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Recently reported light-scattering studies of CaKNO3 and Salol are reanalyzed, using the extended
version of the mode-coupling theory of the liquid-glass transition including activated transport or hop-

ping effects. Problems found in the original fits due to the neglect of hopping terms are largely correct-
ed, and quantitative predictions for the susceptibility minimum below the crossover temperature T, are
found. The results are also shown to accurately explain the CaKNO, neutron spin-echo data reported
by Mezei [J.Non-Cryst. Solids 131-133,317 (1991)].

PACS number(s): 64.70.Pf, 78.35.+c, 61.20.Lc

I. INTRODUCTION

Investigations of the liquid-glass transition have tradi-
tionally concentrated on the region of the calorimetric
glass-transition temperature T where the viscosity
reaches 10' P, the primary a-relaxation time increases to—100 s or longer, and anomalies may occur in the
specific heat [1,2]. Recently, however, attention has
shifted to the range of supercooled-liquid temperatures
extending upwards from T to the bulk melting tempera-
ture T . Interest in this region was stimulated by the ap-
pearance of a theoretical approach to the liquid-glass
transition which analyzes the effects of nonlinear interac-
tion between density-fluctuation modes self-consistently.
Proposed in 1984 [3—5], the mode-coupling theory
(MCT), in its original idealized form, predicts that as the
strength of the nonlinear interactions increases with de-
creasing temperature, an ergodic to nonergodic transition
will occur at a crossover temperature T, with many of
the properties of the experimental liquid-glass transition.
A number of recent experiments performed in this tem-
perature range have tested various predictions of the
MCT, and agreement has generally been good [5]. Nev-
ertheless, the original idealized version of MCT is known
to be incomplete, since the absolute structural arrest and
viscosity divergence it predicts at the crossover tempera-
ture T, do not actually occur.

The extended version of MCT includes coupling to
current fiuctuations [6—10] which represent activated
transport (hopping) processes. These terms restore ergo-
dicity below T, and replace the discontinuous transition
of the idealized theory by a smooth crossover from liquid
to glassy dynamics, avoiding the viscosity divergence at
T, and the disappearance of both the a-relaxation peak
and susceptibility minimum below T, . However, quanti-

tative data analysis with the extended theory for real ma-
terials has not previously been possible since the magni-
tude of the relevant hopping terms was not known. Con-
sequently, all previous experimental tests of the MCT
have been restricted to the idealized version of MCT with
the hopping terms neglected.

We recently reported two depolarized-light-scattering
studies of the liquid-glass transition, one in the ionic salt
calcium potassium nitrate [CKN, Cao 4Ko 6(N03)] 4] [11],
and the second in the molecular glass former Salol [12].
The spectra, spanning over four decades in frequency,
were converted to the susceptibility spectra y"(co) shown
in Fig. 1. For comparison with the current analysis, we
show the original fits, obtained with the idealized MCT,
in Figs. 1(a) and 1(c). Exponent parameters
A. =0.81+0.05 for CKN and A, =0.70+0.05 for Salol
were obtained from the analyses. The parameter
governs the universal features of the relaxation process,
as will be explained below. The susceptibility spectra re-
vealed the critical slowing down of structural relaxation
in the intermediate-frequency P-relaxation region as T, is
approached either from above or below, a central predic-
tion of MCT which had not previously been tested.

Although the quality of the fits was generally good,
systematic discrepancies appeared for both materials
below and just above T, at frequencies near the lower
limit of our experimental window ( ~ 1 GHz). The
discrepancies are particularly visible in the CKN data of
Fig. 1(a) at temperatures below 393 K where the theoreti-
cal curves tend to fall systematically below the experi-
rnental data at low frequencies. Such discrepancies
should be expected with the idealized theory in which the
minimum in y"(co) moves to zero and disappears at T, .
When hopping terms are included, the a-relaxation peak
will still be present below T, and the susceptibility spec-
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FIG. 1. Susceptibility spectra y"(m) of
CKN, (a), (b), and Salol, (c), (d). The tempera-
tures range from T=296 to 468 K for CKN
and from T = 198 to 313 K (c) or T =333 K (d)
for Salol. The previously published 5=0 ideal-
ized MCT fits for CKN with A, =0.81 and for
Salol with A, =0.70 are shown in (a) and (c), re-
spectively. The solid lines in (b) and (d) are fits
with the 5%p p-relaxation functions of the ex-
tended MCT with A, =0.85 (CKN) and A, =0.73
(Salol). The dashed line in (b) is an upper limit
to the white-noise spectrum y"(co) ~ co

matched to the microscopic peak.
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tra will therefore continue to show a minimum. Al-
though the spectral range of the data in Fig. 1 does not
extend to low enough frequencies to reveal this minimum
at temperatures below T„ its presence is presumably re-
sponsible for the fact that the low-frequency experimental
data lie above the theoretical curves of the idealized
theory.

The presence of these discrepancies provides a means
to quantitatively evaluate the magnitude of the hopping
terms in the extended MCT. We have therefore carried
out an analysis of the CKN and Salol data shown in Fig.
1 with the extended MCT including hopping terms. We
have also used the results of this analysis for CKN to pre-
dict the form of the intermediate scattering function, and
find agreement with the neutron spin-echo data of Mezei
[13).

In Sec. II we present a brief review of the idealized and
extended versions of the mode-coupling theory to set the
stage for the analysis. In Sec. III we describe the new
data analysis and give numerical results of the fits to the
extended MCT. (Additional details of the fitting pro-
cedure are given in Sec. V.) In Sec. IV we utilize the P
correlators deduced from the new fits for the CKN light-
scattering data to reanalyze the CKN neutron spin-echo
data of Mezei, Knaak, and Farago [13,14]. We also dis-

cuss the effect of hopping terms on the nonergodicity pa-
rameter (or Debye-Wailer factor) fq.

II. THEORETICAI. BACKGROUND

In this section we present those mathematical results of
the MCT required for our data analysis. We will also re-
view briefly the context within which these results have
been derived in the original papers so that the reader gets
a self-contained background for our data interpretation.

A. General MCT

p(t) +0', p, (t) + f M, (t t')p, (t')dt' =0 . — (2.2a)

The MCT is based on a closed set of nonlinear
integrodifferential equations for various correlation func-
tions. The basic one is the correlation function for the
density-fiuctuation modes pq(t) with wave vectors q:

P, (t) =
& p,*(t)p, ) /& p, l') . (2.1)

Here q = iqi denotes the wave-vector modulus. The first
equation connects accelerations, Hooke's restoring
forces, and a generalized friction force:
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This equation can be derived exactly within the
Zwanzig-Mori formalism. Its interpretation as a general-
ized oscillator equation is more obvious if one rewrites it
via Fourier-Laplace transformation to one for the
frequency-dependent dynamical compressibility a (co):

a~(co)= —(q Ip)i[co Q~+—AM~(co)] . (2.2b)

Kernel m~(co) describes the cage e6'ect, i.e., the tendency
for the particles to get trapped in cages formed by their
neighbors. Kernel 5 (co) describes hopping transport,
i.e., the motion of particles over potential barriers with
the assistance of phonons. The two kernels are obtained
approximately as correlations for pair modes; pairs of
density fluctuations in the case of m (co) and pairs of den-
sities and currents for 5 (co). The equations are closed by
employing Kawasaki's factorization approximation;
essentially one expresses averages of pairs by pairs of
averages to obtain:

m~(t)= —,
' g V(q, kp)gk(t)P (t),

k,p

5 =g V'(q, kp)P„(t)P (t) .
k,p

(2.4a)

(2.4b)

The two frequency scales for the microscopic transient
motion Q, v and the vertices V, V' are obtained as
smooth function of temperature T and density p. They
can be evaluated with standard approximations invented
previously for the theory of simple liquids. Anticipating
0, v, V, and V' as known, one can in principle solve the
equations for the correlators. Actually, the theory for 5
is more complicated since a complete form of Eq. (2.4b)
contains additional terms, e.g., because of couplings to
transversal currents. This requires that shear correla-
tions are also considered [7].

