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Calculation of the ground-state energy Vo of quasifree positrons in rare-gas fluids
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The energy Vo of the bottom of the conduction band (relative to vacuum) of quasifree positrons in
rare-gas Quids is calculated as a function of fluid density. The calculations are performed within the
framework of the Wigner-Seitz approximation [Phys. Rev. 43, 804 (1933)] for nonpolar fluids, using a
semiempirical analytical potential to model the positron-rare-gas-atom interactions. For all the rare
gases studied, Vo is negative and decreases almost linearly with increasing density. Extended to the
solid-phase density range, our Vo calculations are in good agreement with available experimental data
for rare-gas crystals.

PACS number(s): 61.25.Bi, 71.60.+z

INTRODUCTION POSITRON-ATOM INTERACTION

The recent developments in the use of positrons as a
quantitative probe of matter in all its forms stimulate the
interest of theoretical investigations concerning the posi-
tron states in gases, liquids, and solids [1]. The funda-
mental problem to be solved concerns the form of the in-
teraction of the positron with matter, which is different
from that for the electron. This is primarily associated
with the difference in charge, but there is also a difference
due to the fact that there is no Fermi sea of positrons in
the target and therefore the exchange part of the interac-
tion potential is not present. For this reason, positron-
matter studies provide unique insight into the fundamen-
tal aspects of interactions of charged particles with
matter both theoretically and experimentally. During its
finite lifetime (typically, —10 ' s), the positron can be
observed in delocalized, trapped, or positronium (Ps)
states, depending on its energy and on the nature of its in-
teraction with the medium. For positrons injected into
simple fluids or solids with a wide range of low incident
energies (below the Ps-formation threshold), only elastic
scattering is dominant. Because of this reason, the rare-
gas Auids and solids traditionally serve as initial test cases
for novel theoretical and experimental methods involving
scattering of either electrons or positrons. The two quan-
tities of central interest for characterizing quasifree elec-
tron or positron states in nonpolar Auids are the ground-
state energy Vo (relative to vacuum) and the effective
mass m* of injected particles. A great deal of effort has
continually been devoted to the description of electronic
transport properties in those fluids [2]. In previous pa-
pers, we have calculated the dependence of Vp and m * of
excess electrons in rare-gas fluids as a function of Quid
density n [3—8]. In this work, we calculate Vo(n) in the
case of quasifree positrons in Quid helium, neon, argon,
krypton, and xenon, using the Wigner-Seitz (WS) model
[9] for nonpolar fluids.

where r is the distance of the positron from the atom.
The parameters A; and b; are given in the paper of Salvat
et al. [10] for all the atoms considered here. The func-
tion P(r) describes the screening of the nuclear charge Ze
by the atomic electrons. The positron-atom potential can
thus be expressed as

V + (r) = + V„„(r),Ze P(r)
4m@ r0

(2)

where e is the positron charge and E'p is the permittivity
of vacuum. The 6rst term represents the Coulomb poten-
tial produced by the bare atomic nucleus screened by the
atomic electrons in their unperturbed ground-state
configuration. The correlation term V„„(r) takes into
account the effects of target polarization induced by the
positron. In contrast to electron-atom systems, no ex-
change interaction is present.

It is well known that in positron-atom collisions corre-
lation effects are very difficult to describe adequately
without involving any adjustable parameter. Asymptoti-
cally, as for the case of electronic systems, the correlation
potential reduces, at large distances, to the simple polar-
ization form

e aV„„(r)=—
2(4rreo) r

To model properly the positron-Auid interaction, the
choice of a good positron-atom potential is of utmost im-
portance. In the present paper, we describe the
positron-atom interaction by means of a semiempirical
analytical potential based on the analytical Dirac-
Hartree-Fock-Slater atomic screening function P(r) tabu-
lated by Salvat et al. [10] in the following parametrized
form:

3

P(r)= g A;exp( b, r), —
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TABLE I. Values of the atomic polarizability a and of the adjustable parameter p (see text) used in
the calculations. SL denotes the positron scattering length obtained using the positron-atom potentials
with these parameter values. o. is the atomic hard-sphere diameter used in the determination of the
atom-atom pair-correlation function g, (r) (see text). n is given both in atomic units (a.u. ) and in SI
units (C m'/V). ao is the Bohr radius.

