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The two-point correlation function of an ensemble of interacting closed self-avoiding surfaces on a cu-
bic lattice is analyzed in the disordered phase, which corresponds to the paramagnetic region in a related
spin formulation. Mean-field theory and Monte Carlo simulations predict the existence of a disorder line
which corresponds to a transition from an exponential decay to an oscillatory damped behavior of the
two-point correlation function. The relevance of the results for the description of amphiphilic systems in

a microemulsion phase is discussed. The scattering function is also calculated for a bicontinuous phase
coexisting with the paramagnetic phase.

PACS number(s): 82.70.Kj, 05.20.Dd, 75.10.—b

I. INTRODUCTION

In recent years considerable efforts have been devoted
to applying statistical mechanics in describing and under-
standing amphiphilic systems, such as oil-water-
surfactant mixtures [1]. A phenomenological feature of
these systems is that the domains of oil and water remain
separated by surfactant monolayers in configurations that
depend on various conditions, e.g. the composition of the
system, the temperature, etc. In particular, when the
concentrations of oil and water are comparable, and un-
der some other conditions, a microemulsion phase ap-
pears [2], which is a stable isotropic transparent middle
phase that can coexist with the upper nearly-pure-oil
phase and with the lower nearly-pure-water phase. Self-
diffusion and conductivity measurements [3] lead to the
picture of a middle phase consisting of continuous in-
tertwined structures of oil and water [4]. These struc-
tures are locally ordered with coherent domains of water
and oil on a scale of order 100 A, as evaluated by scatter-
ing experiments [5]. The freeze-fracture electron micros-
copy gives support to this picture of bicontinuous ran-
dom structures [6]. For the applications, the interest for
the middle phase is due to the ultralow values of the in-
terfacial tensions against the two coexisting phases [7].

The analysis of the data from small-angle neutron and
x-ray scattering on systems in the microemulsion phase
[5] shows the existence of two characteristic scales of
length, a correlation length g and a characteristic size of
the domains d. As a matter of fact, the measured scatter-
ing function I(q) has the form

I(q) =
1 —bq +cq

where q =4m/A, sin(8/2), A, is the probing neutron or x-
ray wavelength, and 0 is the scattering angle; b and c are
positive numbers. I(q) has a peak at q~=&b/2c WO.
The two-point density correlation function h (r), which

corresponds to Eq. (1), is given by

const „~~ . 2m.r
(2)

with
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In the middle phase, at fixed surfactant concentration,
the position of the peak q does not depend on other pa-
rameters such as the cosurfactant concentration and the
salinity [8]; it moves towards shorter A, 's when the con-
centration of the amphiphile increases [5]. Typical exper-
imental values for d and g are about 250 and 100 A, re-
spectively, and they decrease as the surfactant concentra-
tion increases. Noteworthily, the ratio d/g is almost
constant over the whole phase, with a value approximate-
ly equal to 2.5 [9].

In Ref. [10] we have proposed a lattice model of closed
interacting random surfaces that could describe the equi-
librium properties of ensembles of Quid films. Our ap-
proach is similar to that pioneered by Talmon and Prager
[11]and successively refined by many authors [12,13]. In
this paper we will study the behavior of the two-point
correlation function for the interacting closed surfaces of
Ref. [10]. This study is interesting in its own right; more-
over, it is worthwhile to consider the possible relations
with a phenomenological description of microemulsions.
However, we are aware of the oversimplifications that
our and similar models have in connection with such ap-
plications (for a discussion, see, e.g. , Ref. [14]).

Our surfaces are made of plaquettes on a cubic lattice
in IR, without restrictions on the allowed topologies, with
the constraint that each plaquette can belong at most to a
single surface, i.e., the surfaces are self-avoiding. At vari-
ance with previous models, our Hamiltonian, besides in-
cluding an area-energy term and an extrinsic curvature
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term, contains an interaction term arising when two sur-
faces touch each other along some line [15,16], so that
the partition function of the model can be written as

Z= g exp[ —
/3, S(C ) /3iL—(C )

—/3, C(C)I .

