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Experimental observation of the quasiperiodic modes in a rotating Couette system
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We experimentally observed the spatiotemporal velocity field of modulated waves (quasiperiodic

mode) in a Couette-Taylor system for Reynolds number 9~R/R, (28. A power spectrum averaged

over four axial wavelengths showed clear evidence of the coexistence of two quasiperiodic modes for a
wide range of Reynolds number and the first azimuthal wave mode disappeared at R /R, = 18.

PACS number(s): 47.20.—k, 47.32.—y

I. INTRODUCTION

Flow in a rotating Couette system is frequently used to
investigate a passage of flow transition from laminar to
turbulence through chaos because the transition is gradu-
al. In a system with the outer cylinder fixed, the fluid oc-
cupying the annular gap moves as a sheet without an axi-
al velocity component for small Reynolds numbers. The
first flow instability sets in at a critical Reynolds number
(R, ) to form a roll structure [Taylor vortex flow (TVF)]
with a nonzero axial velocity component. At higher Rey-
nolds numbers (depending on the radius ratio) a second
instability sets in and an azimuthal wave appears [wavy
vortex flow (WVF)]. Power-spectrum studies [1] and nu-
merical simulations [2] have indicated that this wavy vor-
tex flow has a single wavy mode (wave mode m, or m )

and a motion which is periodic. At still higher Reynolds
numbers, this azimuthal wave is modulated by a second
wave mode [modulated wavy vortex flow (MWV)] (wave
mode m2) and the motion becomes quasiperiodic.

The characteristics of this quasiperiodic mode have not
yet been well understood. On this quasiperiodic flow,
Gorman and Swinney (GS) [3] found experimentally that
the m2 wave extends over the roll and modulates the m,
mode, leading to a spatial flattening of the WVF. On the
other hand, Zhang and Swinney (ZS) [4] found another
type of m2 mode that appears mainly near the outflow re-

gion with a higher phase speed, inducing in addition the
appearance of a ripple on the roll.

In numerical analysis, Coughlin and Marcus [5] suc-
ceeded in simulating the MWV flow with a GS mode and
also showed the characteristics of the ZS mode. Recent-
ly, Coughlin et al. [6] found that these two quasiperiodic
modes (GS and ZS modes) can coexist over some range of
the Reynolds number. They also reported the experimen-
tal verification of this coexistence for a very limited range
of the Reynolds number. The multiplicity of the quasi-
periodic wavy modes is of importance to the transition to
chaos and finally to turbulence. However, since these
three modes have similar spatial characteristics in the ax-
ial direction and temporally in a fixed laboratory frame, a
well-resolved power-spectrum analysis is believed to be

indispensable. This is presently not available through nu-
merical simulations. In this report, we present our recent
experimental results on this quasiperiodic mode, especial-
ly on the coexistence of the GS and ZS modes, and, more-
over, show that at a higher R, the first azimuthal mode
(WVF) decays and only m2 modes remain.

II. EXPERIMENT
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FIG. 1. Schematic of the experimental setup.

Our Couette system (Fig. 1) has a radius ratio
g =R, /R, =0.904 (R; is the radius of inner cylinder, 94.0
cm, and R, that of outer cylinder, 104.0 cm) and an as-
pect ratio I =L/d =20 (d=R, —R;, L is the column
length). Only the inner cylinder is rotated, with the end
boundaries fixed to the outer cylinder, which is at rest.
The Reynolds number R is defined as R =QR, d /v (0 is
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rotational speed, v is kinematic viscosity) and the reduced
Reynolds number as R *=R /R, . In the present
configuration, the critical Reynolds number R, for the
onset of TVF is 134.7 [7]. The liquid used in this experi-
ment was a mixture of water and 30% glycerol. The
measuring method is by ultrasound velocity profile (UVP)
monitor, which can successively obtain a series of instan-
taneous velocity profiles. The transducer was set onto the
outer surface of one of the stationary end walls and is
perpendicular to it with its center at the inner wall of the
outer cylinder. The ultrasound beam diameter is 5 mm.
This setup measures the velocity profile of the axial veloc-
ity component as a function of axial position, namely,
V, (z, t) at the outer wall position. Thus the measurement
volume is one-half of a disk shape of radius 2.5 mm and
thickness 0.75 mm. The measurement of the velocity
profile was focused on the spatial range from 40 to 135
mm with 128 spatial points in order to eliminate the end-
wall effect. This setup of the UVP monitor required a
measuring time of 72 —130 msec for a velocity level of a
few mm/sec (including data transfer). The 1024 succes-
sive profiles were recorded. More details of the measur-
ing method and the experimental system are described in
Refs. [8,9]. The present UVP system has been improved
in comparison to the previous model. The spatial resolu-
tion has been halved, measuring time decreased by a
third, and the sampling speed reduced to 6 &p.

