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Anderson localization and solitonic energy transport in one-dimensional oscillatory systems
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In a harmonically disordered chain with a regular array of quartic nearest-neighbor anharmonicity we
have found a constructive or convicting interplay of Anderson localization and solitary solutions de-
pending on the type of initial excitation (momentum or displacement). In the present work we
specifically discuss energy propagation ensuing after the momentum excitation of a single mass. A coex-
istence of Anderson localization and superdi6usive energy transport is found. Further, it is found that
disorder destabilizes the supersonic solitary solution, whereas conversely anharmonicity reduces Ander-
son localization. A detailed analysis is given.

PACS number(s): 05.60.+w, 66.70.+f

I. INTRODUCTION

The present paper addresses the problem of the corn-
bined effect of disorder and nonlinearity on the energy
transport in a mechanical system of coupled anharmonic
oscillators arranged in a one-dimensional lattice. Setting
by initial conditions the energy at time t =0 to be re-
stricted to a microscopically small region (actually, to
one atom) we follow by computer simulation technique
the spatiotemporal evolution of the energy density and
related quantities. This problem is relevant for the
theory of heat conduction in disordered systems, for the
theory of relaxation processes accompanying fast energy
release in a localized region (optical transitions,
Mossbauer effect, nuclear transform ations, photosyn-
thesis, etc.). Disorder and anharmonicity are two inain
mechanisms of phonon scattering in solids. Within the
conventional perturbation approach (i.e., in a weak
scattering limit) these two mechanisms are considered
usually as additive contributions to the scattering rate.
However, in one or two dimensions such an approach
seems to be basically inconsistent even for weak disorder.
As is well known, an arbitrary small disorder in one or
two dimensions leads to the localization of almost all
eigenstates of the underlying linear systein (Anderson lo-
calization [1], extended to the phonon problem in [2,3]).
More precisely, for almost all random realizations of
mass and/or force constant distributions, each normal
mode is exponentially localized around a particular lat-
tice site and the spectrum of normal modes is purely
pointlike [2]. According to Anderson [1],the localization
of wave functions (or eigenmodes) can be conceived as
the absence of energy transport in a disordered system.
In other words, for spatially bounded initial conditions,
the diffusion coefficient (defined below) asymptotically
tends to zero in the limit t~ ~. Consequently, the role
played by nonlinearity changes drastically: one may ex-
pect that it provides the only mechanism of energy trans-
port rather than an additional resistive channe1. This is
the idea on which a recent treatment of thermal conduc-
tivity of glasses beyond the "plateau" regime has been

based [4]. In an earlier paper, similar conclusions were
drawn from computer experiments on heat propagation
in one-dimensional (1D) systeins [5].

It should be pointed out that, even for harmonic disor-
dered systems, the relation between the localization and
the absence of diffusion is not straightforward. It is
known [6], that for small frequencies co the localization
length behaves as co, therefore, at least -&X (where X
is the number of atoms) low-frequency acoustical inodes
have a localization length of the order of the chain
length. Since the fraction of such modes is of zero mea-
sure at N —+ ~, it is believed that their inhuence on physi-
cal properties is negligible. Nevertheless, it appears [6]
that the energy Aux connected with unscattered modes
can be either infinite or zero, depending on boundary
conditions. Below we reexamine this problem in an ap-
proach which is independent of boundary conditions to
show that when the initial energy is projected to all
modes, localization and a special kind of energy trans-
port, called superdiffusion, are coexistent.

The essential property of 1D nonlinear dynamical sys-
tems is that most of the commonly used interatomic po-
tential models (polynomial, Toda, Morse, Lennard-Jones)
permit kink-soliton solutions (see, e.g. , [7,8]). The soli-
tonic effect causes the small-amplitude oscillations to be
overtaken by the large-amplitude oscillations, which ap-
pear to be much more robust against the disorder-
conditioned scattering [9]. We will demonstrate that the
creation of solitons and their scattering by disorder mani-
fests itself in three ways: (1) reduction of the amount of
energy confined within the localization region; (2) ac-
celeration of the energy transport at small times and ac-
celeration or deceleration, depending on the nonlinearity,
at large times; and (3) change of the asymptotic proper-
ties of the time-dependent diffusion coeKcient. The latter
point is especially essential in the context of the ergodic
behavior of dynamical Hamiltonian systems.

