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Droplet breakup in a model of the Hele-Shaw cell
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The Hele-Shaw cell involves two immiscible fluids separated by an interface. Possible topology
changes in the interface are investigated. In particular, we ask whether a thin neck between two masses
of the fluid can develop, get thinner, and finally break. To study this, we employ the lubrication approxi-
mation, which implies for a symmetrical neck that the neck thickness h obeys h, +(hh „)„=0.The
question is whether, starting with smooth positive initial data for h, one can achieve h =0, and hence a
possible broken neck within a finite time. One possibility is that, instead of breaking, the neck gets con-
tinually thinner and finally goes to zero thickness only at infinite time. Here, we investigate one set of in-

itial data and argue that in this case the system does indeed realize this infinite-time breakage scenario.

PACS number(s): 03.40.Gc, 47.20.Ky, 47.15.Hg

I. INTRODUCTION

One of the questions which runs through many
mathematical studies of hydrodynamics and of nonlinear
partial-difFerential equations (PDE s) is whether or not,
starting from initially smooth flows, the solutions to these
equations develop singularities in finite time. For exam-
ple, understanding whether or not singularities develop in
the Euler equations is quite important for the develop-
ment of a good understanding of turbulence. Generally,
these singularity questions have turned out to be very
hard [1]. We do understand Burger's equation [2], which
describes a one-dimensional fluid. However, we do not
understand singularity questions related to Euler's equa-
tion in three dimensions [3].

One difhculty is that singularities may develop only oc-
casionally or that they may be hard to observe. But,
there is one class of problems in which the appearance of
a singularity is likely to be almost unmistakable. Consid-
er two Quids separated by an interface. Imagine that at
the interface there is a discontinuous pressure drop Ap
across the surface related to the surface tension ~ through b2

V (2)

must occur if fluids are ever to separate into disconnected
parts. Figure 1 is a sequence which shows such a break-
age in a laboratory setup [4]. This figure shows a quasi-
two-dimensional situation in which two fluids (air and
water) are confined to the narrow gap between two glass
plates. It is not clear how important a role the actual
three-dimensional nature of the cell plays in the breakup
of the mass of water.

In this paper, we shall not focus upon the experimental
situation. Instead, we shall question when and how a
given set of hydrodynamic equations can show neck
breakage, with the accompanying singularity formation.
In this paper, we propose to investigate this question in
the simplest possible situation: the so-called Hele-Shaw
[5] flow in which two fluids are confined to the thin gap
region between two Qat plates. The gap is thin so that the
component of the velocity perpendicular to the plates
may be neglected. The plates produce a friction upon the
fluids so that their average velocity components along the
plates v may be described by a potential flow. The two-
component velocity obeys

bp =r+R

where the R's are the principal radii of curvature of the
surface. Clearly, if a thin neck connecting two regions of
fluid suddenly breaks, the interfaces bounding the two
separated fluids will tend to fly apart. Such events must
involve the appearance of some singularity in the shape
of the surface or the velocity or both. This neck breakage

Here, the pressure p is presumed to depend only upon the
coordinates x and y along the plates, b is the distance be-
tween the two plates, and p is the viscosity of the Quid in
question. For simplicity we assume that the two fluids
have a very high viscosity contrast, as between pair air
and water. Then the pressure within the less viscous fluid
may be considered to be independent of position [6].

Common experience shows that separation of a mass of
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FIG. 1. From the experiments of Mason, Shyamsunder, and Goldstein. These pictures show the dynamics of the breakup of a
mass of Quid in a cell which contains air and water trapped in the thin region between two glass plates. We view the situation through
the plates. The white regions are Auids: air and water. These are kept apart by TeAon spacers, which appear in dark. The other
dark area roughly marks the positions of the air-water interface. Refraction produces an apparent interface region much wider than
the real interface. Because of the refraction, it is hard to judge the dimensions of the thin neck of water. However, the actual break-

up occurs when the neck of water has transverse size which approaches the distance between plates. Consequently, the breakup may
be a three-dimensional effect. (a) A thin neck connecting two masses of water has thinner and thicker potions. (b) The neck begins
to break apart into separate drops.
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Auid into two disconnected parts can easily occur in three
dimensions. However, according to popular mythology
[7], this separation may not always be possible in two di-
mensions. Specifically, it is far from clear that any such
separation is permitted within the simplified two-
dimensional hydrodynamic equations. Consequently, in
this paper, we focus our attention upon the Hele-Shaw
situation.