The sum is extended over all the configurations of the en-
semble. Given a surface configuration C, then S(C ),
L(C ), and C(C ) denote, respectively, its total area, the
number of links shared by four plaquettes of C, and the
number of contiguous plaquettes of C at a right angle.
The quantity C(C ) in Eq. (4) is an extrinsic curvature
term that favors local configurations with contiguous pla-
quettes on the same plane when P, is positive. The model
(4) can be expressed as a three-dimensional eight-vertex
model where the vertices describe the possible local pla-
quette configurations (Fig. 1) [16]; the difference with
respect to Ref. [16] is that the weights are attributed to
the vertices in order to get the most general isotropic
model.

As already mentioned, the model Eq. (4) does not con-
strain the possible surface topology. The role of the topo-
logical fluctuations in random surface models has not
been clarified from a general point of view yet [17]. On
the other hand, these fluctuations frequently occur in real
systems: for example, in amphiphilic mixtures it is
known that the aggregates of surfactant change easily
their topology through a complete fragmentation and a
new aggregation of molecules [1]. Therefore Eq. (4) could
be sensibly used to describe the phenomenology of sys-
tems with large topological fluctuations. An advantage
of the lattice formulation is that a structural description
can be suitably done by identifying the elementary scale
of lengths (the lattice spacing) with some molecular
length. The question is about which general properties of
amphiphilic systems are codified in the lattice descrip-
tion. In Ref. [10] the attention was mainly focused on the
structure of the ordered phases of the model Eq. (4) at
zero and finite temperatures. In particular, we have
found crystalline bicontinuous phases with cubic symme-
try that are of interest in molecular biology [18] and are
stable in amphiphilic systems with a high concentration

of surfactant. Here we concentrate on the properties of
the model Eq. (4) in the disordered high-temperature
phase.

In the following section we will analyze the behavior of
the scattering function and of the corresponding correla-
tion function in the paramagnetic phase of the model Eq.
(4) (with P, =0) by mean-field and Monte Carlo methods.
We will find a region where the scattering function
displays a behavior given by Eq. (1). Our results and our
predictions for d and g will be discussed in relation with
the experimental data in Sec. III. In Appendix A it will
be shown how the scattering function can be computed in
an ordered cubic phase.

II. MEAN-FIELD AND MONTE CARLO RESULTS

where J, , J2, and J3 can be expressed in terms of the pa-
rameters in Eq. (4) through the relations

/3, +
J, = +/3, , J2=— /3i /3,

4
' 8+4

In Eq. (5) the three sums, respectively, refer to the
nearest-neighboring sites, to the next to the nearest-
neighboring sites, and to the plaquettes. In terms of oil-
water mixtures, clusters of spin up (down) correspond to
oil (water) domains.

The mean-field free-energy corresponding to Eq. (5) is

/3I = —Ji g m, m, —J2 g m, m,
&rl, r2& ((rl, r2»

—J3 r r r r
1 2 3 4

[r, , r2, r, , r4]

It is useful to formulate the partition function Eq. (4) in
terms of Ising variables. A set of Ising spins (cr,=+1)
can be defined on the sites r of the dual lattice, assuming
opposite values on the links dual to the plaquettes belong-
ing to the surfaces; the resulting spin model has interac-
tions given by

/3H=J, —g o, o, +J2 g o, o.,
&r] r2& ( &rl

+J3 g o, o', o, o, +const,
1 2 3 4

1' 2' 3' 4j

1+m,
2

ln(1+ m, )+
1 —m,

ln(1 —m, ), (7)

(s)

FIG. 1. Plaquette configurations allowed at a link on the cu-
P /2 —P /2 —

P/
—2Pbic lattice are weighted with col =e ', co2 =e—Pco3=o)4=1, cu5=co6=~7=co8=e

where m, is the approximated thermal average of o., for
the configuration that minimizes Eq. (7). The resulting
phase diagram with J2=J3 (i.e., /3, =0) is reported in
Fig. 2 [19]. The existence of a first-order transition line
between the two ferromagnetic (nearly pure oil and wa-
ter) and the disordered phase suggests the possibility of
identifying a microemulsion phase in the model. The
paramagnetic phase is also in contact with the liquid
crystalline cubic bicontinuous phase 4, which is charac-
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sponds to d '=0 [23]. This occurs when b —4c =0 in
Eq. (1), regardless of the sign of b. The b=0 line
(b 4—c &0) separates the region where I(q) has a peak
at q =0 (b &0) and at qAO (b )0), and it is known as the
Lifshitz line [22].