II. THE MODEL

We consider a 1D system with nearest-neighbor in-
teraction described by the classical Hamilton function
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p fz(m, m+1)8= $ +
2M 2

(q —
q +i)'

i.e., those which project onto all lattice modes. Therefore
we choose the initial conditions (below denoted as P type)
as

f4 4+ (q —q+) P (0)=6 o, Q (0)=0 for all m . (5)

where q and p are the displacement and momentum of
the mth atom. We assume there is no disorder in the
anharmonic terms. Let f—:fz(m, m + 1) and M, respec-
tively, denote the force constant and the mass in an ideal
reference harmonic chain; its maximal phonon frequency
is given by QD=2&f/M. Let A be a characteristic
scale for the displacement amplitude. Introducing di-
mensionless variables

P (r)
h (r)= +

I m m'=m+1
[Q (r) —Q (r)]'

+,"[Q.( ) —Q. (.)]'32

The spatial and temporal evolution of the energy of lat-
tice vibrations, originally localized at the center m =0 of
the lattice, will be described by the energy density (in
units MAD A )

r=QDt, Q =q /A, P =p /(MOD A) (2) (6)

and parameters

p =M /M, 4,=f2(mm')/f, y4=f4A /f, (3)

one obtains the Hamiltonian equations of motion as

Q =P /p
d

d7-
(4)

P =—'
I 4 +i(Q +i —Q )+4 i(Q i

—
Q )

while the spreading of the energy distribution is mea-
sured by its second moment

(7)

Then the diffusion coefficient is defined as

D = lim D(r)—= lim Mz(r)/(Mor),

+)'4[(Q +i —Q )'+« —i
—Q )']] .

Thus the nonlinearity parameter y4 characterizes both
the effects of the anharmonicity of the potential energy
function and the amplitude of the vibrations. Since the
total energy defined by initial conditions is proportional
to A one can visualize the variation of y~ (for a fixed po-
tential) as the variation of the total energy. To have some
idea about realistic values of y4 one can consider a typi-
cal potential with attraction core V ( r) —r " (e.g. ,
Lennard-Jones, etc.). This yields y~=(n +2)(n
+3)A /6a, where a is the lattice constant. Since typi-
cal values of n lie in the interval 9—12, the value y4=1
corresponds to A -0.2a, which is close to the Lin-
demann criterion of melting. However, A is introduced
above only as a scale; the actual values of displacements
(more strictly, the difference of displacements) depend on
initial conditions and normally (at least, for simulations
described below) do not exceed 0.4a; it means that even
values y4-10 may be physically reasonable.

The disorder is simulated as the variation of the force
constants only, namely, we take 4 +, =f'/f with
probability c or 4 +&=1 with probability 1 —c. While
for the harmonic chain force constant and mass disorder
are equivalent, this no longer holds for the nonlinear
case.

Except for the disorder, Hamiltonian (1) corresponds
to the famous Fermi-Pasta-Ulam (FPU) P problem [10].
FPU used as initial conditions the exact eigenmodes of
the harmonic system and studied the energy redistribu-
tion between the modes, which led them to the discovery
of the excitation recurrence phenomena explained later as
the manifestation of solitons [11]. Our goal is, however,
to study the evolution of originally localized excitations,

where Mo=+ h (r) is the total energy. This quantity
is analogous to the diffusion coefficient introduced by An-
derson [1] and studied in similar context, e.g., in [12,13].
Assuming D(r)-r at r~oo we can describe the main
regimes of the energy evolution as follows: a = 1, a =0,
and a (0, respectively, denote coherent (ballistic) energy
transport, usual diffusion, and localization. The fraction-
al values of a or nonalgebraic behavior of D (r) are usual-
ly referred to as an anomalous diffusion.

We solve numerically Eqs. (4) with initial condition (5)
by fourth-order predictor-corrector method. The chain is
treated in a self-expanding manner [14], i.e., we start with
a short chain and expand it as the energy on the last
atoms approaches the preset small value. This approach
is based on the observation that, although Eqs. (4) do not
include the retardation effects, the displacements of
atoms beyond the propagating front are exponentially
small. In this sense, for every given time, the chain is
effectively infinite, i.e., the inAuence of boundaries,
reAection processes, etc. is excluded.

The meaning of the long-time limit is crucial for the
present problem. Its usual definition is ~—+ ~ while the
number of particles is large but finite (see, e.g. , [15] and
references therein). Since the system is conservative and
nonintegrable one cannot expect any simple asymptotic
behavior —instead, the system evolves to complicated
Poincare cycles which arise due to the reflections from
the end atoms. Within the Poincare cycle the behavior of
a system is quasiergodic in the sense that the fluctuations
of the energy density are of the order 1/N. The asymp-
totics considered here means ~ is large but ~& N, i.e., this
corresponds to the "first passage" of the energy. Physi-
cally, such a limit is more adequate for the problems in-
volving energy transport, e.g., the heat conductivity.
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III. BACKGROUND AND OVERVIEW