To fully define this situation, we must append to Eq. (2)
boundary conditions describing discontinuities at the in-
terface between the two fluids. One such boundary con-
dition is the statement that the normal component of the
velocities of both fluids is identical, so that the interface
moves with the Auids. The other boundary condition is
more problematical [8]. In the real world, fiuids are three
dimensional, and Eq. (1) contains two principal radii of
curvature. However, since we are primarily interested in
mathematical issues, we choose the simplest possible
boundary condition. We take Eq. (1) to hold with R be-
ing the radius of curvature of the interface within the x-y
plane. In this way, we get the simple Saffman-Taylor
problem, the subject of many previous studies [9,10].

A. Derivation of lubrication approximation

But now we seek a further simplification. We shall ar-
gue that a variety of the well-known lubrication approxi-
mation [11] should be applicable to a sufficiently thin
neck region. Imagine that a viscous Quid, "water, " has
formed a thin neck in preparation for its splitting into
two parts (see Figs. 2 and 3). It is surrounded by "air"
and the pressure of the "air" may depend upon time, but
it is independent of position. Then, if the neck is thin
enough, it is very implausible that we shaH see a situation
in which the curvatures on the two sides of the neck are
different, as in Fig. 2. For in that case, the different cur-
vatures on opposite sides of the neck would produce
different pressures on opposite sides of the neck. A large
How would arise with the likely result of evening out the
curvatures on opposite sides of the neck. For this reason,
we assume that the neck is symmetrical as in Fig. 3.
Then, the neck region can be described by a variable
h (x, t), where x describes distance along the symmetry
line, t is the time, and 2h is the thickness of the interface
at position x.

The lubrication approximation is derived from the as-
sumption that, because the interface is so thin, we need
not consider the variation in the pressure in the y direc-
tion. Hence the How is primarily parallel to x, and its
speed is

Q2
B,p(x, t) .

12p

The total current of particles j at the position x is veloci-
ty times height

j=vh .

Since the How in the y direction is quite small, the con-
tinuity equation is the statement

One more equation is needed to complete the set. In
the Saffman-Taylor approximation the pressure jump is
given by the one-dimensional curvature, so that in place
of Eq. (1) we have

h
Ap =~

In the lubrication approximation, one takes h to be
small and hence replaces the denominator in this expres-
sion by unity. In this way, one finds that the pressure in-
side the viscous Quid is given by

p =P(t) rh„„, —

where P(t) is the pressure applied to the less viscous
fiuid. Equation (2)—(6) may be combined into the single
statement

h, +(hh „„)„=0.

Here we have defined the unit of time to be

so that all dimensional factors drop out of Eq. (7). We
shall study this equation in the remainder of this paper.
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FIG. 2. The setup of the problem solved here. A thin neck is
sketched. This is an asymmetrical case. This will produce a
How across the neck which tends to reduce the asymmetry.

FIG. 3. The setup of the problem solved here. This is a
symmetrical case. A schematic picture shows the system setup
and boundary conditions. The heavy curves are walls which
separate the two fluids. The length I is much much greater
than length 8'. In this case we can equivalently imagine that
there is a slip wall on the plane of symmetry. Our variable is
h (x, t).
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There is one important physical effect left out of Eq.
(7): gravity. Imagine there is an additional force on the
viscous Quid which points toward negative x and is sim-

ply proportional to the volume of the Quid. This force
produces an additional term in Eq. (7) of the form Vh„
where V is the terminal velocity of an isolated drop of
viscous Quid in the cell. This extra term may be eliminat-
ed by going into a coordinate system moving with speed
V, but care must be taken in such Galilean transforma-
tions if the imposed boundary conditions break transla-
tional invariance.

B. Zeros imply singularities

We wish to ask whether Eq. (7) develops singularities
in any finite time with generic starting data in which h is
smooth and positive. Mathematically, the positivity of h
is required for Eq. (7) to be meaningful, since the
highest-order derivative terms in the equation have the
structure

h, +hh, „„=(less singular terms) .

Thus, if h is negative, the entire problem is ill posed in
the sense of Hadamard [12]. As h goes to zero, one must
develop singularities in x. To form this conclusion, as-
sume that the starting data for h is smooth and positive.
Then no singularity will arise until h becomes either zero
or infinite someplace. Put the question about infinite h

aside; it will not trouble us here. So ask what happens
when h develops a zero. Let x*(t) be the position of the
minimum of h (x, t) in x. The minimum value of h at
time t is h;„(t)=h( x*(t), t ,}which in turn formally
obeys

according to Eq. (7). Therefore, if h;„ is to approach
zero at any finite time t„ the fourth derivative of h must
have a very strong singularity. In fact, the integral of
W(t) up to t, must diverge. Thus a zero in h (x, t) im-
plies a singularity in the x dependence of h. Conversely,
one can prove that as long as h is strictly positive it is
nonsin gular.