Quantity

a (a.u. )

o.'(10 ' C m /V)

p (units of ao)
SL (units of ao)
o. (units of ao)

' Reference [16].
Reference [17].

Helium

1.383'
2.309
0.1272

-0.470
4 830

Neon

2.670'
4.456
0.1413

-0.558
5 195

Argon

11.07'
18.49
0.1794

-4.11
6.435

Krypton

16.77'
27.99
0.1978

-7.75
6.803b

Xenon

27.29'
45.56
0.2176

-26.7
7.748

where n is the atomic polarizability. The difficulty arises
when the positron is near the target atom. A simple way
to circumvent this difficulty is to introduce in Eq. (3) a
cutoff function w(r) depending on some adjustable pa-
rameter. The semiempirical correlation potential pro-
posed by Nakanishi and Schrader [11] allows one to de-
scribe well the positron-atom interactions in the gas
phase. This correlation potential has the following form:

amounts to neglecting Auctuations in the Auid and con-
sidering an ensemble-average potential acting on the posi-
tron [9,18].

At a point r inside the WS sphere around an atom lo-
cated at r=0, the total potential V +,(r) seen by the

positron can be expressed as the sum of the potential pro-
duced by the atom at the origin and of the ensemble-
averaged potential produced by the atoms lying outside
the sphere [4,6,8]

V„„(r)=—

where

e a r
4 N

2(4meo) r. p
V +,(r) = V +,(r)

+n f V+,(~r —r'~)F(~r —r'~)g, (r')dr', (7)

w(x)=[1 —e', exp( —x)]

POSITRON-FLUID INTERACTION

In the Wigner-Seitz (WS) model [9], each atom in the
quid is replaced by an equivalent atomic sphere of radius
rws, defined by

4m 3 1
wsr (6)

p is an adjustable parameter, and e 8 represents the power
series for the exponential function, truncated after the
eighth power of x [11].

In this paper, we adopt this type of correlation poten-
tial. The parameter p is adjusted to reproduce the experi-
mentally determined positron scattering length. In cases
where the experimental scattering length is not available,
the choice of this parameter is made from comparisons of
our calculated cross sections with experiment [12—15].
The values retained for p are listed in Table I for the
different rare-gas atoms studied, along with those of a
and of the calculated scattering length.

where F(r) is a screening function of the Iiuid that ac-
counts for the effect of the field of the induced dipoles of
the surrounding atoms. It is approximated by [18]

r —rws

F(r) = 2na
36'0

r) rws

(8)

The integration in Eq. (7) is over all the space excluding
the WS sphere with the additional condition that the pos-
itron is assigned to only one sphere at once, that is,
~r —r'~ ) rws The pair c. orrelation function g, (r) is ob-
tained by solving the Percus-Yevick equation [19] for a
hard-sphere Quid model [20] with an atomic hard-sphere
diameter given in Table I.

The ground-state energy Vo of the quasifree positron is
determined by solving numerically the Schrodinger equa-
tion with the interaction potential V+ &(r) of Eq. (7),
and by subjecting the ground-state positron wave func-
tion %n(r) to the WS periodic boundary condition
[d%o(r)/dr ]=0at r =rws.

In the sphere, the short-range positron-atom interactions
are described by the atomic potential V + (r). The
effect of the Quid density occurs mainly through the
screened long-range positron-atom polarization interac-
tions. Since the positions of the atoms are correlated,
these interactions are related to the atom-atom pair-
correlation function g, (r) of the fiuid. The potential is
assumed spherically symmetric, which, when combined
with the average translational symmetry condition,

RESULTS AND DISCUSSION

The results of our calculations of the ground-state en-
ergy Vo of quasifree positrons in all studied rare gases are
shown in Figs. 1 and 2 as a function of Quid density n. In
Fig. 1, we compare the values of Vo(n) obtained for heli-
um and neon. As one can see, they show a very similar
variation with the density; Vo(n) is negative in both cases
and decreases almost linearly with increasing n. This can
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FIG. 1. Conduction-band energy minimum Vo as a function
of Quid density n for quasifree positrons in helium (solid line)
and neon (dashed line). ~, experimental result obtained by Gul-
likson, Mills, and McRae (Ref. [21]) for crystalline neon at 4 K.
For helium, the density at the critical point (5.19 K) is
1.05 X 10 ' m ' (Ref. [22]). For neon, the densities at the criti-
cal (44.4 K) and triple (24.55 K) points are 1.44X10 m and
3.72 X 10 m, respectively (Ref. [22]).