One of the main stimuli for the present calculation was
the recent theoretical manifestation of unexpected
features for the energy propagation in one of the most
simple physical systems, which is the "Hamiltonian
chain" (harmonic nearest-neighbor interaction [16]). It
turned out that the spatial energy evolution displays a
pronounced dependence on the nature of the initial local-
ized excitation. If the excitation is of momentum type
("P type"), as specified in (5), the energy h (r) pertaining
to cell m at time r =QD t is given by (see [17])

" (r)= l[J2 tnt(r)+ 2J2/m+1(r)+ 2J2/m/ —1(r)] .
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P (0)=0 for all m, Q (0)=5 (10)

In this case the energy h (r) pertaining to all m at time
r =AD t is given by (see [17])

r2 2=1 d
bm(r) 2

d J2~m~(r) +
d

J2 m~+1(r)4 dw d7.

2
d+ J2)

~

i(r)

The spatial distribution of b (r) for a given instant is
shown in Fig. 1. One recognizes on the one hand a pla-
teau region around the initial excitation site m =0, and
on the other hand the appearance of sharp peaks at the
sound-velocity boundaries m =+~i'2, the sound velocity
(in dimensionless units) given by v =

—,'. The intensity at
the wind maxima behaves like ~ while behind the
front (~m~ &&r/2) it drops like r ', making the trailing
edge of the front more steep in the course of the evolu-
tion; however, the dispersive oscillatory regime between
the wing peaks persists for all times (see Fig. 1).

A contrast to this behavior is established by the energy
propagation following a displacement type "(Q type") of
initial condition:

FIG. 2. Spatial evolution of the site energy h per site m in
the Hamiltonian chain. Time ~=300. Initial (~=0) displace-
ment excitation Qo at site m =0.

whereas for Q excitation [17) we have
'2

[M (r)/M ]'~'=—
2 0 4

(13)

Thus in a rough qualitative characterization one may
state that momentum excitation is more fauorable to ener
gy propagation than displacement excitation.

One of the main aims of our present work is to find out
whether these contrasting features prevail, if disorder or
anharmonicity or both are brought into the system. In
this paper we specifically will turn our attention to the

edges ~m =r/2 do not appear and that the maximum of
the distribution remains in the central region around
m =0. A global characterization of this contrasting
behavior can be given by the relative second moment,
which for P excitation is found to be [17]

2

[M (r)/M ]' '=— (12)

and for a given instant this behavior is depicted in Fig. 2.
One notices that now wing maxima at the sound-velocity
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FIG. 1. Spatial evolution of the energy h (v.) per site m in
the Hamiltonian chain [17]. Time r= 300. Initial (v =0)
momentum excitation Po at site m =0.

FIG. 3. Spatiotemporal evolution of the site energy h (~) in
the ideal harmonic chain (nearest-neighbor interaction). Initial
(~=0) momentum excitation at site m =0.
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IV. ORDERED LATTICE:
SOLITONS AND COHERENT TRANSPORT

According to usual textbook treatment of anharmonic
effects one can expect the characteristic features of the
harmonic picture to be smoothed out, when nonlinear
terms are included. In a one-dimensional system, howev-
er, the situation is just the opposite: the energy of the
conventional normal modes is overtaken by large-
amplitude supersonic excitations which propagate
without any losses across the lattice. These excitations
represent compression kinks in the Q picture, or solitons
in the P or energy picture. Analytically, these particular
solutions of the equation of motion (4) are an outgrowth
of the exponential solutions exp[+(pn —

A,r)] pertaining
to the harmonic part of Eq. (4). By means of the anhar-
monicity the ascending and descending exponentials es-
tablish the wings of the soliton. In this manner the latter
may be written as an odd function of u =sech(pn —

A,r)
and satisfies the ultrasound condition
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0.50
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1.00
=A =1v„,=—=—sinh

p p 2
=v(l+ —,', p + . ), (14)
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I I
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which for p —+0 merges into the dimensionless sound ve-
locity v =

—,'. p is a parameter which characterizes the
solitonic amplitude.

Theoretical literature on solitons in continuous media
is vast. A good reference is the book of Trullinger, Za-
kharov, and Pokrovsky [20] and the enlightening review
of Bishop, Krumhansl, and Trullinger [21]. In our con-
text in the continuum limit, i.e., under the assumption of
a large width of the soliton as compared to the lattice
constant, Eq. (4) transforms to the modified
Korteweg —de Vries (KdV) equation which has analytical
soliton solutions [22). For reference purposes it is quite
beneficial to note the Wadati solution of the modified
KdV equation, which pertains to our basic set of equa-
tions of motion (4) [22]:

m —vt

FIG. 7. Generation of a soliton above the sound-velocity
edge. The amplitude is the energy h (~) per lattice site m.
Time ~=1000. Initial (~=0) momentum excitation at site
m =0 in the ideal anharmonic chain.
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P„(r)= 1