C. Outline of paper

The remainder of this paper is divided into two parts.
In the next section, we first specify the model by giving
boundary and initial data. The model is shown to be dis-
sipative in the sense that an integral depending upon the
solution decreases uniformly. Consequences of this de-
crease are discussed. Finally, two numerical methods, a
finite-difference scheme and a Galerkin scheme, are de-
scribed and explained in detail. The following section
discusses the results of simulations. Long-term solutions
are obtained and their scaling properties are described.

D. Further studies

The model problem discussed in this paper is still being
studied. We believe that under appropriate initial and

boundary conditions (but not the ones studied here) it is
likely that there is singularity in finite time. A related pa-
per that presents the supporting evidence for this view is
in preparation.

II. SIMULATIONS AND SCALING
ANALYSIS

We wish to produce a situation in which h (x, t) will
certainly go to zero, potentially producing a finite-time
singularity. To achieve this, we imagined taking a
column of fluid of finite thickness, and squeezing very
hard upon it. How fast would the fluid Qow out? Would
h;„go to zero at finite time? Intuition suggests that
squeezing should not be sufhcient to break the column in
finite time. Can we back this intuition with hard argu-
ment?

A. The model

for t greater than zero. Here P(t) is a dimensionless ver-
sion of the pressure in the "air." If P )0, the "air" is
pushing on the "water. " There is a tendency for the
column of water to thin. If P &0, the column has a ten-
dency to bulge at the center. The particular cases we
studied all have P(t) being a constant, independent of t
The problem is fully defined by giving P and initial data.
At time zero, we take the height h to be unity:

h (x,o)=1 (12)

for x in the basic interval [
—1, 1].

B. A variational principle and its consequences

Equation (7) is dissipative in structure. Hence, one
should expect that there might be some kind of Lyapunov
function for this equation. Consider the integral

I[h]= f dx( —,'h +Ph), (13)

which is well defined up to the time of the first singulari-
ty. Here h is required to obey boundary conditions (11).
If h and P are non-negative, this integral is non-negative.
A brief calculation shows that Eqs. (7) and (11) imply that
I ( t) has a monotonic decrease in time. Let h (x, t ) be a
solution to Eqs. (7) and (ll). After two integrations by
parts, one calculates the rate of decrease of I [h (,t)] to
be

I= K(t); K(t)= f d—xh„„h .d
dt

(14)

Here K(t) is well defined and positive for all times up to

We considered a finite interval —1 & x & 1 and insisted
that the height remain one at the endpoints. We visualize
that, in the more viscous Quid, the pressure is held to
zero in the region of these end points (see Fig. 3). The
other Quid is held at a nonzero pressure P. This situation
is then represented by boundary conditions at the two
end points

h (+1,t) = 1, h„(+1,t) =P (t)
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I;, . The Lyapunov function character of h is established if
we notice that Eq. (7) is equivalent to

B,h (x, t) =B„h(x, t)

XB„ I[h( t)]6
5h x, t

tween 0 and 1. It is a second-order, implicit method of
the Crank-Nicholson type. The x derivatives in Eq. (7)
are approximated by central differences involving a max-
imum of five mesh points.

We consider the case of solutions to Eq. (7) that are
symmetric about x =0 (initial symmetry is preserved by
the evolution). Discretizing the interval [0,1] by the
N + 1 equally spaced mesh points,

(i)h, =0 (pressure independent of x) or

(ii)h =Q (no fiuid)
(16)

for all x save perhaps a set of measure zero. For P &2,
the possible steady solution is one with constant h„„,i.e.,

H „(x)=1+P(x —1)/2 for P & 2 . (17)

This height satisfies Eq. (7) and the boundary conditions
[Eq. (11)]. Notice that this solution cannot apply for
P )2 since then the height will be negative. For P )2,
there is only one solution with non-negative h and con-
tinuous h which obeys Eq. (16) and our boundary condi-
tions, namely

—(x —x ) ifx)xP
0

H (x)= 0 if ~x~ &xo

—(x+xo) if x & —xo .P

for P )2 (18)

This solution has a discontinuity in h, at x =+xo, with

Using these results, we can find all possible time-
independent solutions of Eq. (7) using the boundary con-
ditions (2.1). From Eq. (14), these solutions must h obey
one of the two conditions:

0—x ) & x2 « x~+ )
—1

The central difference formulas used are

5u; J =(h;+, —h;, )/2b, x,
5 u; =(h;+, —2h; +h. ..)/bx

5 u;, =(h;+2 —2h;+, +2h, ,
—h, 2, )/2bx

(20)

5 u; =(h;+2 —4h;+, . +6h; —4h;, i +h; .
2 )/b, x

(~xh 4+ i
=P (21)

(a.""+"h)i . =Q for k =0, 1,2, . . . ,

where P is constant in our simulations.
The last two finite-difference formulas, when centered

at xz. , require a value for h at x&+2=1+Ax. We use the
first two boundary conditions to provide a high-order ex-
trapolation for this value by the formula

Here hx is the mesh size in space. For h the index i indi-
cates that the x coordinate is x;, while j denotes the jth
time level. We will keep this notation in this section.
These central differences approximate the same order of
partial derivatives with respect to x, with a leading error
of order hx .

