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Behavior of entropy in hyperbolic heat conduction
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It is shown that the classical entropy of an isolated system does not increase monotonically when the
approach to equilibrium is described by hyperbolic equations for the temperature evolution. In contrast,
the generalized entropy of extended irreversible thermodynamics does increase monotonically, and is
therefore better suited than the classical theory for the description of hyperbolic heat transport.
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I. INTRODUCTION

The classical theory of heat conduction, based on
Fourier's law, leads to parabolic equations for the evolu-
tion of temperature. This approach is very useful in
many practical circumstances, but it fails when the fre-
quency of the perturbations is comparable to the relaxa-
tion time of the heat fiux (of the order of the collision
time) as, for instance, in light scattering in fiuids and neu-
tron scattering in gases, or during the first stages of very
sudden perturbations, as in the irradiation of a sample
with a pulse of laser light, or in the propagation of heat
pulses in solids at low temperatures, where the parabolic
theory would predict an infinite speed in contrast with
the finite speed observed experimentally [I—9].

These practical motivations, and other theoretical con-
siderations based, for instance, on the kinetic theory of
gases or on the infinite speed of heat in Fourier's theory,
have led to generalize Fourier's law [1,2] by including re-
laxational effects, either in the form of some memory ker-
nel or by adding to the equation relaxational terms such
as the time derivative of the heat Aux, which convert the
usual constitutive equation for the heat Aux into an evo-
lution equation for this quantity.

Relaxational equations for the heat Aux q, of which the
simplest one would be the Maxwell-Cattaneo equation
[1—9]

zq+q= —
A, V T, (1)

lead to hyperbolic equations for the temperature T as, for
instance, . in the case of constant k and ~

T+~T= V T
dt

(2)

with g=A, /(pc) the thermal diffusivity, p being the mass
density and c the heat capacity per unit mass. Much
work has been devoted to solving this equation (of the
form of the so-called telegraphist equation) analytically
or numerically in many different circumstances [5—7]. In
spite of the very wide effort on this equation, the thermo-
dynamic implications of an equation such as (1) have
been almost ignored, though, in fact, Eq. (1) asks for a
deep reformulation of nonequilibrium thermodynamics
[1,9—14]. It is our purpose here to call attention to these
thermodynamic implications by analyzing explicitly the
behavior of the entropy according to Eq. (1). This will

make completely clear the need for a more complete ther-
modynamic theory.

5T=5 T&f (t)coskx, (4)

with f (t) a function of time to be determined from the
evolution equations and k the wave number k =2nn IL.
By introducing (4) into (2) one finds

f (t) =a'exp(a+ t)+b'exp(a, t),
with

a+= [ —1+(1—4yk r)' ] .
1

2~

For 4gk ~(1 the decay of the system to the final
homogeneous equilibrium state is exponential, and given
by

1+1—4k''
5T=5Toexp — t coskx .

27-
(7)

For 4yk ~) 1 the decay has an oscillatory behavior
given by

5T=5To[ A sincot+coscot]exp — coskx,
21-

where 3 is a constant and cu is given by

[4yk2r 1]1/2
27-

(9)

II. OSCILLATORY APPROACH
TO EQUILIBRIUM

We will consider an isolated rigid system of length I..
We assume an initial temperature profile of the form

T(x, O) = To+5Tocos
2mnx

I.
whel e To is a homogeneous constant-temperature refer-
ence and n is a natural number. We assume that the
internal energy of the system is simply given by pu =pcT,
with u the internal energy per unit mass, p the mass den-
sity and c the heat capacity per unit mass. We want to
study the evolution of the system towards the equilibri-
um. We assume that the perturbation 5T is of the form
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The expression for the heat flux is, according to (2),

q (x, t) = —Ak 5TO [ 3 'singlet +B'coscot)exp sinkx,

(10)

where the new parameters A ' and 8' are defined as

2A +4'~, 2A —4'~
I+4co v 1+4' r

Note that q (0, t) =q (L, t) =0, i.e., no heat flows into or
out of the system, and the total internal energy of the sys-
tem is constant because