(24@4)' cosh[pn rsinh(p/2—)]
(15)

55

where p depends on the "amplitude-nonlinearity" param-
««'Y p p(1' )

In a discrete lattice the functional form (15) is a good
approximation only for p « 1, although P„(r) remains a
function of the propagation variable [pn —rsinh(p/2)].
This easily may be shown analytically by means of a
"wing expansion" of the solitary solution. The solitons in
a discrete lattice for Hamilton function (1) were studied
to some extent, e.g. , in [23] and more recently in [24],
however, a more complete knowledge about their proper-
ties remains desirable. Below we briefly list the main con-
clusions from our simulations, leaving a more detailed
presentation for a separate publication. Figure 7 demon-
strates the process of soliton creation. Increasing the
nonlinearity parameter yz in the interval [0, =0.6] the
maximum at the propagating front becomes steeper and
moves slightly faster. With a further increase of the non-
linearity (or the total energy) a sharp excitation separates
from the front and moves with a constant supersonic ve-

20
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-50 0 50 100 150 200 250 300 350

rn —v t

FIG. 8. Generation of a compressive soliton followed by a
rarefactive one. The amplitude is the energy h (~) per lattice
site m. y4.. anharmonicity parameter (see text). Time ~= 1000.
The numbers at the upper solitonic peaks indicate multiplica-
tion factors with respect to the rest of the figure. Initial (~=0)
momentum excitation at site m =0, ideal anharmonic chain.
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locity. The soliton width decreases very fast with non-
linearity and for y4= 1.5 the half width at half maximum
(HWHM) becomes less than one lattice constant. The
amplitude P (r) behaves linearly with y~ for weak non-
linearity and as y4 for strong nonlinearity. The soliton
velocity grows linearly both for small and large y4, how-
ever, the slope is larger for strong nonlinearity; in the last
case the velocity approaches quadratic dependence upon
the amplitude.

Thus the properties of solitons are rather different de-
pending on the strength of the nonlinearity, the demarca-
tion line being the value y4-1.5 when HWHM of the
soliton drops to the lattice constant. In addition, at
y4-—4. 8 a new, rarefactive, soliton moving much slower
than the compressive one, is created (Fig. 8). In the limit
of a pure anharmonic lattice [i.e., with f2 =—0 in (1)] an
infinite number of solitons (alternatively compressive and
rarefactive) exists; their velocities vs are related as
I:I/+2:1&6: . , and the amplitudes are proportional
to U&.

2

The soliton shape is invariant only with respect to the
discrete time translations b, „r= nlvz where n is an in-
teger and Uz is the soliton velocity. The change of the
soliton shape when it moves between two neighboring
sites is shown in Fig. 9 in the momentum, coordinate, and
energy representations.

In the context of energy propagation the essential
property of a nonlinear system is the suppression of
dispersive decay of a propagating pulse. Figure 10

0.2

0.4

0.6
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—2.0-

—2.4
2.0 2.5
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demonstrates the change of the decay exponent for the
main energy density maximum. For the linear lattice we
obtain r ~ law in accordance with (9); with increasing
nonlinearity the exponent starts to decrease ending with
zero value at y4-—0.8. The nondecaying soliton modes
store a considerable amount of the total energy —from
0.44 at y4=1 to 0.75 at y4=10.

The diffusion coe%cient turns out for all values of y4 to
grow (asymptotically) linearly with time, the prefactor
being proportional to the energy stored in the soliton
modes (Fig. 11). While such behavior for the prefactor is
obvious for the soliton contribution it is not evident for

FIG. 10. Decay of the peak at the sound-velocity edge,
h,„(r)-r'. s: slope as indicated. y4 is the anharmonicity pa-
rameter. Initial (r=0) momentum excitation at site m =0 in
the ideal anharmonic chain.
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FIG. 9. Change of the solitonic shape, when the center
moves from one lattice site to the next one. Anharmonicity pa-
rameter y4=2. Initial (r=0) momentum excitation at site
m =0 in the ideal anharmonic chain.

FIG. 11. Diffusion function D (r) =M2(r)/Mor for the regu-
lar chain with nearest-neighbor harmonic and quartic springs.
P-type excitation at site m =0 at r=0. y4 is the anharmonicity
parameter (see text).
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the residual contribution, which is not small especially
for weak and moderate nonlinearity. We found a similar
linear behavior of the difFusion function for 2D lattices as
well, which demonstrates the universal nature of the
coherent transport for ordered systems.