The boundary conditions are specified as

&++i j 1

xo = 1 v2/P— (19)
&~+2 2k~+ i . A~ +POX

In this situation, the pressure is continuous except at
x =+xo, where the height is zero. Thus, Eq. (18) gives a
type of weak solution to Eq. (7).

The functions H minimize the integral within the
class of all non-negative functions with first-derivatives
square integrable which obey the boundary conditions
(11). They represent the likely infinite-time limit of the
solutions, if no singularity intervenes in finite time.

Then, starting from a smooth and positive initial
h (x,0), it can be proved that, if P & 2, then
h (x, t)~H(x)=1+P(x —1)/2.

If P )2 we expect that, if the solution exists for all
time, it will approach the weak solution in which Eq. (7)
is obeyed almost everywhere and has h continuous.

C. The simulational methodology

Solutions to Eq. (7) for h were constructed by using
two different methods: a finite-difference scheme and a
finite-element scheme.

1. Finite difference rnetho-d

The first numerical method we used was a finite-
difference Inethod with equally spaced mesh points be-

where h~+, . is always 1 according to the first boundary
condition. Equation (22) gives a fourth-order approxima-
tion to h at this extra mesh point. Thus, when we use Eq.
(20) to compute up to fourth-order x derivatives at the
Xth mesh point, we can keep the leading error of order
Ax .

The last boundary condition, the symmetry condition,
is used to compute the derivatives for the first and second
mesh points. When we need to know values of h at
points which sit on the negative x axis, we use their coun-
terparts on the positive x axis.

To summarize, given the values of h on the N interior
mesh points, together with the boundary conditions and
Eq. (20), all the central difference approximations re-
quired for Eq. (7) can be evaluated at the interior mesh
points with a leading error of order Ax .

Except at the first step, for the discretization in time
we use a Crank-Nicholson-type implicit scheme, where
the following finite-difference equation is used to approxi-
mate the original partial differential equation Eq. (7):

(h; +,—h; J. , )/b, t= —h; .(5 h, +,+5 h;, )

—5h; .(5'h, .+, +5 h; . , ), (23)
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2. Galerkin method

We have used a conventional Galerkin method to ap-
proximate solutions of Eq. (7) with boundary condition
[Eq. (11)]. The basis of the Galerkin method is the fol-
lowing integral identity. For v a continuously
differentiable piecewise polynomial function vanishing at
x =+1, the solution h satisfies

f [h, u+h„(hu ) ]dx=Pv„~', . (24)

Any smooth function h which is one at x =+1 and
satisfies this relation for all such v is, in fact, a solution of
Eq. (7) with boundary conditions (11)as well.

Let At be the Hermite cubic polynomials [13] over a
given partition,

—1=xo &x& « . x&=1,

of (
—1,1); i.e., JR is the set of all C' piecewise cubic poly-

nomials. Take A, o to consist of those functions in Af
which vanish at both ends of the interval ( —1,1). The
space JR has dimension 2(K+1) and it is conveniently
parametrized by the values of the function and its deriva-
tive at the mesh points x, . If w HA, , then

where b t is the time step between these three time levels.
For smooth h (x, t) the leading error for this time discreti-
zation is of order At . Using Eq. (23) we can get h; from
information of two previous time levels h; &

and h; z.
To get h at time ht, we use a central difference formula

[see Eq. (20)] to compute —(hh„„) and an explicit
Euler step to get h at time At l2. We then use Eq. (23) to
get h at time At from h at time 0 and time At l2 (here the
time step is Atl2). After getting h at time At, we iterate
Eq. (23) to update h to the next time level with time step
ht. Each time we advance h, we will check if the new
minimum value of h is less than —,

' that of the previous
time. If the minimum value of h decreases too fast, we
will halve the time step ht. We stopped our program
when At was less than 10

Equation (23) with boundary conditions Eq. (21) can be
written as N linear equations for h; +i (i =1,2, 3, . . . , N)
with a banded coe%cient matrix whose width is 5. These
linear equations are solved by Gaussian elimination. The
stability of this elimination method requires that At be of
order Ax .

As will be seen shortly, numerically computed solu-
tions to Eq. (7) can evince nearly singular behavior, and
we found a problem in using a uniform mesh in space. At
later times we did not have a small enough mesh size
around the minimum point of h to adequately resolve the
diverging terms h „„and h„, while for other parts of
the solution we had more than enough mesh points. If
we add more mesh points to get good resolution around
the minimum point of h, the time step has to be very
small (decreases like Ax ) in order to satisfy the stability
requirement. So we turned to another second-order
scheme —a Galerkin method —which is easier to imple-
ment when the mesh is not uniform.