B. P relaxation

The idealized MCT deals with the mathematical prob-
lem where V'=0. One considers the model for dynamics,
where activated transport is assumed to be absent. Then
one can show that there is some critical temperature T,
so that for T)T, relaxation towards equilibrium occurs,
P~ (t ~ Do ) =0, while for T ~ T, the correlation functions
describe spontaneous arrest, P (taco)=f &0. So the
solutions of the MCT for V'=0, T~ T, describe ideal
glass states in the sense of Edwards and Anderson [15].
The Edwards-Anderson parameter f~ plays the role of a
Debye-Wailer factor of a disordered solid and is also re-
ferred to as the nonergodicity parameter. At the critical
point, T =T„ the Debye-Wailer factor is nonzero:
fq =fz ~ z =z & 0. The parameter points V( T = T, ) = V',
V' =0 are called glass-transition singularities (GTS).

The critical Debye-Wailer factor is given by the ver-

The kernel M~(co) is expressed in terms of a Newtonian
friction constant U and two further kernels m (co) and
5~(co):

M (co)=Q 2[i 0+m (co)]/[ I —5 (co)Q [iv +mq(a))] j .

(2.3)

tices V(q, kp) calculated for T=T„and so is another
quantity h &0 called the critical amplitude. Further-
more, one calculates from the vertices the exponent pa-
rameter A, which fixes two exponents: the critical ex-
ponent 0 & a ~ 0.395. . . and the von Schweidler exponent
0&b ~1. For the leading-order long-time relaxation at
the singularity ( V= V', V'=0) one finds the critical de-
cay:

(2.5)

Here there enters a time scale to, to be determined by
matching the asymptotic law Eq. (2.5) to the microscopic
transient motion.

The extended MCT acknowledges that V'WO. In this
case spontaneous arrest is impossible; the correlators re-
lax to zero, provided one waits long enough. For small
enough V' the whole relaxation process for T-T, out-
side the short-time transient regime consists of two steps.
The first one, referred to as P relaxation, describes the de-
cay towards fq and then the motion where P (t) starts to
fall below f'. The second one, referred to as a relaxa-
tion, describes the decay from the value f ', where the
cage effect tends to arrest the fluctuations, to zero. The o,
process leads to the well-known a peak in the susceptibil-
ity spectra like a."(co). Figure 1 exhibits these a peaks
clearly, within the frequency window of our instrument,
for T) 400 K for CKN and T) 300 K for Salol. In this
paper we will not consider the a process and will deal ex-
clusively with the P dynamics.

The dynamics of the P regime is governed by the un-
derlying glass-transition singularity. It deals with param-
eters where hopping effects are not too large, V'-0, and
where the cage effect drives the density fluctuations close
to arrest; V- V, . The time has to be long enough so that
details of the phonon motion are damped out, but short
enough so that generalized diffusion processes have not
yet allowed the particles to leave their cages irreversibly.
The P dynamics describes the susceptibility spectra for
frequencies below the band of molecular vibrations. For
our examples we found [11,12] the P regime to be located
below about 500 GHz [Figs. 1(a) and 1(c)]. The P process
also describes the high-frequency wing of the a process
and it terminates somewhere above the a-peak position.
In our cases the P process shall be used to analyze spectra
within frequency windows extending up to three orders of
magnitude (see Fig. 1). It is the goal of this analysis to
explain variations of the spectral intensity over about
three decades as caused by variations of the temperature
above T~. Within the P regime the equation of motion
(2.1)—(2.4) can be simplified using [P (t) fq]�I-

h=�5$q(t)

as a small parameter. One finds as a generaliza-
tion of Eq. (2.5), in leading order in 5$ (t), the factoriza-
tion property

(2.6a)

The dependence of the correlations on time and wave
vector are decoupled. There appears no critical variation
of physical quantities as a function of distance or wave
vector. All the sensitive dependence of the correlators on
time and temperature is expressed by one common func-
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tion G(t), called the P correlator. Fourier cosine trans-
form yields the P spectrum G "(co) and the P-
susceptibility spectrum y"(co)=KG�"(co). The latter
determines the compressibility spectra for all q up to an
amplitude factor: a.~(co) =h~g"(co). Within the MCT,
the factorization property is generalized to arbitrary
correlation functions of variables X such as stresses, di-
pole moments, etc. One finds

P (t) f»=—h»G(t) . (2.6b)

p»(t) =g IV(k,p)pk(t)p~(t) .
k,p

(2.7)

This is a typical mode-coupling-theory formula, which
should be viewed as the analog of Eq. (2.4a). If one sub-
stitutes P (t) from Eq. (2.6a) in the DID formula [Eq.
(2.7)], one finds that, within the P-relaxation region, the
dominant contribution to the light-scattering spectrum
corresponds to an effective susceptibility

The specifications of X merely enter the critical value of
the nonergodicity parameter f» and the critical ampli-
tude h». The time and sensitive (T—T, ) dependence is
given by the same P correlator as before.

A side remark concerning the relevance of Eq. (2.6b)
might be in order. In our depolarized-light-scattering ex-
periments we measure the intensity spectrum
I(co) ~P»(co) for a variable X, which refers to fiuctua-
tions of the electronic part of the dielectric constant.
This function has been evaluated previously as a dipole-
induced-dipole (DID) scattering function with the result
[16]

g(t/t„o =0,5t, =O)=(t, /t)'. (2.10)

C. Idealized theory for the P process

Analysis of the MCT equations in the idealized ver-
sion, where activated hopping processes are neglected,
has shown that the P correlator G (t) obeys the equation
of motion

a+KG'(t)= I G(t t')G(t')—dt' .
dt o

(2.1 1)

The exponent parameter A, ( —,
' ~ A, ( 1) in Eq. (2.11) is the

only free parameter in the idealized MCT. Once A, is
specified, Eqs. (2.6) and (2.11) determine the full structure
of P (t) in the intermediate-time regime, apart from the
numerical values of fq and h . A. , in turn, fixes the two
exponents of MCT: the critical exponent a and the von
Schweidler exponent b (see Ref. [17] for a table relating a
and b to A, ). G (t) has also been shown to obey the scaling
relation

The complete functional form for g is determined by the
exponent parameter A, . Let us emphasize that A, (and
hence the function g), o, h», and f» are equilibrium con-
stants given solely by the system's structure factor S(q).
The matching parameter to and the hopping parameter 5
are numbers not expressible in equilibrium quantities
only. The connection of all the mentioned parameters
with the vertices V, V' is rather involved as can be in-
ferred from the quoted literature [5]. Since we cannot
calculate V, V' for the realistic systems under study, we
treat the parameters as fit constants.