The two-point connected correlation function
G„.=((o,—m, )(tr, m—;)) is the inverse of the second
derivative I „of the free energy, calculated at the
minimum of Eq. (7). At this order of the approximation
the results do not depend on J3. Denoting with A(q) the
eigenvalues of I „.given by

3

A(q) = 1 —2J, g cosq„
@=1
2 3—2J2 g g [cos(q„+q )+cos(q„—q, )],

@=1v=p+1

(8)

FIG. 2. Mean-field phase diagram. F is the ferromagnetic
phase, P the paramagnetic phase. The cubic phase 7 is dis-
cussed in Ref. [10]. The continuous lines represent a first-order
phase transition, the dashed line denotes a second-order transi-
tion. The tricritical point marked with a dot is at J, = —',
J2 =

36 The dashed-dotted line is the Lifshitz line, whereas the

dotted line is the disorder line.
and

G — y iq (r —r')
L'

q A(q)

with q=2mn/L and n a three-dimensional vector with

components taking all the integer values from 0 to L, —1

(L is the linear size of the lattice in units of the lattice
spacing), one obtains the expressions

terized in Ref. [10] and corresponds to the cubic phase
Q of Ref. [18]. Therefore the microemulsion phase
could be also thought of as the disordered evolution of a
cubic bicontinuous phase.

The ferromagnetic (F) and the paramagnetic (P)
phases are separated by a transition line with a tricritical
point (J„,J2, ) in the J„J2=J3)0 region [10]. On the
J1 axis the transition is second order since the spin model
reduces to the standard Ising model. When J, (J2) in-
creases (decreases), Pi increases; in terms of random sur-
faces, this means that self-intersections are not favored.
Such an interaction is expected to change neither the or-
der nor the universality class of the transition [16]. For
large values of Jz and J, =0 the ferromagnetic and anti-
ferromagnetic phases are separated by a first-order transi-
tion line. These two lines meet at a point where five
phases coexist (paramagnetic, two ferromagnetic, and
two antiferromagnetic phases). Only turning on the three
couplings can make this point a multicritical point [10].
Thus a critical point at a nonvanishing value of J1 must
exist, separating a first-order line at 0&J1 &J„ from a
second-order line at J1 )J1,.

A general aspect of spin systems and fluid models with
competing interactions is the existence of a locus in the
disordered phase where the two-point correlation func-
tion changes its behavior from exponentially damped os-
cillatory to monotonically decaying [20]. This locus is
sometimes called disorder line [21]. As first proposed in
Ref. [22], the disorder line should limit the region that
can be identified with a microemulsion phase in amphi-
philic system models. If in such models the scattering
function has a form as in Eq. (1), the disorder line corre-

I( ) y G iq(r' r)—~ . I.
A(q)

(10)

J1 +4J2 J1 +8J2
C=

1 6J1 12J2 1 6J1 12J2 20

A different average with q, =q2=q3 =q/V 3 gives
value c = —(J, +16J2)/[36(l —6J, —12Jz)]. Since Eq.
(1) must be positive, b 4c &0. Moreo—ver, the quantity
1 —6J, —12J2 is required to be positive in the paramag-
netic phase, where m, =0 is the minimum of I. From
Eqs. (1) and (11) one gets that (I(q) ) has a maximum at
q&0 if J2 & —J, /4 and J, & —,', where all the constraints
are satisfied. The line J2= J1/4 is the Lifshitz line in
the mean-field approximation and is represented by the
dashed-dotted line in Fig. 2; in the same figure the dotted
line represents the disorder line.

The exact spherical average can be calculated numeri-
cally using Eqs. (8) and (10). The result for J, =0.2 and
J2= —0. 1 is shown in Fig. 3. The macroscopical behav-
ior of the system can be analyzed considering in the aver-
age (I(q)) the small q region including the first peak
(shown in the inset of Fig. 3). Fitting these curves with
Eq. (1) we obtain an evaluation of d and g'. The results,
for various J, and J2, are shown in Fig. 4; they appear to

so that I(q) is periodic in the components q„q2, q&. In
order to calculate the spherical average (I(q) ), as a first
approximation we can expand A(q) for small

~ q ~
and take

the inverse of the average of A(q). The result is Eq. (1)
with
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FIG. 3. Exact spherical average of I(q)/L' at JI =0.2,
Jz = —0. l. In the inset the interval 0 ~ q ~ m. is shown.

be in qualitative agreement with Eqs. (3) and (11). The
maximum of ( I(q) ) still occurs at q&0 for Jz ( —J i /4.