K
w (x)= g [w (x; )v;(x)+ w„(x; )s;(x)],

i=a

where with Ax =x +, —x and I =(x.,x +, )

x X.
Vo xEI;

u;(x)= '

V(
x x)

hx;
xEI;

0 otherwise,

x x;
Ax, S0

Ax;

s(x)=' x —x,
hx, )S,

Ax,

0 otherwise,

xEI;

xEI;

Vo(x)=1 —3x +2x

V, (x)=3x —2x

So(x)=x (x —1)

Si(x)=x (x —1) .

The mesh points tx; ] are chosen symmetrically about
0, and the mesh was chosen to be extremely refined in the
areas in which the singularity develops. We also imposed
the constraint

b,x; ~2.1

x, +,
The continuous-time Galerkin approximation is a

differentiable function H(t) taking values in JR; where it
is convenient, think of H as being H(x, t). The defining
relation for H are

(H„v)+G(H, H, v)=Pv„~' „uEJRD,

H( —l, t) =H( l, t) = 1,
H( 0x)&JR given,

where

(25)

be an increasing sequence of times. We compute a se-
quence IH" ] of functions in JR where H" approximates
H(t")

(V»P)= f,V 4dx
(26)

G(p, 1', u)= f p (gv„)„dx .

Expressed in the above basis for Jkt, Eq. (25) becomes a
system of 2E ordinary differential equations in 2K vari-
ables.

These relations are discretized in time using a finite-
difference method as described below. Let

o=t'&t'&
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Adopt the notation

tn+i= tn +i—tn

a, H" +'=(H" +' H") y—St"+',

H"' =OH"+'+(1 —8)H",

(27)

The integral above can be computed on a single subinter-
val, since shifting u by any element of Ato which is only
nonzero in (y, 1) does not change the computed value.
The current at the end points is computed in a similar
way. Once the current is known we have a natural ap-
proximation of h„„„.

+i
H" + (H" H"—') n )0

Hn 2ht"
H', n =0.

Given H HJN, , the sequence IH" I for n )0 is defined
by the following relations:

(B,H" ', u)+ G (H" s,K",u)+ G (H",H" H"'v—)

=PU„' i, U EALO,

H"( —1)=H"(1)=1 .
(28)

(29)

For 0= —,
' this is a second-order correct implicit method

based on the trapezoidal rule with extrapolation for some
of the nonlinearities. The scheme is still second-order
correct (for 8= —,

'
) if the second G( ) term is omitted, but

it was found empirically that omitting that term induced
a strong time-step limitation.

In our numerical experiments with this method, the in-
itial data and the mesh were taken to be symmetric about
0; this makes H" an even function for each n. For
efficiency the symmetry was enforced on the computed
solution. Also we used 0 slightly larger than —,

' to damp
very-high-frequency modes.

The initial time step was chosen experimentally and an
ad hoc time-step adjustment rule controlled the step
thereafter. The step adjustment rule rejected steps on
which the minimum of H decreased by more than 10%,'
in these cases the step size was halved and the step was
retried. After long periods without step rejection modest
step increases were tried, subject to a predefined max-
imum. Based on repeated experiments with various
time-step constraints, it seems that the time truncation
was small relative to the space truncation.

In experiments in which H is actually getting very
small, we computed with the difference between H and
the candidate for the limiting steady-state solution. This
was done to minimize the effects of rounding error.

In all our experiments to date the mesh xo, . . . , xz
was held fixed in time. The mesh was far from uniform in
space in most cases.

In order to understand the nature of the computed
solutions, we need to examine not only the values of the
solution, but certain derivatives as well. The current
J=hh is of particular importance. The technique that
we use to approximate the value of the current is adapted
from an idea of John Wheeler, and we will describe it in
the continuous-time case. Let y be a given point in
( —1,1) and suppose that u H Jko is such that v (y) =1 and
v„(y) =u (1)=0. The current at (y, t) is computed as fol-
lows:

J(y)= f [H, u+H„„(Hv ) ]dx .

III. RESULTS OF SIMULATION

p(x, t)=P —h „ (30)

goes to a constant value, 0, as time goes to infinity. Then,
h will approach the smooth function defined by Eq. (17).

The prototype of this kind of behavior occurs at P =0.
In this case, h remains one for all times. We will argue
that a smooth approach to the profile (17) probably holds
for all P & 2. In Figs. 4 and 5 we plot our numerical solu-
tion for one of these "dull" cases, P =1. The solution
does indeed seem to approach the asymptotic behavior
shown in Eq. (17).