This allows for an illuminating view of the ergodicity
problem. In the famous numerical experiment of Fermi,
Pasta, and Ulam [10] it was proved for the first time that
a weak nonlinearity is not sufficient to lead a Hamiltonian
system to equipartition of the energy among the normal
modes, neither is it sufficient to fully destroy the phase
correlations between the modes. Both phenomena are
considered a prerequisite of stochasticity. In a later work
numerical simulations of finite systems seem to show the
existence of a stochasticity threshold at a fixed value of
the nonlinear coupling constant. In particular, after exci-
tation of a group of modes [25] an equipartition threshold
indicative of random phases is found for a rather low
"averaged nonlinearity" (@4=0.1). By contrast, in our
uniform infinite system the initial excitation in point of
fact already amounts to an equipartition of the energy be-
tween the (harmonic) normal modes [h (k, t =0)
=MOD A /2(2N + 1)], but phase randomization is nev-
er achieved and even in the strong nonlinearity situation
the transport remains nondijfusiue (D -t).

c = 0.050. 19

c =0. 10 74

= 0.20.56

"=0.3O.c 2

c = 0.5

-200 -150 -100 -50 0 50 100 150 200

FIG. 12. Anderson localization after initial (r=0) momen-
tum excitation at site m =0. Concentration c =0.2 of randomly
distributed springs f'/f =0.5. Arbitrary units for h (r). The
numbers on the left indicate the change of the scale.

V. HARMONIC DISORDERED I ATTICE:
LOCALIZATION AND SUPERDIFFUSION

As is evident from Fig. 4, the energy density separates
in a rather short time after the excitation into two com-
ponents: a nonpropagating one, localized around the ex-
citation site, and two decaying comparatively sharp max-
ima moving in opposite directions.

The energy distribution in the localized part is defined
by the projection of the initial excitation on the modes lo-
calized near the origin and, therefore, depends on a par-
ticular distribution of force constants. Increasing the dis-
order by changing the concentration or the ratio f'/f the
size of the localization domain diminishes while the
amount of energy stored in this region increases (Fig. 12).
We describe the localization by introducing a "regional"
(restricted) 0th moment

case (f ) =cf'+(1 c)f. Seco—nd, the shape of the ener-
gy distribution within the propagating edge region can
approximately be described as a Gaussian one. Both the
velocity and energy distribution are subjected to Auctua-
tions caused by the scattering events. These points are
demonstrated in Fig. 14, where the heading structure of
the propagating front is shown in a reference frame mov-
ing with velocity slightly smaller than U*. The energy
density at the maximum decays as r ' while the width
increases proportional to r', so the energy stored by
weakly scattered phonons decays as r

The time-dependent energy distribution among the lo-

L
Mo(L, r)= g h (r) . (16) 1.0

m= —L
0.9-
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0.0 0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

lP-s AD t

FIG. 13. Energy localization (in the disordered harmonic
chain) between m =+I. (I. is the localization length). c: con-
centration of disturbed springs. Initial (r=0) momentum exci-
tation at site m =0.

For any given sufficiently strong disorder one can find
such L that the amount of energy confined within the in-
terval ( L,L) remains es—sentially constant (Fig. 13). The
value of L found in such a way gives an averaged (and
rather crude) estimation of the localization length. It
should be noted that in a strongly disordered system
more than 90% of the initial energy remains localized
within the interval of the order of 50 lattice constants.

The energy transport is determined by the part of the
energy leaving the excitation region. This part, caused by
weakly scattered phonons, turns out to be quite interest-
ing. First, we notice that it is headed by a distinct max-
imum moving with a constant velocity close to renormal-
ized sound velocity U'=v&(f )/f where ( ) means the
average over the distribution of force constants; in our
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calized and propagating parts is shown in Fig. 15. Curve
1 shows the fraction of energy stored in the propagating
modes (multiplied by 5), curve 2 in localized modes, while
the dotted line 3 is the first fraction multiplied by ~' . It
appears that the square-root time dependence is followed
rather strictly.

Since the propagating wing fronts move with a con-
stant velocity and the energy carried by them decays as

0.110

~0
-40 -30 -20 -10 0 t0 20 30 40

m —vt

FICx. 14. Propagating peak at the sound-velocity edge in a
disordered harmonic chain. Concentration c =0.2 of randomly
distributed springs f'/f =0.5. The numbers on the right indi-
cate the time decrease of the total peak energy. v: renormalized
sound velocity. Initial (v.=0) momentum excitation at site
m =0.

it is clear that the second moment (7) connected
with this energy contribution should behave as 'T and
the diffusion coefficient as ~' . This indeed is verified in
Fig. 16. However, since these edge peaks continuously
lose energy to a region behind them, this background also
contributes to the diffusion coefficient. It is now remark-
able that the background parts behind the propagation
front give a comparable contribution to the second mo-
ment and behave in exactly the same manner (see Fig.
15), i.e., the total diffusion coefficient D( r)&v'~. The
same behavior of the diffusion coefficient was found re-
cently for an electronic system with random electron-
phonon interaction [14] and called superdiffusion. The
authors of Ref. [14] consider the superdiffusion as an in-
dication of the absence of localization. It is true if one
identifies the localization with the absence of diffusion.
However, as we demonstrated above, the energy distribu-
tion shows all characteristic features of the usual Ander-
son localization. Therefore the physical situation has to
be described as the coexistence of localization and
superdiffusive transport.