Xi,'(co) =h„X"(co) . (2.8a) G(t)=C g+(t/t ), o&&0, (2.12)

Here y"(co) is the P susceptibility and the amplitude fol-
lows as

where the amplitude scale C and time scale t are given
by

hi, =2+ W(k, p)fkh~ . (2.8b) c =l~ '" (2.13)
k,p

All microscopic details boil down to the frequency-
independent prefactor h&, . If the microscopic theory for
the light-scattering process were improved, e.g. , by ac-
counting for higher-order products of density Auctuation
in Eq. (2.7), the result of Eq. (2.8b) would still be valid.
There would merely be a different relation between h &,

and fk, h .
The P correlator G depends on the large number of

coupling constants V(q, kp) and V'(q, kp) via two
relevant control parameters only. The separation param-
eter o. is given by V and specifies the cage effect; it is a
smooth function of temperature and its zero defines the
critical temperature. Close to the critical point one can
write o. =C(T, —T)/T, with C &0. The hopping param-
eter 5)0 describes the sensitive effect of the activated
transport on the P spectra near the glass-transition singu-
larity:

G(t)=g(t/t„o, 5t, ) . (2.9)

Because of Eq. (2.5) one gets the critical decay law at the
glass-transition singularity. The latter is located at the
origin of the (cr, 5to ) parameter plane:

For a given k, the P correlators G(t) at difFerent tem-
peratures are self-similar and are all determined by the
two master functions g~(t/t ) via Eq. (2.12). The corre-
sponding susceptibility master functions y+(co) for the
susceptibility y" (co ), where

y"(co) =coI cos(cot)G(t)dt (2.14)
0

can be constructed by solving Eq. (2.11) numerically, or
by using the power-law expansions and tables of
coefficients in Ref. [17]. The y~(co) master curves for
A, =O. 70 were used in Ref. [12] to find the theoretical sus-
ceptibility functions

X,"(~)=h, l~ I'"X~(~/~. ) (2.15)

for Salol shown in Fig. 1(c). Equations (2.12)—(2.15) were
the basis of the data analysis for the P-relaxation region
in all previous experiments, including our light-scattering
studies of CKN [11] and Salol [12] where an extensive
discussion of the fitting procedure can be found.

D. Extended theory for the P process

In the extended MCT, the correlation function Pq(t)
still obeys Eq. (2.6) in the P-relaxation region. The P
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correlator G(t) is no longer determined by Eq. (2.11),
however, but by its generalization [7,10]

We can define o.* as the separation parameter 0. mea-
sured in its natural units o 0 of Eq. (2.20),

o —5t +KG'(t)= f G(t t'—)G(t')dt .
dt 0

(2.16) O' —CT /470 (2.21)

Note that the hopping term 5t in Eq. (2.16} guarantees
that at sufficiently long times P (t) cannot arrest in an
ideal glass state.

In the extended MCT, G(t) depends on both the sepa-
ration parameter 0. and the hopping rate 5. Upon chang-
ing the temperature, the relevant parameters move along
a trajectory C in the (o,5to} plane: T~(o(T),5(T)).
For a general trajectory C the form of G(t) will change
with temperature, in contrast to the horizontal trajectory
5t0=0 of the idealized MCT where the one-parameter
scaling relation Eq. (2.12) applies. Thus, for a given A, ,
the form of G(t) must be found for each pair (o,5to) by
solving Eq. (2.16) [10]. The analysis is simplified consid-
erably by the fact that G(t)=g (tlto, cr, 5to) of Eq. (2.16)
obeys a two-parameter scaling law [7]:

Equations (2.19) and (2.20) show that every scaling line
corresponds to a particular value of cr*. One can thus
vary A, and o.* until the theoretical and experimental
log(y")-log(co) curves are as similar in shape as possible,
and then choose o. and the amplitude prefactor h of Eq.
(2.6) to produce as complete overlap as possible between
the two curves.

Finally, we note that the correlators and susceptibility
spectra in the region of the P process are expected to
evolve smoothly from the liquid (o « cr—o) to the transi-
tion region ( —o 0

& o. & o 0) to the glass (o »o 0). In con-
trast to the predictions of the idealized theory there is no
abrupt change in G (t) or y"(co) at T = T, .

III. DATA ANALYSIS

g (yt!to, cr ly ', 5toly ')=y 'g(tlto, o, 5to) (2.17)
A. CKN

for arbitrary y & 0.
Equation (2.17) implies that the form of G(t) is self-

similar along any scaling line, passing through the arbi-
trary point (&,Sto) in the (cr, 5to) plane, where the scal-
ing line is defined by

(cr, 5to)=(oy ', 5toy'+ '), (2.18)

y"(ycoto, oy ', Stay'+ ')=y'y"(co, o,Sto} (2.19)

so that a log(g")-log(co) plot for (dy ', Stay'+ ') has ex-
actly the same form as that for (o,Sto), except that is is
shifted by log(y) along the horizontal axis and by log(y')
along the vertical axis. Thus the data analysis for y"(co)
can proceed in two steps. First, for a particular k and
fixed hopping rate, e.g., 5to = 1, one looks for a separation
parameter o for which the shape of the experimental
log(g" )-log(co ) curve is reproduced. This fixes the
relevant scaling line. Then the value of y in Eq. (2.18) is
adjusted until the two curves overlap, which identifies the
point (o,5to).

An alternative procedure, which was used in the data
analysis described in the next section, follows from the
observation that the dimensionless hopping rate 5to in-
troduces a natural scale o.

o for the separation parameter
o [7],

)(2a) /( ) +2a)CTO— (2.20)

with y & 0 denoting the line parameter. As y —+0, all scal-
ing lines, which have the form of generalized parabolas
5to=cio i"+ ' ', approach the GTS at (0,0). (Each
scaling line corresponds to a particular value of the con-
stant c.) Several such scaling lines are shown in Figs. 3
and 5, to be discussed in the following section. Note that
each generalized parabola actually corresponds to two
different master functions: one for the left side (cr &0,
liquid), and another for the right side (cr & 0, glass).

A similar scaling law applies to the susceptibility spec-
tra:

CKN (T~ —=333 K, T —=438 K) susceptibility spectra
in the range 296—468 K, found from the depolarized-
light-scattering spectra, are shown in Fig. 1(a) along with
the theoretical fits to the idealized (5=0) theory with
A, =0.81 reported in Ref. [11]. Obviously it is advisable
to start data analysis by using the idealized MCT. How-
ever, in doing so one should make sure that the identified
discrepancies between data and formulas have the quali-
tative trends to be expected due to 5%0 effects. For ex-
ample, the critical spectrum y" ~co' should be most evi-
dent for T= T, . Therefore one has to fit this part of the
spectrum as was done for CKN for T =373 K in Fig.
1(a). It would be incorrect to force the theoretical curve
to match the data for v =1 GHz. These 1-6Hz data
show the expected precursors of the 5%0 induced
minimum and therefore they must not follow the 5=0
MCT results.

Figure 1(b) shows the same y"(co) data with tl:e new
extended MCT fits. The dashed line is a white-noise
spectrum y"(co) ~ co matching the microscopic band at 3
THz. The enhanced signal above this white-noise back-
ground, in the region between the a peak and the micro-
scopic peak, is due to the p-relaxation process. The solid
lines in Fig. 1(b) are the new extended MCT results ob-
tained by solving Eq. (2.16). The fits were carried out for

in the range determined by the 5=0 fits
(0.76 & A, & 0.86) with arbitrarily chosen to

= ( I /2m ) ps.
The fitting procedure, described at the end of the preced-
ing section, led to an exponent parameter A, =0.85. The
corresponding critical exponents are a =0.25, b =0.39,
y =3.3. Changing A, by +0.02 gave fits of similar quality.
The resulting fit parameters h, o., and 5 are listed in Table
I. The separation parameter o and the scale o 0 [from Eq.
(2.20)] for each spectrum are shown in Fig. 2(a), and the
amplitudes h =h), are shown in Fig. 2(b).

In Fig. 3 we show the (o, 5to) points (open circles)
found for each spectrum in the (o,5to) plane along with
a series of scaling lines. The solid scaling curve (second
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from the inside) corresponds to o =ao, i.e., to a*=1.
The heavy line C through the data points, to be described
below, is the trajectory C followed by the system in the
(cr, 5to) plane. From the intersections of the o =+oo
scaling line and the trajectory C, we see that the transi-
tion region extends approximately from 363 to 403 K.