FIG. 2. Conduction-band energy minimum Vo as a function
of Quid density n for quasifree positrons in argon, krypton, and
xenon. ~, experimental results obtained by Gullikson, Mills,
and McRae (Ref. [21]) in crystalline samples at 4 K. The densi-
ties at the critical and triple points are, respectively, 0.80X 10
m ' (150.7 K) and 2.13X 10 m (83.8 K) for argon,
0.66X102s m (209.5 K) and 1.75X10 m (115.8 K) for
krypton, and 0.51X10 m (289.7 K) and 1.36X10 m
(161.4 K) for xenon (Ref. [22]).

readily be understood since the positron scattering
lengths associated with the two atomic potentials are neg-
ative and nearly equal, and since the polarizabilities of
helium and neon are also quite similar. We can thus ex-
pect comparable negative slopes of Vo(n) near the origin
[23] and similar screenings of the long-range polarization
interactions. On the same figure, the experimental esti-
mate of Gullikson, Mills, and McRae [21] in crystalline
neon, deduced from positron Bragg diffraction measure-
ments, is also shown for comparison. When extended to
densities corresponding to the solid phase, our calculated
values of V0 for neon are slightly above the experimental
estimate. It is worth noting here that, for the case of
electrons, positive values of V0 are observed for both heli-
um and neon [3,4].

Figure 2 shows a comparison of our Vo(n) results for
argon [24], krypton, and xenon, along with the experi-
mental estimates of Gullikson, Mills, and McRae [21] in
the crystals. As one can see, there is a very good agree-
ment between our solid-phase Vo(n) calculations and
these latter data. In contrast to what is observed for the
density dependence of the ground-state energy of excess
electrons in heavy rare-gas fluids [2,5 —7], we do not see
any minimum of Vo(n) for the case of positrons; the posi-
tion of the bottom of the positron conduction band
changes only monotonically as a function of n. As for
helium and neon, Vo(n) is negative in all cases and for all
the densities considered. Unfortunately, there are no ex-
perimental data of V0 in the Quid phase with which to
compare our results.

Recently, Puska and Nieminen [25] calculated the pos-
itron band structures, and also the positron work func-
tions ( —Vo), in rare-gas solids. They proposed a new

semiempirical positron-atom correlation potential de-
pending only on the polarizability of the atom and on a
universal cutoff parameter r, , valid for all rare gases and
chosen by fitting the calculated positron band gaps to the
measured ones. The positron work functions calculated
by these authors [25] were found to be larger than the ex-
perimental ones, with the largest discrepancy, 1.4 eV, in
the case of neon. Puska and Nieminen [25] suggested
that their indirect determination of V0 for positrons
could be at the origin of this discrepancy. However, it
seems that this problem should more probably be con-
nected with the use of an incorrect va1ue of the parameter
r&. In fact, the value of r, chosen by these authors does
not reproduce the experimental positron-atom scattering
length and total elastic scattering cross sections at very
low energies [12—15]. This is particularly important
since the work function is very sensitive to the value of
the scattering length. The experimental increasing trend
in the positron work function when going from neon to
xenon can also be well explained by the systematic in-
crease of the scattering length. We hope that this paper
will contribute to motivate experimentalists to pursue ex-
perimental investigations on the conduction-band ener-
gies of quasifree positrons in rare-gas Auids.

ACKNOWLEDGMENTS

This research was supported by grants from the Na-
tional Sciences and Engineering Research Council of
Canada and the Medical Research Council of Canada.
One of us (Y.F.) is grateful to the Fonds de la Recherche
en Sante du Quebec for support.