The time dependence of the solution depicted in Figs. 4
and 5 can be reasonably well understood. As the Auid
Aows out of the cell, the curvature of the interface in-
creases throughout. Some pressure gradient is main-
tained, in which higher pressures are found toward the
center of the cell, and this pressure gradient pumps Quid
out of the cell. The gradient is gradually reduced as Quid
leaves the cell, so that at large times the pressure is al-

I I f I I I

1.0 t=O. OO

o.e

A

0,6

parabolic solution

Q 4 I I I I ! I I I I I I I I I I I I I I

0.0 0.8 0.4 0.6 O.S
X

1.0

FIG. 4. The behavior of h(x, t) in the case P =1. Here
h(x, t) never will become singular. The solution for h (x, t) is
shown for selected times. Only the region 0 & x & 1 is shown be-
cause the curves are symmetrical about x =O. The dashed curve
is the parabolic equilibrium solution of Eq. (7).

In this section, we discuss the numerical solutions.
From the argument of Sec. II B, one should expect that
these simulations of Quid fiow will show very different re-
sults in two cases: For P sufficiently small, there will be a
"dull" behavior in which the pressure in the Quid
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I I I i I I I I I I I I I I I I I 1 I 6

1.0 t=O.OO

0.0 ~t goes to infinity

I I I I I I I I I I I I I I I I I I I

0—

I I I I I I I I I I I I I I I I I I I I

0.0 0.2 0.4 0.6 0.8
X

1.0 0.0 0.2 0 4
X

0.6 0.8 1.0

FIG. 5. The behavior of p(x, t) in the case P =1. Here
p(x, t) never will become singular. The solution for p(x, t) is
shown for selected times. Only the region 0 & x & 1 is shown be-
cause the curves are symmetrical about x =0. The dashed curve
is the parabolic equilibrium solution of Eq. (7).

I I I I T I 1 I I I I t t I I I I t

1.0
t=a.oo

A 0 5

0.0
0.0 0.2 0.4

X
0.6 o.e 1.0

FICx. 6. The solution for h(x, t) is shown for selected times
for the P = 5 case. Only the region 0 & x & 1 is shown because
the curves are symmetrical about x =0. The dashed curve is
the weak solution of Eq. (7).

most constant and the Bow ceases.
Thus we know what can happen for P &2. But what

do we expect for P )2?
To see what happens in the early stages of the fIow,

look at Figs. 6 and 7, which give the simulation for P =5.
Figure 6 shows an h which gradually goes down and

FICr. 7. The pressure p =P —h „at selected times for the
P =5 case.

seems to more or less approach the dashed curve marked
"weak solution. " Thus, here too, h does seem to have
some tendency to approach a time-independent solution.

But, if we look more carefully at Fig. 6, we can see
some very interesting details. Over the earlier times,
t &0. 16, h decreases monotonically as one approaches
the center of the cell. The plots look qualitatively similar
to the ones shown for P =1. But, toward the end of the
time interval shown in Fig. 6, something new happens.
In the last two curves, h shows a tendency to flatten out
toward the center, and even at the last time to show a
minimum for x bigger than zero. To understand this
behavior, notice that at time 0.16, the "curvature" h„
has an average value of order 3 or so over the outer por-
tions of the cell. Hence the pressure is relatively small in
these outer portions. But towards the center h „must
remain small, since h cannot become negative. Thus the
pressure rises to get close to the value 5 near the center.
There is then a very substantial gradient of pressure in
the region 0.2&x &0.5. This gradient pumps Quid to
larger x, out of that region. By the time 0.2, a minimum
of the height has appeared near x =0.25. Now, the
height and its second derivative remain small for all x be-
tween 0 and 0.25. Correspondingly, there is a large pres-
sure gradient between x of 0.2 and 0.3. Fluid now is
pumped out of this region, toward larger x, and the
minimum of h moves to the right. Thus, in the course of
the simulation, Quid is being continually pumped out of
the region in which x & x0

=0.36754. . . , particularly
near the maximum gradient of p, which is also close to
the minimum in h.

We can perceive two different eras in the Aow. In the
erst era, for t &0.2, h is monotone increasing from the
center to the outside. In the second era, t ~ 0.2, we see a
minimum (or pinch) in h for nonzero X. This situation is
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b,(t) =xo —x *(t), (31)

is the distance between the pinch point and the position
of the putative asymptotic singularity. Thus it measures
a shift in position of the pinch point. The other length, g,
is introduced as a measure of the thickness of the pinch
region. It is defined to be the distance over which the
height doubles from its minimum value:

millh

(ho)

ho

(&o),

seem to be very accurately constant for large t. These re-
sults suggest that the solutions show a scaling behavior in
which h;„and ho, respectively, vary as 1/t and (1/t) .