In Figs. 2 and 3, uncertainties in the parameter values
found in the fits are indicated by error bars at three tem-
peratures: 423, 383, and 333 K. They were estimated by
changing cr as much as possible while adjusting o., O.o,
and h to find an acceptable fit. The errors estimated in
this way are not independent; it is not possible, e.g. , to
select in Fig. 3 the lower bound for o and the upper
bound for 5to and still obtain an acceptable fit. The vari-
ous fit parameters are correlated. One cannot exhaust
the error margins for cr, ao (i.e., 5), and h, indicated, e.g. ,
in Fig. 2 for T =423 K arbitrarily, without ruining the fit
quality. The indicated error bar, e.g. , for o. is meant as
follows: we could choose cr anywhere within this bar and
get a fit of similar quality as that shown in Fig. 1, provid-
ed that the other parameters were also changed properly.
Because of the scaling law Eq. (2.17), the value for to is
arbitrary. One could change to, even by a T-dependent
factor, provided one would change h, o, and 5 as given in
Eq. (2.17). In this way one could scale, for example, the

amplitude h&, to a temperature-independent number. We
have not examined whether T-dependent choices of to
lead to results for o, 5, and h which look more plausible
than the ones shown. Neither did we try to improve the
fits by choosing a temperature-dependent exponent pa-
rameter A, .

At the highest temperatures ( T ~ 433 K) the suscepti-
bility spectra were found to have a T-independent shape
[11]. No improvement in the fit could be found by taking
5toAO, so the upper four theoretical curves for T ~433
K in Fig. 1(b) were found from the idealized MCT.
Below 423 K, the difFerence in shape between the experi-
mental spectra and theoretical spectra of the idealized
MCT becomes increasingly evident at frequencies below
—1 GHz. At 383 K, which is -5 K above the T, =378
K found in Ref. [11],the low-frequency discrepancy has
become severe and cannot be improved within the ideal-
ized 5=0 MCT.

For T (T„ the idealized MCT predicts a knee in the
susceptibility spectrum at a frequency m, where an
abrupt crossover occurs from the critical spectrum
y"(co) ~co' for co) co, to y"(co) ~co (white-noise spec-
trum) for co & co, . This abrupt change is not observed for
the CKN data; even for T =296 K the co' to co' crossover
is rather smooth. All these deficiencies of the idealized

TABLE I. Fitting parameters for extended MCT analysis (to =1/2~ ps).

296
318
333
343
353
363
373
383
393
403
413
423
433
443
453
468

5.75 X 10-'
5.75 X 10
5.75 x 10-'
5.13 X 10
3.14x 10-'
1.94 X 10
7.35 X 10

—8.88 X 10
—2.06 x10-'
—3.25 X 10
—5.13x 10-'
—7.39 x 10-'
—9.08 X 10
—1.02 x 10-'
—1.14x 10-'
—1.31x10-'

3.64 x 10-'
5.45 X 10
9.09 x10-'
1.29 X 10
2.20 X 10
3.44 x 10-'
3.68 X 10
6.29 X 10
1.64x 10-'
3.25 X 10
5.15 x 10-'
3.88 X 10

3.48 x 10-'
4.19X 10
5.53 x 10-'
6.86 x10-'
6.65 x 10-'
7.98 x 10-'
8.85 X 10
9.23 x 10-'
9.73 x 10
1.08 X 10
1.12x10-'
1.11x10-'
1.11x10-'
1 ~

14x10-'
1.15 x10-'
1.13x 10-'

198.2
218.2
233.2
243.2
253.2
263.2
273.2
283.2
293.2
303.2
313.2
323.2
333.2

8.57 X 10
7.41x 10-'
3.16X 10-'
1.31 X 10

—4.09 X 10
—2.69X10 '
—5.32 x 10-'
—8.32X10 '
—1 ~

32x10-'
—1.84 X 10
—2.36x 10
—2.64x 10-'
—3.24 X 10

Salol
8.54 x 10-'
1.17X 10
1.93 X 10
2.62 X 10
6.40 X 10
8.52 x 10
4.69 X 10
1.11x10-'
1.05 x 10-'

0.483
0.610
0.892
1.39
2.09
2.66
3.04
3.27
3.27
3.14
3.01
3.08
2.88
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tend up to the maximum of the a peak. The high-
frequency part of the P spectrum is not visible for T) 313
K due to the broad microscopic excitations. For lower
temperatures (263 & T & 303 K) the spectra do not extend
more than one-half decade above the minimum, which is
not enough to exhibit the critical co' behavior. Only the
253-K spectrum appears to exhibit both co' and co re-
gions, and even here the spectrum extends less than one
decade below the minimum.

The extended MCT analysis, described in more detail
in Sec. V, led to a crossover temperature T, =250 K,
somewhat lower than the value T, =256 K found in our
original analysis [12]. For T & T„ the split microscopic
band prevents the observation of the characteristic knee
in the spectrum which marks the crossover from
g"(co) ~co' to g"(co) ~co. Therefore the uncertainty in
the fits for T & 250 K and the estimates of the minima in
Fig. 1(d) is higher than that for CKN.

Figure 4(a) shows the values of cr and harp found from
the fits, while Fig. 4(b) displays the results for h. In Fig. 5
we show the trajectory C in the (o,5tp) plane, found by
the same procedure described above for CKN, along with
several scaling lines. Because o.o is much smaller for
Salol than for CKN, the transition region is very narrow.
In fact, as seen in Fig. 5, only the T =253 K point falls
within the transition region.

1.0 I

0.8 R-
b

0.6
Y

V0.4
~ 4
~ 4

40.2

0.0
—3 —1

logip[t(ns)]

2X10 ' s~ t ~ 1X10 s for temperatures between 366
and 560 K. Part of the data are reproduced in Fig. 6(a).
For this extended set of data spanning nearly three de-
cades in time, Mezei found that fits to Eq. (4.1) with fixed
f were no longer successful. The fits suggested a

IV. RELATION
TO NEUTRON SPIN-ECHO SPECTROSCOPY

A. The intermediate scattering function

Inelastic neutron-scattering spectroscopy employing
spin-echo and time-of-Bight techniques permits direct
determination of P (t) which is usually assumed to be
equivalent to the normalized intermediate scattering
function. Such experiments have provided the principal
experimental tests of MCT and have the great advantage
of permitting the experimenter to select the value of q. In
this manner one can also explore correlations in space.

A neutron spin-echo study of CKN by Mezei, Knaak,
and Farago in 1987 [14] determined tti (t) for q near the
peak of the static structure factor S(q) in the range
4 X 10 " s & t ~ 2 X 10 s for temperatures between 384
and 469 K. Assuming that the data fell entirely within
the a-relaxation region, they fit it to the Kohlrausch
function

((i (t)=f exp[ (tie)~] . — (4.1)

[The idealized MCT indicates that Eq. (4.1) is usually a
good approximation to the major part of the a process
[18,19].] They found that all the data could be fit with a
single f =0.84 and P=0.58, in agreement with the scal-
ing (or time-temperature superposition) principle re-
quired by MCT for T)T, . By combining this spin-echo
data with time-of-Aight data, Knaak, Mezei, and Farago
[20] attempted to demonstrate the existence of two
power-law regions in P (t) and of a minimum in y"(co) as
predicted by MCT.