L L
U = f pu dx = f pcT(x, t)dx =pcTOL . (12)

0 0

Thus our system is an isolated system. Now, we want to
compute the evolution of the entropy along the approach
of the system to equilibrium. The entropy of the rigid
system is

Tps=pc ln
0

(13)

with s the entropy per unit mass.
If a McLaurin expansion is introduced in (13), we may

write
oo

( 1)j+1
ps =pc g . 5jof (t)jcosj(kx),

J
(14)

S=S/(pcL), r =t/r, co=re@, (16)

with S the total entropy of the system, and we also intro-
duced the new functions

where 5O is defined as 5TO/To. Integration over the
whole system (i.e., from x =0 to x =L) yields

S(r )= —g 5OF(j)P(t)"exp( jF), —
j=1

where the tilde is used for the set of dimensionless vari-
ables

0
0.0 2.0 4.0

FIG. 1. Reduced entropy as a function of t calculated from
local-equilibrium hypothesis for different values of co when
A =1/(2'). The represented values of S are multiplied by a
factor 10 and the origin is fixed at S(0).

The behavior shown in Figs. 1 and 2 is rather surpris-
ing. In fact, it is not incompatible with the requirements
of the second law of thermodynamics, because the initial
entropy is less than the Anal entropy. However, the non-
monotonic behavior of the entropy raises interesting
questions about the local-equilibrium formulation of the
second law. This law requires that the entropy produc-
tion must be everywhere positive, but the results shown
in Figs. 1 and 2 do not exhibit such monotonic increase
of the entropy. Then we have seen that a physically
well-motivated transport equation [1—4] does not satisfy
the local-equilibrium formulation of the second law of
thermodynamics. As a consequence, such a local-
equilibrium formulation must be generalized.

P( t ) = A singlet +cosset,

(2j —1)!
22'( '

f )2

(17)

(18)

3.5

Dealing with the extremal values of S, we can deter-
mine them in two trivial cases: when A = 1/(2') the en-
tropy reaches a relative extremal for t=n~/co, while
A = —2' implies the existence of an extremal if
t=(1+2n)n. /2', with n =1,2, . . . in both cases. When
A = 1/(2'�), the initial value of d T/dt is zero and
q(X, O) =0, as it may be seen from the general expression
(10).

From (15) we know the temporal dependence of the en-
tropy of the isolated system. In Figs. 1 and 2, we plot the
difference between the entropy at a given time and its
value at t =0. Figure 1 corresponds to the case
A =1/(2') and there is a transition from a reversible
behavior to an irreversible behavior near the initial time.
When other particular values of A are considered, as
shown in Fig. 2, the behavior is irreversible already at the
initial time.

0
0.0 2.0 4.0

FIG. 2. Reduced entropy as a function of t calculated from
local-equilibrium hypothesis for different values of co when
A =0. The represented values of S are multiplied by a factor
10 and the origin is fixed at S(0).
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III. EXTENDED IRREVERSIBI.E
THERMODYNAMICS

Extended irreversible thermodynamics (EIT) provides
such a reformulation of the second law [1,9—14]. This
theory assumes that the thermodynamic Auxes are in-
dependent variables of the system in addition to the clas-
sical slow variables (internal energy in this case). In the
present situation, the generalized entropy would depend
not only on u (or T) but also on q. According to EIT the
generalized entropy has the form [1]

ps~(u, q)=ps, (u) — q q .
2T2

(19)

(19')

and that q decays exponentially according to the
Maxwell-Cattaneo law, one gets again (19) after perform-
ing the integration of o. from t =0 to t = ~. In more
general situations, the simple form (19) could be general-
ized to a more complicated expression for s (u, q) [16]but
this is not necessary to stress the fundamental physical
features.

