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Relaxation and stationary properties of a nonlinear system driven
by white shot noise: An exactly solvable model
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The relaxation and stationary properties of the Verhulst-type model with linearly coupled white
shot noise are considered. It is found that in spite of the appearance of the noise-induced transitions
in the stationary probability density distribution, the moments change continuously. The autocor-
relation function is calculated and the relaxation rates are examined. It is shown that the presence
of the noise slows down the relaxation. It is found for the true Verhulst model that the integral
characteristic, the relaxation time T, is simply proportional to the square of the noise-controlling
parameter. The Gaussian-white-noise limit is discussed.

PACS number(s): 05.40.+j, 02.50.—r, 05.70.Ln

I. INTRODUCTION

The evolution of nonlinear systems is strongly affected
by the presence of Huctuations (noise). It may be re-
flected both quantitatively by changes of values of differ-
ent observed quantities, such as the transition or relax-
ation rates or the time-dependent or stationary averages,
and qualitatively as the stabilization or destabilization of
the process, the appearance of noise-induced transitions,
among others [1—12]. Until the fluctuations are described
simply by the Gaussian white noise (GWN) there exists
a convenient and general method of theoretical examina-
tion, namely by the use of the Fokker-Planck equation [3,
10]. However, GWN —which results as a rather artificial
limit of more realistic processes [3,6—8)—should be con-
sidered only as a "first approximation" of the physical
fluctuations. Moreover, if for some reasons the fluctu-
ating parameters have to be bounded, GWN cannot be
used at all. Therefore, for some time past, there is an
interest in analyzing the inHuence of other noises on a
macroscopic kinetics [6—9,11,12]. It seems that one of
the best theoretical descriptions of the real (at least ex-
ternal) noise is provided by the (compound) Campbell
process (shot noise) [13]

(, = —c(t) + ) z,h(t —t, ),

where h(t) is a certain response function, t, are random
times given by Poisson process (with parameter A), z, are
independent random weights with the same probability
distribution, and c(t) is the so-called deterministic com-
pensator defined by the condition ((q) = 0. If the sup-
port ("width") of h(t) is small compared to A i and to
the characteristic time of the system's response, one can
simplify the further discussions assuming h(t) = 6(t), i.e.,
by considering a (generalized) white shot noise (WSN)

Many theoretical and numerical investigations con-
cerning the inHuence of different noises (colored Gaus-
sian noise [12]; dichotomic Markov process [7, 8]; WSN

[9]) have been done during the last decade, and the ef-
fect of such noises on nonlinear kinetics is generally well
understood. However, it is still difficult to go with ex-
act analytical calculations beyond the "GWN approxi-
mation" (especially when the time-dependent problems
are treated). The reason is that appropriate equations
for the probability density distribution usually turn out
to be nonlocal or operator, difficult to handle, equations
[14].

Nevertheless, for some classes of Langevin equations
the stochastic solution can be found. Then, provided the
averaging can be efFectively carried out, it is possible to
obtain several quantities of interest (moments, correla-
tions) directly, without finding the probability distribu-
tion. In a recent paper [15] such an approach has been
applied to the stochastic Bernoulli equation (Verhulst-
type model) [16]

xt ——(a + A(g)x —bx"+ (2)
where (t describes the noise, A g 0 and bp ) 0. The
formal expressions for transient moments in the presence
of an arbitrary white noise, and their rigorous analyti-
cal representation for the particular case of WSN with
exponentially distributed weights, have been found.

In this paper we want to discuss the stationary proper-
ties of the model. In Sec. II we briefiy recall the asymp-
totic behavior of the system in different regions of pa-
rameter space, in Sec. III the noise-induced transitions
are examined, and in Sec. IV the critical case (a = 0) is
considered. The discussion of the relaxation is done in
Sec. V, and Sec. VI contains some conclusions. In Ap-
pendix A the explicit form of stationary autocovariance
is provided, and in Appendix B the so-called relaxation
time T is calculated.