We look for additional scaling. In Fig. 12, we plot the
time dependence of some characteristic distances. There
are two important lengths in this problem. The first,

10 I I I I I I I I I I I I I

10

FIG. 11. The minimum of h, h;„(t), the central value ho, the
ratios h;„/(ho), and. ho/(ho), are plotted as functions of t.
The least-squares power-law fits have, respectively, the slope
—0.98 for ho and —3.9 for h;„. The two dashed lines show the
theoretical predications.

h(x*(t)+g(t), t )
~ min

(32)

From Fig. 12, we see that 6 varies roughly as t
with g varying roughly as t ', and the ratio 6/g being
rather time independent. There is one more scaling rela-
tion which will prove important in what follows, the scal-
ing of the current. Let J(t) be the current j(x, t) evalu-
ated at the minimum of h. Figure 13 plots J(t) versus t,
showing that J decreases roughly as t, and also gives a
plot which shows that J(t)/(ho), is roughly constant.

The plots of Figs. 11—13 suggest that there might be a
scaling behavior shown by the solutions. We look for this
scaling, since it might well give us insight into the possi-
ble infinite-time structure of the solutions.

10 I I I I I I

10 J/(ho)t

10
20

10-' 10—Z

10-' 10

10
0.1 0.2 0.5 1

time
10

10-'

FIG. 12. Some distance plotted against time. We show 6,
the displacement of the pinch point from its weak solution
value, and the characteristic thickness of the pinch region g
plotted as a function of t. Notice that 5 falls as the —1.75
power of t and g varies as the —l.g7 power of t Notice the ap-.
parently simple scaling behavior of these quantities and the ap-
parent constancy of the ratio g/A.

0.2 0.5
time

10

FIG. 13. Scaling of the current. The current at the pinch
point J(t) is plotted versus t and also J/(ho), is shown roughly
to be a constant.



47 DROPLET BREAKUP IN A MODEL OF THE HELE-SHAW CELL 4179

A. Similarity solutions

Since in the P & 2 case Eq. (7) does not have any static
solution, one might expect that h (x, t) has a similarity
solution for late time. Hopefully this will enable us to ex-
plain various scaling relations obtained from our numeri-
cal simulations.

Assume that the late-time solution of Eq. (7) has a
similarity solution of the following form:

x —x, —y[y(t)]
h (x, t) =y(t)G

P[x(&)]
(33)

where x„a,P, y, and 5 are constants. Putting this solu-
tion into Eq. (7), if we demand that functions G and y can
be separated, we must have y =0 or 5 =+. Now we have
two separate equations for G and y:

(GG„„„)„—A. G —ailG„— G„=O,6y (34)

P'xi+ax' ' =o

where

(35)

h(x, +y[y(t)], t)=y(r) .

In the central region, G is a symmetric function of x.
So x, =O, y=0, and y(t)=ho. For late time there is a
very natural scale for x —xo which roughly defines the
boundary of the central region. This makes a=O and
y=0 a very natural choice for the similarity solution of
h (x, t) in the central region. From Eq. (35) we immedi-
ately see that

x —x, —y[g(t)]
P[X(r) ]

and A. is an adjustable constant. Further, we set G (0)= 1

so that

or

(hh „) =0 . (38)

B. Universality in central region

To check whether our similarity solution works in the
central region, we plot function g, which is defined as

h (zxo, t)
g(z, t)=

ho
(39)

If there is a universality in the central region, we
should expect the g defined by Eq. (39} to be essentially
independent of time. From Fig. 14 we can see that g (z, t)
does change with time very slowly for t & 0.5. So for late
times, the function g(z, t) will approximately be the G
defined in Eq. (33), which satisfies Eq. (36).

Figure 14 also shows the comparison between the g
function obtained from late-time simulation results and a
numerical solution G of Eq. (36} with boundary condi-
tions

G(0)=1, G„(0)=0,

G„„(0)= —2. 836, G„q„(0)=0,
and the constant A, in Eq. (36) is set to be 7.000. All
curves agree with each other very well. So for the central
region, we can safely set the index a defined in Eq. (33) to
zero. This gives us a scaling relation between ho and ho,

(ho), -ho . (40)

the case in our simulation. From simulation results we
can estimate that a is about —,'. Now the shape of the in-

terface in the pinch region is determined by

(37)

or
1.0Jl

(ho), -ho,
and for late time G satisfies

A, G —(GG„„„)„=0, (36)

where g is x/xo. This G function defines a universal
shape in the central region when time is very large.