The experimental procedure was as follows. First, the
inner cylinder was rotated up to a very high R * number
and then slowly reduced to the preset R ' number, which
was roughly R ~=15 for most cases. We concentrated
our measurements only on the axial wave state of eight
roll pairs, and when a different axial wave state appeared
the run was started again from the beginning. When an
eight-roll-pair state was generated, the system was left for
approximately 1.5 h to allow for decay of the Row noise.
This waiting time corresponds to a relaxation time re-
ported by Snyder [10] and is very conservative compared
to our earlier experience [11]. When a measurement was
started, it took roughly 2.5 min to record 1024 velocity
profiles. Then the Reynolds number was reduced by ap-
proximately ER*=0.2—0.7 and the next measurement
was made after roughly 15—20 min of waiting time. Once
an R * value of roughly 9 was reached and prior to the
disappearance of the WVF, the rotation was increased
with the same increments of R* up to 30. This ensured
that a targeted axial and first azimuthal wave state was
maintained for a series of measurements.

III. RESULTS AND DISCUSSION

A data set obtained by UVP is composed of velocity
values at 128 positions in space and 1024 in time. Power
spectra were computed using fast Fourier transform for
all spatial positions, generating 128 power spectra at 512
frequencies. This is a space-dependent power spectrum
P(z,f ), from which a spatial distribution of power at
each frequency can be obtained [9]. This power spectrum
is then averaged over the spatial range from 40 to 120
mm (ca. four axial wave lengths) to give a space-averaged
power spectrum.
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FIG. 2. Space-averaged power spectra for (a) R*=9.05, (b)
R*=14.08, and (c) R*=21.27.

Figure 2 shows examples of the space-averaged power
spectra computed as above for different R* numbers.
Since they are averaged over the space, a very clear peak
structure is revealed; much cleaner than the one usually
obtained by pointwise measurements [3,6]. This makes
peak identification very easy and definitive. An example
is given in Table I. Frequency resolution is 7.4 mHz and
the peak identification for harmonics and their linear
combination was made based on an accuracy of +1 unit
of this resolution. This identification criterion was used
for all the data sets given in this report.

Figure 2(a) shows a WVF mode at R *=9.05, where a
single component f~ is seen with its higher harmonics.
Background level is low. Figure 2(b) shows the MWV
mode at R'=14.08. In this spectrum, f~ from the
WVF mode has the largest power and its higher harmon-
ics can be seen up to 3f~. The second largest peak (la-
beled 7), however, is not a second mode. Using this peak
as the MWV mode failed to identify most of the peaks as
its linear combination with f@. For successful
identification it was necessary to take two peaks, labeled

fG and fz, as the fundamental second modes. Most of
the other prominent peaks in the spectrum could then be
identified as linear combinations of fbi, and fG or fz in
this spectrum (see Table I). It is noteworthy to state that
we found no combination between fG and fz except for
the one labeled 10. The background level is as low as
shown in Fig. 2(a). Figure 2(c) is a spectrum at
R'=21.27. Here again we identified only two funda-
mental modes (fG and fz) from which most other peaks
could be assigned by their linear combinations. In this
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TABLE I. An example of the peak identification for the spec-
trum of Fig. 2{b), in the order of peak power. The frequency
resolution is 3.5 mHz.