II. ASYMPTOTIC BEHAVIOR

Consider, without loss of generality, the "standard-
ized" WSN with random weights z 6 [0, +oo) given
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„„r(-%)r( + ~(7-.))
( A) (A(A G))

~v —v/A ) 0, (3a)

r(1 —~v+ —„")r(1+„(-„))
mz(~) = Q

"
r(1 — + „( ' ))r(1+ —„") '

1+ v/A —u)v ) 0, (3b)

r(1 —~v+ —„")r(~v+„(„))ms(~) —IQI r(1 .)r( ..
)

1+v/A —u)v ) 0, (3c)

where

v=1/p, Q= (u) O, and m(cu) —= (2: )„.
For the positive a, b, p, expressions mq, mz, or ms are
valid provided A belongs to the intervals (—oo, 0), (0, a),
or (a, +oo), respectively. For the negative system pa-
rameters, ms [if, moreover, cuv+ va/A(A —a) ) 0], m2
or mq correspond to A E (—oo, a), (a, 0), or (0, +oo),
respectively. Such behavior of moments suggests an ap-
pearance of the so-called noise-induced transitions in the
stationary probability density distribution.

III. NOISE-INDUCED TB.ANSITIGNS

The stationary probability density distribution can be
found as the inverse Mellin transforms of m(w) [15]

P„(~) = (z)
-~—&( -»&

I

~ Q-~I-~+"&( -», (4)

where

by exponential distribution p(z) = e ', h(t) = 6(t),
c(t) = 1, and A = 1 (which means that t, a, and b are
considered as dimensionless variables). In a number of
formulas we will write exp/icitly the A dependence, in or-
der to discuss the GWN limit. Because of the "stability"
condition bp ) 0 there are four cases with respect to the
signs of the system parameters a, b, p.

It follows from the explicit forms of (x, ) [15] that in
cases b, p ) 0, a & 0, and b, p, ( 0, a ) 0 [i.e. , when
both linear and nonlinear term in Eq. (2) describe either
annihilation or creation processes, respectively] the pres-
ence of WSN cannot change the deterministic trend. The
mean value either decays exponentially in the former, or
growths infinitely in the latter case.

In the remaining cases: b, p, a ) 0 and b, p„a & 0,
which correspond to the presence of the opposite pro-
cesses in Eq. (2), the situation is more interesting. The
moments (if they exist) relax to the finite (stationary)
values, which are given by three different analytical for-
mulas; which one is to be used depends on the value of
the parameter A (to which the noise is coupled),

8(Q —x) if A&0&a or a(A&0
8(x —Q ) if 0(A&a or a&0&A

~8(x) if 0&a&A or A&a&0.

The upper signs and the middle column correspond to
the case of p, ) 0; the lower signs and the right column
correspond to p, ( 0. 8 is the unit step function, and
the normalization factors are

—A' A(A — ))'

N = iviQ'+'i~B( —,1+ —),

respectively. (The arguments of Euler B functions have
to be positive. )

Note that for WSN considered here the general form
of stationary probability distribution is known. Namely,
Uan Den Broeck [6] has shown that for the stochastic
equation involving this type of WSN

&~ = f(&) + u(&)(~

the stationary probability distribution is given by

( )
f4J)&M '()f(~) —~(~) ~(~) ls(~) —f (~)]

The problems of boundaries of the process (5) and of the
existence of P, t, (T) have been studied by Sancho et aL
[17]. Using the fact that trajectories of WSN (with ex-
ponentially distributed weights) are bounded from below,
they provided some general arguments how to determine
the domain of probability distribution. As an example
(among others) the true Verhulst model (p = 1) with lin-
early coupled noise has been examined. Let us note that
in the present approach the above-mentioned problems
never appear explicitly, and both the form and the sup-
port of stationary probability distribution are uniquely
determined by the method.

The "phase space" available in the stationary state de-
pends on the noise-controlling parameter A according to
the following schema:

(o,q): (o, x,-„)

: (q, oo): (O, oo): (O, oo),

for the positive c, 6, p„and

(o ~):(o ~):(o q): (o *.t)
: (x„&:(x+„oo):(q, oo),

A=O A=0+ A) 0

for a, b, p & 0, respectively, where q = ( z)
and x,t ——(b/a) is the deterministic stationary state.
The examples of P,q(x) (where x = 2:/q is a rescaled
variable, in order to keep the finite boundary in the
unity) are presented in Fig. 1 (compare Ref. [17]). They
show that besides the two transitions at A = 0 ("near"
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FIG. 1. The shapes of the (normalized) stationary probability density distribution for different values of parameters. The
variable x is scaled to keep the possible finite boundary in the unity, and consequently I,& does not depend on b. The remaining
deterministic parameters are p = 1, a = 0.4 on the left graph, and p, = —0.6, a = —2.1 on the right graph. The successive
curves correspond to A = —1, —0.5, —0.15, 0.15, 0.5, 0.9 or A = —3, —1.7, —1, —0.15, 0.15, 0.5, respectively. The growth of A
is marked by increasing the length of dashes, so the continuous lines correspond to the greatest values of A.