Subsequently, Mezei [13]reported extended CKN neu-
tron spin-echo measurements covering the range

tj

—0.5
CO

bO
0 —1.0

—1.5

—1

1ogip [t(ns)]

FIG. 6. This figure demonstrates the factorization property
of Eq. (2.6) for neutron spin-echo data in CKN and the P-
relaxation fits of Fig. 1(b). (a) CKN neutron-scattering data at
the peak of the static structure factor for the five temperatures
(from Ref. [13]) and the P-relaxation fits with parameters taken
from the analysis of the susceptibility spectra [Fig. 1(b)]. Re-
sulting values of h„are shown in Fig. 2(b). The horizontal line
is the constant nonergodicity parameter f' =0.80 used for the

P-relaxation fits (solid lines). The dotted line marked a is the
critical correlator corresponding to the fit at T =385 K closest
to T, . The dotted line marked b is the von Schweidler asymp-
tote of the A, =0.85, 5=0 master curve for T=449 K. The
dashed curve marked It is a Kohlrausch fit Ae " ' to the

—(f I7-)I

T =449 K data with fixed amplitude A =fq and fitted P=0.71

and log, p[~(ns)]= —0.80. (b) Double logarithmic plot of the
derivative of the correlator Pq(t) with respect to the logarithm
of time log, p(t). The fitted P correlators of (a) are taken corre-
sponding to the temperatures T =449, 426, 406, 386, and 366 K
from top to bottom. The open circles show the locations of the
minima.
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marked temperature dependence for the Kohlrausch ex-
ponent P, in disagreement with the scaling prediction of
MCT. Mezei noted that this disagreement could result
froin the presence of both a- and P-relaxation processes
within the experimental time window which would invali-
date fits of the data to Eq. (4.1).

Our analysis of the CKN depolarized-light-scattering
data has determined the P correlator G(t) in Eq. (2.6b).
This result can now be substituted in (2.6a) to predict the
neutron-scattering function P»(t) in the P region. Notice
that the complete time dependence and the sensitive tem-
perature dependence are given by the data in Table I.
Only f» and h» are treated as fit parameters, which may
be smoothly temperature dependent.

The result of this fitting procedure is shown in Fig. 6.
The neutron data points at five temperatures are plotted
together with the fit results, shown as solid lines. The fits
gave f»=0.80+0.01. The amplitude h»(T), shown in
Fig. 2(b) by h„, increases smoothly with temperature as
found above for h„. The fits show no deviations at short
times due to fast microscopic motions, indicating that for
the range of temperatures shown, P (t) has already en-
tered the P-relaxation region by t =2 X 10 ' s. For the
385-K data which are the closest to T„ the critical decay
[Eq. (2.5)] is shown by the broken line marked a. The
agreement with the data shows that the short-time decay
of P (t) cannot belong to the a process, as noted by
Mezei [13].

For the highest-temperature data (449 K) shown in
Fig. 6, the von Schweidler decay, @ (t) f'~ t" [5—],—
for A, =O. 85 and 6=0, computed as an asymptote to the
master function, is indicated by the dashed line marked b.
Only for the two highest temperatures (449 and 426 K),
at the longest times, does P (t) deviate noticeably from
the prediction of Eq. (2.6a). This deviation is due to the
a process which is not treated in the present discussion.
The dashed line marked IC is a Kohlrausch fit (Eq. 4.1) to
the 449-K data, with f» =0.80 and P=0.71. This curve
fits the long-time behavior of the experimental data
where P (t) has decayed to &0.2 and departures from
the von Schweidler decay become significant. The major
part of the decay, where 0.9&P (t) &0.2, is fully ac-
counted for by the MCT P-decay dynamics.

Within the experimental accuracy of the neutron-
scattering experiment, it is possible to fit the data com-
pletely with Kohlrausch functions. But since one is then
erroneously fitting part of the P-relaxation process along
with the a-relaxation process, the f' and P values found
from such fits increase with increasing temperature, in
apparent violation of the MCT scaling [13,21].

The functions G(t) and y"(co) contain the same infor-
mation because they are related by Fourier transforma-
tion. However, the equivalence of the information con-
tained in our measurement of the susceptibility over a
three-decade-frequency window in Figs. 1(a) and 1(b) on
one hand, and the measurement of the decay curves over
a three-decade window in time in Fig. 6(a) on the other
hand, is hidden. There is no general and direct way to re-
late the function y"(co) for a finite internal to the func-
tion G(t) for another finite window; nor is there a simple
way to map the y" data onto the G(t) results. The most

significant features of the y" data in Figs. 1(a) and 1(b),
viz. , the minimum for T) T, and the knee for T(T„are
not easily recognized in the G(t) data in Fig. 6(a). These
features can be recovered from G(t), however, if one
computes the derivative

F(a))=, t =2~/co .
dG(t)
dint ' (4.2)

In the first tests of the MCT for CKN, the determina-
tion of the Debye-Wailer (or nonergodicity) factor f
played an important role [14]. In the idealized theory,
where f =lim, „P (t), there will be a jump in f as
T~T, + from 0 to f' followed by a square-root singu-
larity:

f'+ h v'o /( 1 —
A, ) ( T & T, )

0 (T&T, ) . (4.3)

In practice, limited experimental resolution results in the
measurement of a quasielastic fraction within a narrow
energy window rather than the purely elastic fraction f .
With increasing temperature, the quasielastic fraction
does not fall to zero at T„but rather to the a-peak area
and thus becomes a smoothly varying function of temper-
ature for T & T, [5]. The finite window may also produce
some rounding of the cusp indicated by Eq. (4.3).

In the extended MCT, since lim, „@»(t)=0, for all T
no such unambiguous definition off is possible. Recent-
ly, an effective nonergodicity parameter f was defined as
the value of P (t) at the inflection point in G(t) [10]. In
the limit ~o ~ &oo where 5to can be neglected, it was
found that with this definition

(4.4)

The solid line in Fig. 7 shows this result for f'=0.80 and

h„(T=T, )=h, as found in Fig. 6(a).
For the full P correlator including the temperature-

dependent values of o., h, and 6 found from the above
analysis, the values f» were computed numerically and
are shown by the points in Fig. 7. The result of the ideal-
ized 5to =0 theory is seen to be smeared out severely by
the effects of the hopping terms. Without knowing 5(T)
and h ( T), the form of f ( T) cannot be predicted and f '
cannot be accurately determined. A fit of the data to Eq.
(4.3) will always tend to overestimate f'.

Finally, we note that this conclusion is likely to be

Figure 6(b) shows the results for the logic(F) versus
logio(co) curves calculated for the fit curves from Fig.
6(a). Minima of the curves and a knee in the T =366 K
curve are clearly visible. So there is equivalence of the in-
formation of a susceptibility measurement for the internal
co;„&co & co,„ to a measurement of G (t) for the interval
2n/tom, „&t«2'/co;„, provided the quantity I'(co) in
(4.2) has the same noise level as g"(co). In fact, F(co) is
proportional to g"(co) if G (t) is a so-called slowly varying
function, and this is predicted by MCT in the limit of I,
close to unity [5].

B. The Debye-Wailer factor
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0.95

0.90

0.85

0.80

50 100 150 200
7( c)

FIG. 7. The efFective Debye-Wailer factor f~ at qo defined by
the inflection point t; of the G(t) vs log&o(t) curves, i.e.,
f» = h» G (t; ). The solid circles are determined from the parame-
ters of Fig. 2 and f» =0.80. The solid lines are the square-root
asymptotes of the formula (4.4) law scaled with hq(T)=hq(T, )

and the linear fit for o ( T) from Fig. 2(a).

V. DETAILS OF EXTENDED MCT ANALYSIS
OF SUSCEPTIBILITY SPECTRA

In this section we discuss the inhuence of activated
hopping processes on the susceptibility spectra in more
detail and examine some of the subtleties hidden in Fig.
1.