The differential of (19) is

This expression for the entropy may be obtained from
kinetic theory by using the Boltzmann definition
s = —k ff lnf dc, with c the molecular velocity and f
the nonequilibrium steady-state distribution function:
following this procedure, Grad's thirteen-moments
method [15] yields precisely (19). A further possible way
to understand the nonclassical term in (19) is to use the
following operational method to define the nonequilibri-
um entropy [1]: A small element of the nonequilibrium
system is suddenly isolated and it is allowed to decay to
equilibrium. The final entropy of the system sz„ is the
equilibrium entropy corresponding to the local energy
and volume of the subsystem s, (u) and its initial entropy
s;„ is the nonequilibrium entropy to be defined and denot-
ed by s*(u, q). Both values of the entropy are related
through ss„=s;„+f cr dv dt, with o the entropy produc-
tion during the decay of the Aux to its zero equilibrium
value. If one takes into account that

In contrast, the classical entropy production has the form

Oeq
1

q VT,T2 (24)

which in combination with the Maxwell-Cattaneo equa-
tion leads to

. =1 +p.,= &,q q+ (25)

From (19) we conclude that ps* can only increase dur-
ing the approach to equilibrium. After integration from
x =0 to x =L, we can write the following generalization
of (15):

S (t)=S(t)—S'(t), (26)

S'(r)= —,'+ g 5OJ(2j+1)[G(j)—G(j+1)]
8 1+4'

Xp(t ) ~exp( jt)—(27)

where we have introduced the new functions

h (t }=(2A +4')sinco t+(2 4Aco)cosco t,—
G(j)= (2j)!

22J( ' i)2

(28)

(29)

In Figs. 3 and 4 we represent the behavior of the gen-
eralized entropy as compared with the local-equilibrium
entropy. In contrast with the latter, the generalized en-
tropy of extended irreversible thermodynamics shows a

where the explicit expression for S' is obtained using the
same arguments previously employed in the derivation of
(15). The result is

ds =T du —
2q dq,

pkT
(20)

where we have neglected nonlinear terms of second order
inqin T

Taking into account the energy-balance equation

pu = —V.q (21)

and introducing it into (20), we find for the entropy pro-
duction

1 ~ ~

T2
q. VT+ —q (22}

0 /

0 ~ 0 2.0
t

4.0

1

XT2q q (23)

If the Maxwell-Cattaneo equation (2) is introduced in (22)
one finds

FICx. 3. Reduced entropies as a function of t calculated from
the local-equilibrium hypothesis (dashed curves) and from the
EIT model (solid curves) for different values of co when
A =1/(2'). The represented values of S are multiplied by a
factor 10 and the origin is fixed at S(0).
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t
FIG. 4. Reduced entropies as a function of t calculated from

the local-equilibrium hypothesis (dashed curves) and from the
EIT model (solid curves) for different values of 6 when A =0.
The represented values of S are multiplied by a factor 10 and
the origin is fixed at S(0).

terms of the monotonic increase of the local-equilibrium
entropy is not always a safe criterion for restricting the
constitutive equations, as it may forbid equations, as the
Maxwell-Cattaneo equation, which are well founded ei-
ther from experimental or theoretical points of view.
However, the entropy of extended irreversible thermo-
dynamics, which takes into account the independent
character of the heat Aux at short times, is suitable as an
expression for the second law in hyperbolic heat trans-
port as it makes compatible the monotonical increase of
the entropy with the use of the Maxwell-Cattaneo equa-
tion.

A situation similar to that analyzed in this paper could
be found if relaxational equations are taken for other
cruxes, as for instance the viscous-pressure tensor. Nu-
merical simulations in the context of molecular hydro-
dynamics have shown that for sufficiently short wave-
lengths, shear waves can propagate in Auids, i.e., the usu-
al diffusive behavior of tangential velocity perturbations
is changed to a propagative behavior [17]. The tangential
velocity perturbation would play in that case a role analo-
gous to that of the temperature perturbations in the prob-
lem dealt with in this paper.

monotonic increase with some stationary points, corre-
sponding to the minima of the local-equilibrium entropy.

IV. CONCLUSIONS

We have tried in this paper to show with a very simple
example that the usual formulation of the second law in
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