[8kT/(a mfa 8, ]'~, (i =1,2), (16)

where gz is the value of g at Oz. When E &E,z, the ER
system is in a liquid state. As E,z & E & E,&, the ER sys-
tem is similar to the induced nematic liquid crystal. As
E„&E, the ER system is in the solid state.

When the ER fluid is under a constant electric field, we
have two critical temperatures,

cy neutralizes the gravity completely. Most ER fluids
presently available have the dielectric particles heavier
than the base liquid. Therefore, to overcome the sedi-
mentation effect, for example, we stir the ER fluids in ex-
periments to create a strong liquid flow, which forces the
particles to spread around. The required critical electric
fields are, therefore, higher than the value estimated by
Eq. (16), because the solidification now needs to over-
come much higher kinetic energy of the particles.

Our Monte Carlo simulation was performed on an
IBM 3090/Vectorized supercomputer. A system of 178
particles in the simulations is small in comparison to the
real system. However, to tackle a much larger system on
our present computer is almost formidable. On the other
hand, though our system is small, the many-body effect is
clear in the results. Therefore, there is no reason to
doubt the conclusions derived from our simulations.
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