A. CKN

Figure 8 exhibits a scaling plot of y"(co)/y";„versus
ro/co;„, obtained by parallel shifts of the data curves
from Fig. 1(a), so that the minimum positions coincide.
It is the same figure as shown in Ref. [11],but now only

g 0.4
8

0.3

0
0.2

0.1

0.0

logto(au/u), . )

FIG. 8. Scaling plot for CKN according to the idealized
theory 6=0 for T =466, 453, 443, and 433 K (from bottom to
top at the a-peak position. ) The solid line is the 5=0 master
curve with A, =0.85 also used in Fig. 1(b). The dashed line is a
A, =O. 80 master curve.

highly material dependent. For Salol, where the critical
region is much narrower than for CKN, smearing of
f ( T) by hopping effects should be less severe.

those temperatures are included for which 5 can be
neglected. The full and dashed lines are the master spec-
tra of the idealized MCT for A, =0.85 and 0.80, respec-
tively. One can see that the fit interval for both choices
of A, is about the same. Within the MCT for the ideal
liquid to glass transition, i.e., within the simplification of
the present theory to 5=0, one finds that for decreasing
(T —T, ) the co=co/co;„ interval, where y" /y;„ is close
to the master curve, has to expand. There is a slight
trend in this direction on the large co side for both choices
of A, . The effect for small ro is very nicely exhibited for
A, =0.85 but there is no such effect for A, =O. 80. The P re-
gime, by definition, is the one where the scaling holds.
There the master function must agree with the data. This
is not the case for A. =0.80. For these reasons we prefer
the larger value for the exponent parameter.

Figure 9(a) reproduces from Fig. 1(a) the spectrum for
413 K and its fit with 5%0. The dashed curve and the
chain curve are the master functions for 5=0 with
A, =O. 80 and 0.85, respectively. Remember that the chain
curve is the common shape function identified in Fig. 8
for the T~433 K data. One notices that upon lowering
T by 20' to 413 K the spectral shape is not changed seri-
ously for co) ~;„,but it becomes considerably steeper for
co&co;„. This effect is described by the full curve by
choosing o*=—1.35. The major effect of the hopping
transport in the liquid regime when cr approaches o.

o is a
steepening of the log, o(y") versus log&o(co) graph for
cu & co;„. In describing the high-frequency cx peak by an
effective power law y" ~ 1/co, b would increase with de-
creasing T. The stochastic hopping dynamics drives the
high-frequency a spectrum towards Debye behavior [10]:
b ~1. Decreasing X also steepens the spectral minimum.
Indeed the dashed line shows that the ideal theory can
account for the data, provided A, is decreased to 0.80. If
there was no other information one could not discrim-
inate between the fit possibilities A, =0.85, 5toAO or
X=O.80, 5to =0. If one searches for an optimal fit for all
data with T ~ 413 K within the idealized version of the
MCT as has been done in Ref. [11],one has to decrease
the optimal X below 0.85.

The aforementioned effects are more pronounced if the
separation parameter is decreased even further for
T) T, . This is shown in Fig. 9(b) for the data for 393 K.
The full curve describes the spectrum well with
o.*= —0.79; the spectrum is within the transition region.
The dashed line is the A, =0.80, 5=0 master curve.
Remember that it describes well the spectrum in Fig.
9(a). Now the data are above the fit curve for co) co;„as
well as for co & co;„. An acceptable fit can be obtained by
lowering A. even further. But since this strategy does not
work anymore for the next lower value of T, the result is
not exhibited as a serious alternative in the figure. A
better alternative within the simplified MCT consists of
shifting the master curve so that the co) co;„part of the
data is fitted. The chain curve in Fig. 9(b) shows the re-
sult. This was the procedure used in Ref. [11]. In this
manner one avoids misconclusions concerning the critical
exponent a at the expense of placing the theoretical co;„
somewhat below the experimental one and underestimat-
ing the spectrum for m & co,„.
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Figure 9(c) reproduces the T=383 K data from Fig.
1(a) together with the fit for o' = —0.047, shown as a full
curve. It is not possible to fit the spectral minimum by an
co to co' crossover as predicted by the simplified version
of the MCT. Decreasing A, so much that the data for
~ &co;„are fitted would ruin the fit for co &co;„. If the
X=0.80, 5=0 fit curve, shown as a dashed line, is adapt-
ed to the experimental minimum, the data lie above the
fit curve for large as well as for small co. The discrepan-
cies between the 5=0 fit and data would be even greater
for the A, =O. 85 curve. The identified phenomenon is the
fingerprint for T=T, [10]. For ~o.

~
&&oo the crossover

from the critical spectrum co' to the von Schweidler spec-
trum co (for A, &A,, =~/4=0. 785) or co

'~ (for A, )A,, )

is rather abrupt. For co&co;„ the spectrum exhibits the
critical decay rather well, since hopping effects suppress
the corrections to the critical spectrum I10]. Here, and
only here, one can estimate, as was done in Ref. [22], the
exponent a, or the equivalent value for X, by a simple
power-law fit to the data.

In Fig. 10(a) we examine the influence of the tempera-
ture dependence of the critical amplitude h and the hop-
ping parameter 5to found in Fig. 2 on two commonly
used tests of the MCT. In the extended theory including
hopping effects the functions y;„(cr,5to ) and co;„(o,5to )

obey a one-parameter scaling law [10]:

0.8
A

8
~ 0.6OC

C)

Cg
o 0.4

I I

2 3
log (o(cd/rd ) )

0.2

0.0
2 3

log iO(rd/rd, . )

FIG. 9. This figure demonstrates the effects of nonvanishing
5 on the CKN data for temperatures above T, . (a) CKN sus-
ceptibility spectrum at T =413 K scaled by the minimum posi-
tion and height. The solid line is the A, =0.85 fit of Fig. 1(b)
where o./o. o= —1.35. The dashed and the chain curves are
6=0 master functions for A, =0.80 and 0.85, respectively. (b)
The T =393 K spectrum and the fit of Fig. 1(b) (solid line) with
o./cro= —0.79. The dashed line shows the master function for
A, =O. 80 shifted to coincide with the data at the minimum posi-
tion whereas the chain curve is the same master function shifted
in order to fit the high-frequency wing of the minimum. (c)
T=383 K spectrum fitted with A, =0.85 and o. /o. o= —0.047
(solid line) from Fig. 1(b). The A, =0.80, 6=0 master curve
shifted onto the minimum values is shown as a dashed curve.
This master curve is also shown as a chain curve shifted onto
the high-frequency wing.

y;„(o,5to ) =acro hf2(o /o o)

rd;„(o,5to)to =oo 'f, (o /o'o) .

(5.1a)

(5.lb)

Only for o. « 0.0 are the known results from
the idealized theory obtained: f, (x~ —Oo ) =y & ~x

~

'

f2(x ~—oo ) =yz ~x
~

' . If 5to and h are constants,
a plot of log, o(y;„) versus log, o(co;„) yields a straight
line for cr « —o.

o (i.e., in the liquid):
log, o(y;„)=log, o(h)+a log, o(co~;„/coo). This is demon-
strated in Fig. 10(a), where the solid line shows the mas-
ter function y(co;„) on a double logarithmic plot. The
values of h and 5to at the temperature T, are used. For
co & 10 GHz the master function is a linear law with the
mentioned slope a. The point which corresponds to T, is
close to the circle for 383 K. When T, is approached, de-
viations from the linear law appear. Lowering the tern-
perature further below T„ the minimum position starts
to increase again. This master function cannot be seen
experimentally in general, since h and 6to are functions of
temperature as shown in Fig. 2. Inserting the fits of h ( T)
and 5to(T) discussed in context with Fig. 2, the influence
on the master function can be tested separately. The
changes can be obtained from the master function by in-
serting the functions h ( T) and cro( T) in Eqs. (5.1).