3.2,

No.

1

3
4
5
6
7
8

9
10
11
12
13

Frequency
(Hz)

0.6640
0.9816
0.5269
1.3353
0.8012
2.3169
1.6457
1.9993
0.3176
0.1371
1.1982
1.4652
2.9809

Identified
as

WVF
ZS-2WVF
2WVF-GS
2WVF
GS
ZS
ZS-WVF
3WVF
ZS-3WVF
GS-WVF
3WVF-GS
WVF-GS
GS+ZS
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spectrum, we see a broad peak (labeled B). By looking at
the spatial (axial) distribution of the power (as discussed
in [9]), one can identify it as a so-called broadband com-
ponent of the MWV. This is still narrower compared
with the ones reported earlier [1]. Here the background
level is roughly five times higher.

In these spectra, we identified one, two, and three fun-
damental modes, depending on R *. We will discuss why
these three modes are intrinsic to the WVF and the
MWV. The frequencies of peaks identified as fundamen-
tal modes are normalized by the rotational speed and
plotted with respect to R* in Fig. 3. This figure clearly
shows that these three modes form three distinct curves.
One can easily deduce that the middle curve corresponds
to the WVF because it is the only one which exists at a
value of R* smaller than 12. What is plotted in this
figure is the product of the wave-mode number m and its
phase speed c. Since our measurement was fixed at one
angular position, it is not possible to identify its wave
state m directly from our data. However, by using an
empirical rule on the phase speeds [12] for the GS mode,
cz/c& =—, and the ZS mode cz/c& =2, and assuming for
the WVF mode a phase speed of 0.33 (this value is for
g=0. 875), and it can be slightly difFerent for our radius
ratio [13]),we can obtain integer wave-mode numbers for
each component as m~=7, mG=mz=4 (Table II). At
the same time the top curve was assigned as the ZS mode
and the bottom one as the GS mode.

A distinction of these fundamental modes and their as-
signment to different wave modes can be ascertained by
observing the raw velocity distributions. Figure 4 shows
examples of instantaneous velocity distributions for
R *=10.6 and 14.7. Since we have a series of such veloc-
ity profiles, we can review the data set serially on a com-
puter screen as a movie. As we measure the axial com-
ponent of velocity, we clearly observe four roll pairs. As
seen serially, the profile moves to the right and to the left,
showing a single periodic oscillation for the WVF
(A*=10.6) and a doubly periodic oscillation for the
WVF and GS mode (R *= 14.7). An interesting observa-
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FIG. 3. Normalized wave frequencies of the intrinsic modes
vs Reynolds number.

TABLE II. Estimates of the m values. The average is for the
whole data set. c

&
=0.33. GS and ZS are computed by

(Average)/c2, where c2/c& =1.42 for GS and 2.12 for ZS.
These ratios are slightly different from the ones given in the text
so that all mode numbers are integers.

Average
(Average) /c

&

GS
ZS

2.275+0.0418 2.795+0.0590 1.857+0.0249
6.894 8.469 5.656
4.841 5.964 3.985
3.250 3.995 2.669

Mode number m

tion for R =14.7 is a ripple on the shoulder of each roll.
It was also observed that this ripple appears more strong-
ly at the outAow region but moves around within a roll.
Such a ripple is not observed for R *=10.6. Hence, this
wave appearing as a ripple in the velocity distribution
might correspond to the ZS mode.