422 B. PLENKIEWICZ, Y. FRONGILLO, AND J.-P. JAY-GERIN 47

[1] See, for example, Third International Workshop on Posi
tron and Positronium Chemistry, Milwaukee, 8'isconsin,
1990, edited by Y. C. Jean (World Scientific, Singapore,
1990); Positron and Positronium Chemistry, edited by D.
M. Schrader and Y. C. Jean, Studies in Physical and
Theoretical Chemistry Vol. 57 (Else vier, Amsterdam,
1988)~

[2] For recent reviews, see R. A. Holroyd and W. F. Schmidt,
Annu. Rev. Phys. Chem. 40, 439 (1989); R. C. Munoz, in
Excess Electrons in Dielectric Media, edited by C. Ferradi-
ni and J.-P. Jay-Gerin (Chemical Rubber Company, Boca
Raton, 1991),p. 161.

[3] B. Plenkiewicz, P. Plenkiewicz, and J.-P. Jay-Gerin,
Chem. Phys. Lett. 163, 542 (1989).

[4] B. Plenkiewicz, Y. Frongillo, P. Plenkiewicz, and J.-P.
Jay-Gerin, Phys. Rev. A 43, 7061 (1991).

[5] B. Plenkiewicz, P. Plenkiewicz, and J.-P. Jay-Gerin, Phys.
Rev. A 40, 4113 (1989).

[6] J.-M. Lopez-Castillo, Y. Frongillo, B. Plenkiewicz, and
J.-P. Jay-Gerin, J. Chem. Phys. 96, 9092 (1992).

[7] B. Plenkiewicz, P. Plenkiewicz, and J.-P. Jay-Gerin, Phys.
Rev. A 39, 2070 (1989).

[8] B. Plenkiewicz, Y. Frongillo, P. Plenkiewicz, and J.-P.
Jay-Gerin, J. Chem. Phys. 94, 6132 (1991).

[9] E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); see also
J. R. Reitz, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic, New York, 1955), Vol. 1, p. 62.

[10]F. Salvat, J. D. Martinez, R. Mayol, and J. Parellada,
Phys. Rev. A 36, 467 (1987).

[11]H. Nakanishi and D. M. Schrader, Phys. Rev. A 34, 1823
(1986).

[12) W. E. Kauppila, T. S. Stein, and G. Jesion, Phys. Rev.

Lett. 36, 580 (1976).
[13]T. S. Stein, W. E. Kauppila, V. Pol, J. H. Smart, and G.

Jesion, Phys. Rev. A 17, 1600 (1978).
[14] G. Sinapius, W. Raith, and W. G. Wilson, J. Phys. B 13,

4079 (1980).
[15] M. S. Dababneh, W. E. Kauppila, J. P. Downing, F. La-

perriere, V. Pol, J. H. Smart, and T. S. Stein, Phys. Rev. A
22, 1872 (1980).

[16] CRC Handbook of Chemistry and Physics, 1st student ed. ,
edited by R. C. Weast (Chemical Rubber Company, Boca
Raton, 1988), p. E-60.

[17]J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecu
lar Theory of Gases and Liquids (Wiley, New York, 1967),
Table I-A, p. 1110.

[18]B. E. Springett, J. Jortner, and M. H. Cohen, J. Chem.
Phys. 48, 2720 (1968).

[19]J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958).
[20] G. J. Throop and R. J. Bearman, J. Chem. Phys. 42, 2408

(1965).
[21] E. M. Gullikson, A. P. Mills, Jr. , and E. G. McRae, Phys.

Rev. B 37, 588 (1988).
[22] R. K. Crawford, in Rare Gas Solids, edited by M. L. Klein

and J. A. Venables (Academic, London, 1977), Vol. II,
Table I, p. 672.

[23] E. Fermi, Nuovo Cimento 11, 157 (1934).
[24] A preliminary account of our calculations of V (no) and

m *(n) for quasifree positrons in Quid argon has recently
been reported: Y. Frongillo, B. Plenkiewicz, J.-M. Lopez-
Castillo, J.-P. Jay-Gerin, and A. Jain, J. Chim. Phys. (to be
published).

[25] M. J. Puska and R. M. Nieminen, Phys. Rev. B 46, 1278
(1992).