As was pointed out in [14], the superdiffusion
phenomenon is connected with three properties of the vi-
brational spectra: first, its boundness from below by zero
frequency, second, the co divergence of the localization
length at small frequencies, and third, the finite value of
the group velocity of low-frequency (sound) waves. Due
to these properties, there always exist -&N modes with
a mean free path of the order of the chain length spread-
ing with a sound velocity. Therefore, using the usual
definition of the diffusion coefficient D =N gk vkl&,
we must take vk =U =const, Ik -X, and restrict the sum
to —&N terms, which gives D -&N. Since in the ener-

gy propagation simulation the effective chain length is
defined by the energy propagation itself, we have
N=v'r, i.e., D —&~.

One can proceed beyond these qualitative arguments
by using strict results concerning the eigenmodes of the
disordered one-dimensional lattices [6]. In terms of
eigenmodes the solution of Eqs. (4) with the initial condi-

1.0

0.8-

c = 0.2 f'/f = 0.4
30

25

0.4

20

15

0.2 10-

I

1000
I

2000 3000 c = 0.2 f'/f = 0.4

FIG. 15. Disordered harmonic chain [P excitation (~=0) at
m =0]: time-dependent energy distribution among localized
and propagating parts. c: concentration of randomly distribut-
ed springs f '. 1—energy fraction (multiplied by 5) stored in the
propagating peaks at the sound-velocity edges. 2—energy
stored in "localization area" ( —L,L),L =80. 3—fraction 1

multiplied by &~.

1000 2000 3000

FICx. 16. Disordered harmonic chain (P excitation ~=0 at
m =0). Partial diffusion functions D (7)=M2(t)/Mp~ S con-
tribution of the sound-velocity edge peaks. 8—contribution of
the energy behind the sound-velocity edge; T—total. All con-
tributions follow a t ' behavior (superdiffusion).
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tions (5) can be written as (see, e.g. , [12])

P (~)=G o(r), Q (~)=G o(r),
where

G o(~)=gg (k)go(k)cos[(Qi, /QD)r],
k

(18)

(19)

(k) being the amplitudes of the eigenmodes. The
problem of the asymptotic time behavior of the Green
function G o(r) is by no means a simple one, since its
Fourier transform contains N poles and the asymptotic
behavior depends on the assumptions made about the
contributions of different poles [15]. However, the
asymptotic behavior for the case when both t and m are
large is a more simple problem. We use the following
property (based on the Fuerstenberg theorem on the
product of random matrices) of eigenvectors in a disor-
dered system [15]:

I g (k) I

= lgo(k) lexp[ —4 lm mok I ] «» m ~ ~

We observe that in the reference frame moving with aver-
age sound velocity the distribution of the averaged mo-
menta for long times and far from the origin is approxi-
mately a diffusive one. This behavior is in a sense
occasional —it is caused by the fact that the Rayleigh
scattering law (21) in one dimension coincides with the
diffusive pole k dependence. For large

~

m
~

this pole gives
the most essential contribution; other assumptions lead to
a faster, at least a ~ ', decay. In higher dimensions, the
diffusive behavior is caused by resonant backscattering
and can manifest itself only in an averaged two-particle
Green function (say, in &P & ) but not in a one-particle
function.

Using (24) and (17) we can easily show that the aver-
aged potential and kinetic energies per atom coincide.
Then the total site energy density is just given by
&h (r)&=2&P (~)& . We observe that the time depen-
dences for the intensity ( ~~ ') and width ( ~~'~ ) de-
scribed by this expression exactly correspond to the re-
sults of the simulation.

In the limit v *r&)A,o the integral intensity reads
1/2

where A, k is the inverse localization length. Since low-
frequency vibrations should be equivalent to weakly scat-
tered phonons we can choose the eigenvectors for large
/m/ as

I &h (r) &dm = 1

16m', ov *~

and for the diffusion coe%cient we get

(25)

(k)=N ' exp[ikm —
Ai, ~m —

moi, ~] . (20)

Qk
k 0 (21)

In the limit k —+0 the inverse localization length is given
for our model of disorder by (up to an unimportant nu-
merical factor)

1/2

D(r)=
0

(26)

The last expression correctly describes the time depen-
dence and the dependence on the strength of the scatter-
ing.