The function I(q) defined in Eq. (10) can be also calcu-
lated for an ordered phase where it represents the contri-
bution of the fluctuations to be added to the Bragg
scattering function

The functions I(q) and Is(q) have been calculated for
states in the bicontinuous phase 4. The configuration of
the phase 4 can be obtained by tiling the whole lattice
with the cube shown in Fig. 5. Since the magnetizations
m, vary on the cube, the second derivatives I „.depend
on the values of r and r' considered. To diagonalize I „.
it is convenient to consider the whole L lattice as a
(L/2) lattice of elementary cubes with a basis of eight
magnetizations for each site of the new lattice. Using this
procedure (details can be found in Appendix A), we get
an 8 X 8 Hermitian matrix to be diagonalized. The eigen-
values and eigenvectors can be found numerically for
each point (J„Jz,J3) after the insertion of the corre-
sponding values of the magnetizations as given by the
mean-field equations. Then, applying the formula (A6),
one obtains an evaluation of I(q). The spherically aver-
aged (I(q)) is depicted in Fig. 6 for a point just below
the paramagnetic phase. Here the first Brag g peak
occurs at q =~.

In order to check the accuracy of the mean-field pre-
dictions, we have performed a Monte Carlo analysis of
the spin model in the disordered high-temperature phase.
The numerical simulations have been carried out on a lat-
tice of (30) sites with periodic boundary conditions. For
each point in the domain 0~ J& ~ 1.2, —0.5 ~ Jz =J3 ~0
of the coupling constants, 2X 10 sweeps have been per-
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FIG. 5. Bicontinuous film crystal 4 can be obtained by tiling
the cubic lattice with the spin configuration shown in the pic-
ture.
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0 n

0

cubic

formed using the Metropolis algorithm and a long period
random number generator [24], starting from ordered
and disordered initial configurations. 1 X 10 sweeps have
been discarded to allow thermalization. The measured
quantity is the two-point correlation function

(13)

the data have been analyzed taking into account the
correlations between the measurements.

The obtained phase diagram is shown in Fig. 7. As al-
ready observed in Ref. [10], the main difference with
respect to the mean-field diagram is that the paramagnet-
ic phase seems to extend to zero temperature along the
line J2 = —J, /4; therefore, the ferromagnetic (F) and the
cubic ( C) regions remain separated, whereas in the
mean-field calculation they have a common transition
line. The correlation function h(r) has been evaluated at
fixed values of J, along vertical lines in the (J„J2) plane.
In the region immediately below the ferroparamagnetic
transition line, h (r) displays a decreasing (exponential)
behavior in r, as can be observed in Fig. 8(a) at
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I I I ) I I I

1.2

0.24 I
'

I
'

I
'

I
'

I
'

I
'

I

0.2

h(r)
0.12

0.08

0.04
0 0 a

FIG. 7. Phase diagram obtained by Monte Carlo simulations.
F and I' are the ferromagnetic and the paramagnetic phases.
The tricritical point marked with a dot is at Jl =0.03 J2 =0.06.
The ferromagnetic-paramagnetic transition line from Jl =0 to
the tricritical point is first order. The continuous line that fits
the disorder line has a slope ——'.
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FIG. 6. Spherical average of the fluctuation contribution
I(q)/L to the scattering function in the phase 4 for Jl =0.20,
J2 = —0. 16.

FIG. 8. Correlation function h (r), as calculated from Monte
Carlo simulations, at (J&,J2 ) =(0.50, —0. 12) above the disorder
line (a) and at (J, ,J2)=(0.50, —0.30) below the disorder line
(b). In both cases h (0)= 1.