The spatial distribution of power for each fundamental
mode are given in Fig. 5 together with a time-averaged
velocity profile in order to show the average position of
the roll's inQow and outAow. As we discussed in detail in
[9], the WVF mode has a larger power equally at the
inAow and outAow region, while the GS mode has nar-
rower distribution at the outQow. A ZS mode [Fig. 5(d)]
here, however, shows clearly a quite di6'erent spatial dis-
tribution from the other two [Figs. 5(b) and 5(c)]. The
distribution s slightly broad but intensified in one roll of
a pair, with the power largest near the center of that roll.
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FIG. 4. Examples of an instantaneous velocity profile.
R*=10.6 and 14.7. The position starts 40 mm from one end.
Distance between two points is 0.75 mm.
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This result is not contrary to the original observation by
Zhang and Swinney [4]. They reported, "... these modes
were observable at all positions (except at a vortex infiow
boundary). The intensity was greatest near the center of
the vortices. " In summary, the three modes given here
are distinct and intrinsic; they are the WVF mode, the
GS mode, and the ZS mode, respectively.

It is shown in Fig. 3 that the WVF mode appears at
R*=9. This agrees well with earlier observations [14].
Since our intention was not to determine a critical value,
which is known to depend on the radius ratio and wave
state m ~, this R value is merely an indication of its ap-
pearance. At around R ' =12, both the GS mode and the
ZS mode appear. The GS mode seems to appear at
slightly lower R * than for the ZS mode. For higher Rey-
nolds numbers three modes of WVF, GS, and ZS modes
coexist until the WVF mode disappears at R '= l8. The
disappearance of the WVF mode was also seen by Gor-
man and Swinney [14] and was identified by the disap-
pearance of the azimuthal wavy structure and flattening
of each roll with smaller structure within the roll. For
this range of R * (12(R * & 18 ) each wave-mode frequen-
cy (equivalent to the phase speeds) varies by about 10%,
but the tendency is different. That is, the WVF shows a
decrease. It also shows a decrease for the GS mode but
then stays constant for R*)15. On the other hand, the
ZS mode shows an increase until R *-21 and then stays
constant. The reason for such variation of phase speed
versus R has not been studied so far. Even after disap-
pearance of the WVF at R *—18, the GS and ZS modes
can still coexist, but the GS mode seems more stable with
respect to the change of Reynolds number because we ob-
served only a GS mode in some of our data obtained at
higher R *. Coughlin and Marcus [5] argued that the ZS
mode is more stable for lower R and the GS mode for
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higher R in terms of growth rate. This is in general
agreement with our result, although our waiting time
after the change of R is of the order of 10 min. In their
simulation, the range where two modes coexist is very
narrow (9.0&R' (9.6) whereas in our observation it is
much wider, most likely 12+R*(23—26. We believe
the main reason for this discrepancy is that the measure-
rnent volume in our experiment is relatively large and the
evaluation was made for a wide spatial area defined by an
average over four axial wavelengths, while others are by
pointwise measurement and thus local. For these varia-
tions, we found no hysteresis. Curves for the data with
increasing R and decreasing R collapsed onto the same
lines and showed exactly the same characteristics.

IV. CONCLUDING REMARKS

In conclusion, we have observed the quasiperiodic
mode in a rotating Couette system and found that both
the CxS and the ZS modes coexist (in addition to the WVF
mode) for a relatively wide range of Reynolds number.

FKx. 5. Spatial distributions of power for different wave
modes. R *=14.7. (a) Time-averaged velocity profiles. Posi-
tions of inflow and outflow are marked. Spatial distributions for
frequencies of (b) 0.66—0.69 Hz, (c) 0. 18—0.83 Hz, and (d)
0.99—1.00 Hz.
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However, they have different characteristics as far as the
spatial distribution of their power. The GS mode has a
larger power at the vortex boundaries whereas the ZS
mode is broadly distributed, being more intense near the
vortex center. We also found that by increasing the Rey-
nolds number the WVF mode disappears first among
those three modes and afterwards there remain two
modes of the GS and the ZS modes. However, the ZS
mode seems less stable at still higher Reynolds numbers,
which suggests that the GS mode is the spatial mode ob-
served in the turbulent regime [7]. At this point, a ques-
tion can be raised. For the R* range where the three

modes coexist, why is the interaction between the GS and
the ZS modes hardly observed and how relevant is the
coexistence of these modes to chaos?
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