X cos[(Qi, /QD )r] . (23)

For large ~m~ we can neglect the term containing the
centers of mode localization mok because the initial exci-
tation projection onto the modes localized far from the
origin is exponentially small. Further on, due to the fast
increase of A, k we can use small-k approximations for A, k
and Qk =v*QDk. As a last step we replace the sum in
(23) by an integral and extend the limits from —&a to ~,
which is justi6ed by the fast decrease of the localization
length. Then the result reads as

(24)

where

A,o
= ' = . (22)

&(f, +i —&f &)'& c(1—c)(f' f)'—
&f &' [ f'+(1 —)f]'

Here & QD & =2u *AD is the maximal frequency of a mean
lattice.

In terms of eigenrnodes (20) we have for the Green
functions

o(r) =X expI'km ~i, ( lmoi, I+ m moi, I

k

VI. DISORDERED ANHARMONIC LATTICE:
REDUCTION OF LOCALIZATION
AND INSTABILITY OF SOLITONS

Comparing Figs. 4—6 we notice that disorder on the
one hand reduces the effectivity of solitonic propagation
and captures some portion of the excitation energy in a
bounded region near the excitation site (Anderson locali-
zation). But the localized fraction is smaller than in the
purely harmonic disorder case. This is shown in Fig. 17.
On the other hand, disorder has the effect of rendering
the ultrasonic solitons instable. Figure 18 demonstrates
this phenomenon in a moving reference frame. One ob-
serves that the soliton in the course of time returns to the
sound-velocity edge and thereby it gradually loses its en-
ergy and turns broader. (In some sense it is a kind of
boomerang behavior. )

As in Sec. V, we simulate harmonic disorder by a con-
centration c of randomly distributed springs f', whereas,
as in Sec. IV, anharmonicity is represented by quartic
springs in a regular array. In the continuum limit (weak
anharmonicity) Ilzuka, Nakao, and Wadati [26], have
given the fractional power law t ' for the decay of the
soliton amplitude. Our numerical results roughly
confirm this behavior up to y~=0. 5 (see Fig. 19). Beyond
this value the amplitude decay is still given by a power
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FIG. 17. Disordered anharmonic chain. Decrease of locali-
zation by anharmonicity. Change of the energy confined within
the localization length L with nonlinearity parameter y4.
f'/f =0.5, c =0.2, L =100. Initial (r=0) momentum excita-
tion at site m =0.

FIG. 19. Decay of the soliton amplitude in a harmonically
spring disordered (c =0.2, f'/f =0.5) chain with weak anhar-
monicity (Wadati behavior). Initial (~=0) momentum excita-
tion at site m =0.

law t, but a now lies above the Wadati result (see Fig.
20).

From Fig. 6 we observe that the envelope of the spatial
energy distribution does not approach a shape which one
could describe as a phenomenological "diffusive struc-
ture, " i.e., no Gaussian shape. This is true for all con-
sidered cases of anharmonicity parameters. Nevertheless,

lope
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3.0 —2.03
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I '.
Y-.
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FIG. 18. Soliton propagation and decay in a moving refer-
ence frame (v is the sound velocity). Anharmonic disturbed
chain [harmonic spring disorder (c =0.2, f'/f =0.5) and regu-
lar array of nearest-neighbor quartic springs].

FIG. 20. Decay of the soliton amplitude in a harmonically
spring disordered chain (c =0.2, f'/f =0.5) with strong quar-
tic anharmonicity (non-Wadati behavior). Initial (~=0)
momentum excitation at site m =0.
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FIG. 21. Diffusion function D(~) for different values of y4
(disorder parameters f'/f =0.5, c =0.2). Initial excitation at
side m =0 (&=0).

VII. SUMMARY

In the present work we have investigated, mainly by
exact numerical calculation, the energy propagation in a
one-dimensional infinite chain, which develops after an
initial impulse excitation (pc =MAD A) of a single mass
at site nz =0. Within the chain nearest-neighbor interac-
tion and equal masses of the particles has been assumed
and four archetypical interaction setups have been con-
sidered: (a) a uniform array of harmonic springs (f z), (b)
a uniform array of combined harmonic (f z ) and quartic
springs (f4), (c) a randomized distribution of two
diff'erent types of harmonic springs (harmonic disorder),
and (d) a combination of harmonic disorder and quartic
springs in a regular display.