The dashed curve (long dashes) in Fig. 10(a) is the re-
sult of using h =h ( T, ) =const and the mentioned Ar-
rhenius fit for o.o( T) (see Fig. 2). In the liquid, only small
deviations from the master function are observed. In the
glass the strong decrease of o o( T) deforms the master
function in a qualitative manner: the position m;„con-



47 LIGHT-SCATTERING SPECTROSCOPY OF THE LIQUID-. . . 4235

—2.0

—2.5

—3.0

—1.8

&ogg() X),

—2.0

jj
/j'

jj
h

Ii

//

/I

/I

/I

/I

g
I' 343

/! 0,

0.0 0.5
1

1.5 2.0

loggp[v;„(GHz)]

1.0

(b)

345 K
311

O

tinues to decrease by lowering the temperature instead of
increasing. The temperature variation of 5tp is able to
compensate the stiffening of the system. If 5to is kept
constant [5to =5to( T, ) ] and h varies linearly with tem-
perature (compare to the fit in Fig. 2) the master function
is also deformed. The short dashes in Fig. 10(a) show
that the slope of log&p(g;„) versus log, o(co;„) is in-
creased in the liquid. This deformation leads to
discrepancies between the exponent a obtained by choos-
ing a special A, for the fits to the experimental data and
the one obtained by the plot shown in Fig. 10. In the
glass the effect of h (T) is small compared to that of
5to( T). h ( T) yields only a shift in vertical direction
whereas the strong decrease of 5to yields a horizontal de-
formation of the master curve. The chain curve is the ex-
perimental result if the temperature dependence of h and
5to are included. In the liquid the effect of varying h

exceeds the one of 5to( T). Thus the discrepancy between
the critical exponent a and the slope of the function
log, p(y;„) versus log, p(co ) in Ref. [11] is explained
predominantly by a temperature-dependent critical am-
plitude h.

If the susceptibility spectrum y"(co) is divided by V'co a
maximum appears for o /o p & 4.6. This maximum corre-
sponds to the crossover from co' for high frequencies to
co' for low frequencies deep in the glass, i.e., a knee ap-
pears in the spectrum. The position cok and height yk of
this knee, where mk is the position of the maximum in
g"(co)/&ro and yk =y(rok ), obey a one-parameter scaling
law [10]:

1.8 2.0
logt p[vg(GHz)]

2.2

gk(tr 5to)=&trohf4(o /tro)

tok ( 0' 5to ):cooo o f3 ( tr /0 o )

(5.2a)

(5.2b)

FIG. 10. Cross checks on the minimum and glass knee posi-
tions and heights for the CKN analysis. (a) Double logarithmic
plot of minimum height vs minimum position for A, =0.85 with
o. values taken from the linear fit of Fig. 2(a). The solid line cor-
responds to the theoretical scaling curve for constant 5 [here
5tp=5(T, )to=6.3X10 and constant h„=h;, =0.09]. The
long-dashed curve shows the distortion of this scaling curve if 5
is varied with temperature in correspondence to the Arrhenius
fit of Fig. 2(a); h&, =h&, is still kept fixed. The short-dashed
curve is obtained if 5 is kept fixed at its critical value 5=5' but

h], varies according to the linear fit of Fig. 2(b). The chain
curve results from the scaling curve if 5( T) and h], ( T) are simul-

taneously varied with temperature T. (b) Double logarithmic
plot of the height vs the position of the glass knee. The curves
have the same meaning as in (a). In order for the glass knee to
be observable in the theoretical curve o./o. p has to be bigger
than a minimal value o. /crp & 4.6. Depending on the choice for
5(T) therefore the knee is observable for different o. and con-
secutively for either log, p(cok ) & 1.95 if 5=5(T, ) =6.3 X 10 /tp
or for loglp(COk) & 1.35 if 5 decreases with decreasing tempera-
ture according to the quoted Arrhenius fit. In the first case the
knee is observable for T & 311 K only if cr is varied according to
its linear fit; in the experimentally found second case the knee
can be seen for T & 345 K.

Since the knee appears only for o »o.o, the master func-
tion log(gk ) versus log(cok ) is the linear law of the ideal-
ized theory, log, p(y„) =log, o(h)+a log, p(cok /Cop). This is
shown by the full curve in Fig. 10(b) with h =h (T, ),
o o

=cro( T, ). With these parameters the knee can be seen
only for T (311 K. If only the temperature dependence
of 5to is taken into account, the linear law is not changed
since the condition cr/pro»1 is always fulfilled if the
knee can be detected. The result is shown as a long-
dashed line in Fig. 10(b). The temperature dependence of
5to only causes an upward shift of that temperature at
which o reaches the value a =4.6o.o from 311 to 345 K.
It is the decreasing of the critical amplitude that leads to
a qualitative deformation of the master function. Assum-
ing 5tp=5tp( T, ) =const, the fit of h found in Fig. 2 leads
to the short-dashed curve in Fig. 10(b). Instead of a
monotonously increasing function a decreasing function
is obtained. The combination of temperature depen-
dences of h and 5to [chain curve in Fig. 10(b)] yields a
very Aat function. The critical law is completely hidden
due to the temperature variation of h. In the tendency
these trends can also explain the discrepancy found in
Refs. [11,12] between the expected slope (i.e., critical ex-
ponent a) of log, p(g, ) versus log, p(ro, ) and the experi-
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FIG. 11. In a double logarithmic plot of y"(co)/&co vs co, the
glass knee appears as a peak at a position proportional to co .
CKN data for five temperatures, with fits for A, =0.85, 6=0 are
shown. Peak positions are indicated by solid circles. The range
of validity of the fits is seen to shrink on the high-frequency side
with decreasing temperature.

FIG. 12. Scaling plot for Salol according to the idealized
6=0 theory for the temperatures T =333, 323, 313, and 303 K
from bottom to top at rescaled frequencies larger than 1. The
solid line is the A, =0.73, 6=0 master curve also used in Fig.
1(c). The dashed line is a A, =0.70 master curve.

mentally observed slope. (The definition of tp, in Ref.
[ll] is different than ours, but the qualitative trends due
to the temperature variation of h and 5tp are the same. )

Although the idealized law peak tp
=0'p fi (0 /0 p~ ao )

=+oyi is not found unambiguously, one of the most
challenging predictions of the MCT is the existence of a
p-scaling frequency co, which vanishes in the idealized
theory by cooling and heating for T—+ T, . Especially the
phenomenon of slowing down by heating is very uncom-
mon in the physics of glass. The plot of y"(pi)/&co
versus m provides an unbiased test of this prediction.
Figure 11 shows the result for CKN. If T ~ 353 K a peak
appears whose position is shifted to higher frequencies if
the temperature is lowered. This kind of analysis may
even serve as a guide to how the master curves of the
idealized theory have to be used for fitting the data below
T, . The dashed curves are master functions for 5tp=0,
A, =0.85 which attempt to describe the region surround-
ing the knee.
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Figure 13(a) shows that there is no difference at all in the
quality of the fits with 5tp=O, X=0.70 and 5tpAO,
A, =0.73. But Fig. 13(b) demonstrates that for T =253 K,
no fit with A, =0.70, 5tp=0 is possible. The same signa-
ture is found as for CKN at T =383 K [Fig. 5(c)]. Only
the high-frequency wing can reasonably be described by
A, =0.70, 5t p

=0. Choosing X=0.73 and cr /cr p
= —0.411

a good fit of the whole minimum region is obtained; com-

B. Salol

Figure 12 explains the choice of A, =0.73 instead of
A, =0.70 for Salol. The data for T=333 to 303 K are
shifted on a double logarithmic plot until they coincide in
the minimum region. The growing of the scaling regime
can be seen on the high-frequency side. Contrary to
CKN, the p-scaling regime does not change on the low-
frequency wing. The von Schweidler law co is very well
developed. The p master function for A, =0.73, 5tp=O
(solid line) seems to be more adequate to describe this
feature than the master function A. =O. 70, 5t„=O (dashed
line).