416 PIETRO COLANGELO, GIUSEPPE GONNELLA, AND AMOS MARITAN 47

(J&,J2)=(0.50, —0. 12); when J2 decreases, the function-
al dependence of h (r) changes to a damped oscillating be-
havior, as depicted in Fig. 8(b) at (J„J2)=(0.50, —0.30)
[(M) region in Fig. 7]. The value of Ji, where the change
in the functional dependence occurs, is fixed assuming the
criterion that at least one complete period of oscillation is
observed. The obtained disorder line is nearly parallel to
the ferroparamagnetic transition line; this feature is com-
mon to the two-dimensional eight-vertex model, where
the disorder line does not have intersections with any
other transition line [25].

A quantitative evaluation of g and d from numerical
data is quite difficult; as a matter of fact, the behavior
equation (2) should be reproduced for large values of the
distance r, whereas on a finite lattice the interval in r is
limited and the statistical errors increase as r does. We
have fitted Ii (r) with a function like Eq. (2) including also
the possibility of an additional constant phase in the ar-
gument of the sinus [26]. The fit gives results if at least
the first three points of h (r) are discarded. Along the line
J&= —0.30 we get, regardless to J& in the (M) region, a
nearly constant value /=0. 6+0.2 and d=2. 2+0.3 so
that the ratio d//=4. The same analysis, carried out us-
ing a lattice of (40) sites at (J„Jz)=(0.50, —0.30),
shows that g and d do not depend on the lattice size.

It is worth comparing these numerical results with the
predictions of the mean-field theory collected in Fig. 4.
The Monte Carlo value d =2 agrees with the mean-field
result, for example, at J2= —0. 15. However, the mean-
field result displays an increasing behavior in J& that we
are unable to observe in the simulations, probably due to
the statistical errors. As for g, the values for the correla-
tion length seem to be sensibly overestimated by the
mean-field theory.

EIE. DISCUSSION AND CONCLUSIONS

In a realistic microemulsion model the disorder line
should intersect the first order ferroparamagnetic transi-
tion line to ensure the coexistence between the mi-
croemulsion phase and the nearly-pure-oil and nearly-
pure-water phases. As we have shown in the previous
section, this feature is absent in our model, where, in the
region of the parameters considered (P, =0), the disorder
line is nearly parallel to the F-P transition line from
Monte Carlo simulation, whereas it intersects the second
order F-P transition from mean field. Nevertheless, it is
interesting to compare the experimental data of d and g
with our results.

The values of d, g, and q (for definiteness we use the
results from the simulations) can be compared with the
values measured in the experiment if a physical length is
assigned to the lattice spacing a. We can identify a with
the persistence length gx of Ref. [2], which represents the
scale on which a fluid surface like a surfactant interface

TABLE I. The elements of the matrix Y.

Matrix element

+15

+16

+17

1
+11 +88

1 —m

%12—'T78 —( —J1 +4J3M )(1+e
lp

+13 +68 ( J1 +4J3~ )( 1 +e )
lP 314= &58 = ( J1+4J3M2)(1+e ')

—ip —
&p

—&(p +p )748(2 3' )(1+e'+e+e')
'T =( —J —J M )(1+e '+e +e '

)
—

( J J ~2)(1+e 2+e 3+e 3 2
)

+18 +27 +36 +45
1

+22 +33 +44 +55 +66 +77
1 —M

+24 +57 ( Jz +J3~m )( 1 +e +e +e )
tp

T25= T„=(—J, —4J3mm)(1+e ')
—

&P3
+37 ( J1 4J3~m)( 1+e ')

~P2 ~P3 + ~(P2 P3 )

%34 %56 ( J2 +J3iVm)( 1 +e +e +e )
lP

1735= %46=( J1 4J3Mm )( 1 +e )

0
can be considered sti8'. The values d h, =250 A and

g h„,= 100 A correspond, for d =2.2 and /=0. 6, to a lat-
tice spacing a =100—160 A. Then our prediction is in
(qualitative) agreement with the value gx. =100 A, which
has been evaluated to be typical for the bicontinuous
phase [27]. However, the ratio d//=4 appears to be
larger than the dependence /=0. 4d observed by Widom
[9], using the compilation of data of Teubner and Strey
[5]. Moreover, the mean field shows a dependence of d
on J, . One observes that d has increasing values when
the interface area decreases, since in our model to in-
crease the surfactant concentration corresponds to de-
crease P, .