The following dominant features have been found.
(1) In the ordered harmonic chain a sharp peak appears

at the sound-velocity edges of the energy distribution, the

we may formally define a diffusion function
D (w) =Mz(w)/&MO in the same way as done in the previ-
ous sections [videlicet, Eq. (8)j. The time behavior of this
quantity is given in Fig. 21 for several values of the
anharmonicity parameter y4 and fixed disorder parame-
ter f'/f and c. Figure 21 also shows the solitonic contri-
bution to the diffusion function D (r). In the degenerated
case y4=0, i.e., the harmonic case, the contribution of
the outermost peaks is taken. From the figure we note
that for weak anharmonicity a superdiffusive behavior is
generated, while for strong anharmonicity it seems that
D(~) approaches a constant value in the long-time re-
gime.

maximal height of which decays like ~ in time. This
behavior can also be verified analytically.

(2) If anharmonicity is added in the regular harmonic
chain the wing peaks are enhanced and the inverse ~
power law of their decay is reduced. Finally at
( A f4/f z ) =0.8 they are transmuted into hypersonic
solitons, which separate from the sound-velocity edges.
These solitons are of compressive nature and display kink
form for the particle displacement distribution {Q I and
a symmetrically peaked form both for the particle mo-
menta {P J and the site energies {h I. The maximal
amplitude of P behaves linearly with (f4/fz) for weak
anharmonicity and as (f4/f z

)'~ for strong anharmonici-
ty. The soliton velocity grows linearly with (f4 /f z ) both
in the weak and strong coupling situations, but with
different prefactors. For growing values of (f4/fz) new
solitons are created successively, which alternately are of
compressive and rarefective nature. The first rarefactive
soliton appears at (A f~/fz)=4. 8. In the limit of a
pure anharmonic lattice (fz =0) the velocities of the suc-
cessive solitons are related as I:I/V2:I/V6: . and
their amplitudes are proportional to U, .

(3) In the uniform anharmonic chain the second mo-
ment Mz(r) of the energy packet strictly follows a r law,
the prefactor being proportional to the energy stored in
the solitons. This shows that the spatial evolution is
strictly coherent not only for the solitary part, but also for
the subsonic parts behind the solitons. Even for strong
nonlinearity the transport remains nondiQusiue
(D -Mz/~). We have also found such behavior in a 2D
anharmonic lattice.

(4) In a disordered harmonic 1D lattice the energy
packet rather shortly after the time of the initial impulse
separated into two components: a nonpropagating one,
localized around the excitation site (Anderson localiza
tion) and two sharp maxima at the sound-velocity edges,
which move with an average sound velocity
u*=u [( I —c)+cf '/f )', where c is the concentration of
the springs f'. The maximal energy density of the edge
peaks decays as ~ ', and the energy stored in them de-
clines as r ',' thus their contribution to the second mo-
ment behaves as ~ . But also the region behind the
edges contributes to the second moment. It is remarkable
that this contribution to Mz also follows a ~ law.
Hence the diffusion function behaves as D -M2/~-~'
Such behavior also has been found in disordered electron-
ic systems and called superdiQusion Thus w.e have found
a coexistence of Anderson localization and superdiffusive
transport. We have also given an analytical foundation
of this phenomenon by making use of the Fuerstenberg
theorem.

(5) In a disordered anharmonic lattice the main
features are the opposing tendencies of disorder and
anharmonicity: anharmonicity reduces localization,
whereas disorder destroys solitonic stability. The frac-
tion of energy captured in the neighborhood of the exci-
tation site is smaller than in the pure harmonic case. On
the other hand, disorder renders the ultrasonic solitons
unstable and gradually diminishes their velocity such that
the solitonic peak is getting smaller and broader and
eventually returns to the sound-velocity edge. For the
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decay of the solitonic amplitude Wadati has derived a
' law in the continuum limit. Our numerical results

roughly confirm this behavior up to (2 f4lf2)=0. 5
(weak anharmonicity). Beyond this value the decay is
still given by a power law ~, but a now lies above the
S'adati law. Another dominant feature of our numerical
simulation is the observation that the envelope of the en-
ergy distribution never approaches a shape which one
could consider as a phenomenological diffusive structure,
i.e., a Gaussian shape. If a diffusive function
D (r) =M2(~) lrMo is introduced again, we note that for
strong anharmonicity D (r) seems to approach a constant
value.

Physically the most interesting result of this work
presumably is the observation that for the chosen type of
initial condition (single-site impulse excitation) disorder
and anharmonicity display an antagonistic tendency with
respect to energy transport: while anharmonicity en-

forces energy propagation (ultrasonic soliton), disorder
has a diminishing effect (Anderson localization). By con-
trast, in a forthcoming paper, in which the analogous in-
vestigation steps will be performed for another prototype
of initial condition (single-site displacement excitation), it
will be shown that disorder and anharmonicity both re-
veal the same tendency with respect to energy transport:
anharmonicity captures energy in the form of standing or
subsonic solitons, and disorder produces an Anderson lo-
calization which is even stronger than in the momentum
excitation case.
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