Lowering the temperature down to 263 K, the fit with
the idealized theory X=0.70 5tp=0 remains a remark-
ably good fit as shown in Fig. 1(c). A, =0.73 can only be
used if activated hopping processes are included. The fit
with A, =0.73, 5tp=0 exhibits the same deficiencies as,
e.g. , explained in Fig. 9(a) for CKN, A, =O. 85 and 5tp =0.
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FIG. 13. This figure exemplifies the effects of 6&0 in the
Salol data above T, at (a) T=263 K and (b) T =253 K. The P
fits taken from Fig. 1(c) correspond to A, =0.73, with
0./o. o= —2.43 and —0.411, respectively. Dashed curves indi-
cate A, =0.70, 6=0 fits.
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pared to T=263 K [Fig. 13(a)], o. /oo is changed by a
factor 6. This dramatic change within 10 K from
~o'/o'o~ &1 to ~o'/oo~ & I explains why in Fig. 13 the
idealized theory can correctly describe the data for
T ~ 263 K but completely fails for T =253 K.

The crossover temperature T, lies between 243 and 253
K, since the data at T =243 K can only be explained by a
master curve with o )0 as shown in Fig. 14. The value

cr/cro=1. 86 is not big enough that the co' asymptote of
the idealized theory could be reached for low frequencies.
The knee which can be seen in the fit 5to =0, A, =0.70 as
well as in the fit 6to&0, A, =0.73 (Fig. 14) is not visible in
the data since the corrections to the asymptotic result
due to the microscopic peaks are too big. For the lowest
temperature T=198 K (Fig. 1), cr/cro=18. 8 has to be
chosen. For this value the co' asymptote seems to be
reached for low frequencies, but the knee is still hidden
by corrections to the asymptotic form.
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FIG. 14. The characteristic effect of 6%0 on glass curves
T & T, for Salol. For the three temperatures (a) T =243 K, (b)
T =233 K, and (c) T = 198 K the data, the corresponding fits of
Fig. 1(c) (solid lines), and an optimized fit with A, =0.70, 5=0
(dashed line) are shown. The parameters cr/go= 1.86, 5.05, and
18 are chosen for (a), (b), and (c), respectively.

VI. SUMMARY AND CONCLUSIONS

The susceptibility spectra y"(co) of CKN and Salol,
determined from depolarized-light-scattering experiments
[11,12], have been reanalyzed using the extended MCT
P-correlation functions which are solutions of Eq. (2.16).
The analysis has revealed the trajectories C followed in
the (o,5to) plane as the temperature is lowered from the
liquid region throughout the transition region, and into
the region of glassy dynamics. The transition region,
where relaxation dynamics are dominated by the 5to hop-
ping terms, extends over -40 K in CKN and is consider-
ably narrower in Salol.

The theoretically computed susceptibility spectra pro-
vide significantly better fits to the experimental data than
the originally published theoretical spectra which were
computed using the idealized version of MCT with hop-
ping terms neglected, i.e., with 6to =0. Furthermore, the
current theoretical spectra provide specific predictions
for the positions of the susceptibility minima at tempera-
tures below T, which should be accessible to experimen-
tal measurement.

We have also shown that the correlation functions
found from the current fits can explain the CKN neutron
spin-echo data of Mezei et ah. , eliminating the apparent
disagreement with the scaling prediction of MCT which
resulted from neglect of the contribution of the P-
relaxation process [13]. We found that almost all of the
neutron data follow the P-relaxation dynamics, except at
the longest times for the highest temperatures where a
crossover from power-law to stretched-exponential
(Kohlrausch) behavior occurs. An important aspect of
this agreement which we emphasize is that within the
precision of the experiments the P-correlation functions
for the light-scattering and neutron-scattering experi-
ments are equivalent, as required by MCT.

We note that the extended MCT, used here to analyze
experimental data quantitatively for the first time, elimi-
nates the obviously nonphysical predictions of the ideal-
ized MCT such as the complete arrest of the cx-relaxation
process at T, and the disappearance of the susceptibility
minimum below T, . Similarly, as discussed by Sjogren
[9], the extended MCT also eliminates the unphysical
viscosity divergence at T„predicting instead a crossover
from an algebraically diverging T dependence to Ar-
rhenius dependence.

The solutions of the MCT equations of motion are not
known for conventional glass-forming liquids. However,
the qualitative features of the solutions can be inferred
from the known asymptotic laws valid for parameters
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close to the glass-transition singularity. By performing a
quantitative comparison of the asymptotic laws with
data, one can determine to what extent MCT is able to
explain the qualitative features of supercooled-liquid dy-
namics. From the analysis reported here we conclude
that the theory can successfully explain the presently
known experimental facts for the P relaxation of CKN
and Salol. Some specifications and reservations shall be
added.

The asymptotic laws of MCT do not include correc-
tions to scaling. The properties of these corrections are
now known. They may be larger in one system than in
another, and will depend on the variable X under discus-
sion. We found that the corrections are small within a
three decade dynamical window for CKN for light
scattering and for neutron-scattering data for a certain
wave vector q. It is quite possible that for neutron-
scattering data for a different wave vector the range of
applicability of Eq. (2.6) is not so surprisingly large as
demonstrated in Fig. 6.

Figure 1 shows that the P-relaxation formulas account
for the major part of the high-frequency wing of the a
peak. This holds for CKN for T) 393 K and Salol for
T)273 K. Within the MCT for the p process, the a
peak itself also appears as a correction to the scaling law.
From numerical solutions for so-called schematic models
for the MCT one knows that indeed occasionally the von
Schweidler asymptote accounts for a major part of the a
spectrum. But one knows also that in other cases the von
Schweidler law describes only the uppermost part of the
a peak [19]. So it appears more as an accident that our
formulas work so well on such large dynamical ranges as
shown in Figs. 1 and 6. One should not be surprised if
the itnplication of Eq. (2.6) with our G(t) or y"(co) for
other measurements like neutron scattering for other
wave vectors or dielectric loss spectra do not work for
such large logto(t) or log&o(co) intervals as we found in
this paper.

The center of the p spectrum, i.e., the susceptibility
minimum, depends most sensitively on the two relevant
control parameters o. and 5. If our measurement could
be extended to lower frequencies so that the susceptibility
minimum falls within the accessible dynamical window
also for T & T„ the uncertainties for the fitting parame-
ters 0. and 5 could be reduced considerably. Thereby the
uncertainties of other parameters like A, could be reduced
as well.

A drastic correction to the scaling law results is obvi-
ous if one compares the spectra for CKN with those for
Salol. The critical power-law form is so well developed
for CKN that one can read off the proper exponent
a -0.3 from raw data for 373 K in Fig. 1(a). Similarly,
one notices the knee in the spectra for T & 343 K and the
decrease of the frequency ~, for the knee position with
increase of T, particularly if one plots the data as
g"(co)/+to versus log, o(co) as shown in Fig. 11. The ex-
istence of the knee is the predicted fingerprint for the
T & T, states. The softening of the dynamics upon heat-
ing, exhibited by the co, versus T curves, is a predicted
melting precursor for the arrested glass structure. Nei-
ther of the mentioned features can be inferred directly
from the raw data for Salol. Crystalline Salol has an exci-
tation band near 400 6Hz [12]. It leads to a low-lying
excitation band for the liquid, which is unrelated to those
structural relaxation phenomena we want to study. It ap-
pears as a correction to the leading-order scaling results,
which masks completely the specified two glass-transition
phenomena.
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