For the pinch region, the situation is different from
that of the central region. Now the natural choice of y(t)
is h;„. This requires x, +y[y(t)] =x'. Because
x*=xo for large t, we set x, =xo. Now b defined in Eq.
(31) is x*—x, or y[y(t)] . The g' defined in Eq. (32) is
the scale of the size of the pinch region, or g= [y(t)] . In
Fig. 12 one can see that g/b, approaches a constant for
large time. This fact indicates that the larger the time is,
the better our similarity assumption becomes. When
time gets very large, h;„becomes very small and so does
the time derivative of h (x, t). If a is not less than —,', we
have to set A. to be zero. We will see that this is indeed

0.8—

0.4—

~ t=0.5
+ t=8.0

0.2—

0
0

I

0.2 0.4 0.6
x/ xo

0.8 l.O

FICi. 14. Comparison between the G function for t =0.5—8.0
of the central region and a numerical solution of Eq. (3.12) using
the initial conditions G (0)= 1; G„(0)=0; G»(0) = —2.836;
G»„(0)=0; and A, =7.00. From our simulation result we know
that g changes with time very slowly when t )0.5.
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From Fig. 11 one can see that ho/ho, approaches a con-
stant for large times.

4

C. Universality in pinch region

According to Fig. 9, once h has gotten very small, it
stops varying very rapidly. This result suggests that in
the pinch region, we can analyze the behavior of h in the
region of the minimum by using Eq. (38). Then, the
current is constant in this region, so that we can write

LL

2

hh„„„=J(t) . (41)

We focus on the region near the positive x '(t), where J
is positive. We now pause for a reasonably full analysis
of the most relevant solutions to Eq. (41). We consider a
situation in which h is small near the minimum and
varies rapidly over a distance scale g(t) around the
minimum at x*(t). Thus we choose

FIG. 15. Comparison between the numerical solutions in

pinch region at t = 1.5 and 4.0 and the universal form F.

h (x, t)=F h
x —x "(t)

(t)
(42)

FFyyy 1 o (43)

Equations (41) and (42) together imply that F(y) obeys
lation for I' = 5, given in terms of

h(x*+(h;„/J)'i y, t)f (y, t)=
h min

(49)

The constant in Eq. (3.3) is given the value unity when we
make the particular choice

J=h
One integration of Eq. (43) gives

FFyy
—

—,'Fy Fy =y —A, (44)

where A (t) is another integration constant. For large y,
we demand that h (x, t) fit into the weak solution. For
this reason we choose F to have the asymptotic behavior

F(y)~ 'y~ as y~ce— (45)

&J(t)/g(t) =& . (46)

Equation (44) admits three possible behaviors of F(y)
as y goes to minus infinity. In one case, F can grow as y .
We reject this case because we wish to have h quite small
to the left of the pinching point. Other solutions attain
F =0, and then permit no continuation past the point of
this occurrence. These are also rejected. Finally, there is
an exceptional solution in which

We lose no generality with this choice, and simply use it
to define g(t) in terms of J. Recall form (18) of the weak
solution and fit Eqs. (42) and (45) onto that weak solution
by demanding J—(ho), .

From this argument we would conclude that the vari-
ous constants describing the pinch region scaled as

g-J-(ho)„h;„-(ho), . (50)

The plots seem to bear out these contentions. Thus, we
can argue that we do seem to understand the pinch re-
gion reasonably well.

This f (y, t) has been defined to have the value one at
y =0 and

f (O, t)f (O, t)=1,
just like F If our. theoretical argument is correct, f
should be time independent, and, in fact, exactly the same
as F. The plot supports these statements.

According to the results just derived, if we but knew
the current J(t), we would know the entire solution in
the pinch region. But now we can argue in a heuristic
fashion that since the current carries mass out of the cen-
tral region, and since the central region has mass which is
of the order ho times the almost fixed size of the central
region, then

F(y)~&8/3( A —y) ~ as y ~—~ . (47) V. CONCLUSIONS

F(0) 1 J(0) F(0)Fyyy(0) 1 (48)

On the same plot, we show the actual result of the simu-

Figure 15 plots this particular solution. We normalize
the solution in exactly the same way as we normalized
the experimental data. Specifically we take the minimum
of F to be at y =0 and demand

In this paper we have studied the droplet-breakup
problem in a Hele-Shaw cell. A simplified equation is de-
rived for the width of a thin neck between two masses of
the Quid from a lubrication approximation. This equa-
tion can be used to describe the singularity-developing
process in the droplet-breakup problem in a Hele-Shaw
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cell. Starting from certain smooth initial Aows, we have
found solutions to the simplified equation which ap-
parently will not reach zero in finite time. This means
that, under these conditions, droplet breakup cannot hap-
pen in finite time in a Hele-Shaw cell. For late time, the
minimum width of the thin neck decreases like I!t
Similarity solutions are found for the late-time shape of
the interface in the pinch and central regions. Compar-
ison between the simulation results and theoretical
universal shapes is made and the agreements are very
satisfying. Further investigation of this problem with
various initial and boundary conditions is being pursued

(see [14]) to see under what conditions one can expect
finite-time singularities.
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