In conclusion, the random surface model correspond-
ing to the eight-vertex model describes some structural
properties of a microemulsion phase. The lack of coex-
istence between this phase and the ferromagnetic one ob-
served for J2 =J3 or /3, =0 indicates that our model, with
the parameters considered here, cannot be interpreted as
a realistic model for describing the phase diagram of am-
phiphilic systems. Nevertheless, considering that our
starting point was more general —to describe the equilib-
rium properties of systems of fluid surfaces with a vari-
able number of components —we find that the agreement
of our results with the experiments is noticeable. More-
over, a realistic phase diagram might emerge for different
values of the parameters, when the extrinsic curvature
energy is considered.

APPENDIX: THE SCATTERING FUNCTION OF A CUBIC PHASE

In order to calculate the function I(q) of Eq. (10) when the equilibrium configuration is the cubic phase represented
in Fig. 5, we need to diagonalize the matrix of the second derivatives of the free energy of Eq. (7) with respect to m, and
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m, , evaluated in the phase of Fig. 5. We choose a coordinate system as in Fig. 5, denote with p one of the three unit
vectors, and assume periodic boundary conditions on a cubic lattice with linear size L (even). Then I „.is given by

( 1) @+1 @+2 1 ( 1) @+1 @+2—J —4J MI 3 2
+m

2
if r'=r+p

I „= —J2 —J3M M
+ l'

1 —
(
—1)"

m
2

if r=r+p+v, pWv

5(r, M) +5(r, m) if r=r',1 1

1 —M 1 —m

where the functions 5(r, M ) and 5(r, m ) are equal to 1 if the magnetization at the site r is +M or +m, respectively; oth-
erwise, they vanish. Since the above matrix is periodic along the three axes with a period of two lattice spacings, it is
convenient to define a new lattice whose sites are defined only on the even sites of the original lattice. The position of
the new sites is denoted by R. For each site R (R„= 01, . . . ,L /2 —1) one has a basis with eight magnetizations la-
beled with a, b, . . . (a, b, . . . =1,. . . , 8) and numbered as in Fig. 5. Then the matrix I „.can be written as

+ + +~rr' ~IR, a I IR', b I
~RR'~ab +~RR' —2i+ab +~RR'+2i ab +~RR' —2j ~ab +~RR'+2j ~ah +~RR*—2k ab +~RR'+2k~ah

+5RR' —2i —2j(X )ab +5RR'+ 2i+ 2j(X )ab +5RR' —2i+ 2j(X )ab

5RR'+2i —2j(XF )ab +5RR' —2i —2k(XZ )ab +5RR'+2i+2k(XZ )ab

+5RR 2;+2k(XZ+ ),b +5RR, +2; 2k(XZ )ab + 5RR 2j 2k( 1'Z ++ ),b
+5RR'+ 2j+ 2k ~ )ab +5RR' —2j+ 2k( + ab +5RR'+ 2j —2k( )ab

2

where the matrices A, X+, XY++, etc. can be easily obtained from Eq. (Al).
Then one considers eigenfunctions of I IR, I IR bI as

3/2

P, (p)e'~ ",

(A2)

(A3)

with p" =4irn "/L and n"=0, 1, . . . , L /2 —1, so that the pb's are the eigenvectors of the Hermitian matrix 7 (p) defined
by

X ~[R,a [ [R', b[ P[R', b [ g +ab(P )(l [R, b [
R', b

with components written in Table E.

For each set of couplings J, and for each p the eigenvalues A, 'i(p) of the matrix T(p) (a =1,. . . , 8) and the corre-
sponding eigenvectors aiba i(p) can be found numerically. Since (r' = I R', a'I, r"=—

I
R",a"

I ),

(q)y(p —i )&iq(r" —r') —gyp(a[(p)fi i )(p)e iq.(r"—r')1

r', r" r', r" (a), p p

1~ g(a)( )
+ t)'j[R', a'[ P e

(a) p p r'

i(p —
q )x

where q is the scattering vector, using the relation QL:o22 e " =(L /2)5, one obtains the final result

(A5)

... X"(2q)
(2q)+pi2'(2q)e '+pi3'(2q)e '+$4'(2q)e

+yia[(2q)e & & +yia[(2q)e & 3 +yiai(2q)e & 3 +gian(2q)e

(A6)
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