the deterministic case) and A = a (when P,t(z) oc

z i & i~ exp [
—I/(box")] takes the exponential form)—

which are related to the change of the formula describ-
ing moments: mi(cu) ~ rn2(u) and m2(w) ~ ms(a),
respectively —a few others may appear, which correspond
to the change of a character of the boundaries (from re-
pulsive to attractive, or vice versa). I et us consider, e.g. ,

the case shown on the left graph (p = 1, a = 0.4, b is pos-
itive). For large negative A the domain of P,t, (z) is wide
(but finite) and both the left (at x = 0) and the right
[at x = q = (a —A)/b] boundary are attractive. When
A ( 0 is increased (i.e. , ~A~ tends to zero) the right and
left boundaries become successively repulsive. This is ac-
companied by the changes in the shape of the stationary
probability distribution. The phase space is contracted to
the interval (0, x,q). When A becomes positive the sup-
port of P,q(x) changes "discontinuously, " and the values
of x greater than q become allowed. At A = a the whole
positive semiaxis becomes available, and the boundary is
still repulsive. Finally, for sufBciently large A, the point
x = 0 becomes attractive. In a similar way the graphs
appropriate for others values of a and p, may be discussed.

It should, however, be noted that the averages (observ-
able quantities) change continuously during these transi-
tions. In fact, using the well-known formula

r(z+ ~)
z&1'(z)

it is easy to obtain that

lim rni(~) = lim mz(cu) = x"„
A~O A —+O

(which means that the deterministic result is approached
continuously), and that

I'(1 —(uij + v/a)
lim ms(a) = lim ms(cu) =

(b

More detailed calculations (involving the asymptotic ex-
pansion of the I' functions) show that no discontinuities
are present in the derivatives. The situation is thus analo-
gous to the case of the presence of GWN, where no transi-
tions in moments were observed, see Graham and Schen-
zle [4]. The plots of (x),t against A are shown in Fig. 2,
and actually look like smooth functions. For 0 P p ( 1

the stationary mean value (as a function of A) has a local
minimum, and for p ) 1 a local maximum, at A = 0. For
the true Verhulst model the stationary mean value is not
affected by the noise.

IV. THE CRITICAL CASE

There is another interesting limit, namely for a = 0,
which corresponds to the absence of the linear term in
the deterministic version of Eq. (2). Then the determin-
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FIG. 2. Plots of (z),q vs A for b = 1, a =
2, and p, = 2 (the lowest), 1.1, 1, 0.9, 0.66
(left), or b = —1, a = —0.5, and p
—1.5, —1, —0.66, —0.5 (right). The curves,
although given piecewise by diferent analyt-
ical formulas, Eqs. (3), are continuous (and
even ( ).
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istic solution x(t) = (xi' + bpt) ~" decays (if p, b ) 0)
or diverges (for p, b ( 0) according to the power law. In
the presence of noise, the moments of xq growth expo-
nentially with time in the latter, and relax to zero in the
former case. The relaxation is governed by the continu-
ous spectrum (Eq. (4.9a) of Ref. [15]).The calculation of
a dominant contribution, using the saddle-point method,
yields (A = 1)

(&~ )- r(~v) 1

(b/AA( "+~at
""--+~"& if /A&oI'(v/A)
I'(1—v/A)

z'(~~ —~]Al if v/A & 0

so all the existing moments decay by the common law,
like t ~ . It reflects the so-called critical slowing down,
and supports the general considerations of Ref. [18]. Note
that by taking the limit

A~O, A —+oo, AA =D (9)

in (8) we correctly recover the appropriate result for the
GWN (with the strength D) [4,19].

dy P.t(y) y(~-(y)) (lo)

where P,q is defined in Eq. (4), and the time-dependent
mean value (2: (y)) is given —in a form of spectral de-
composition involving Gauss hypergeometric functions
(of the variable y)—by appropriate equations of Ref. [15].
The integration in Eq. (10) can be done by the use of a
"generic" formula [21]

V. AUTOCORRELATION FUNCTION,
R.ELAXATION

The stationary autocorrelation function (ACF)
K(r) = ( (r) —(x)2, = limp ~(xg+~2:~) —(x)~, is re-
lated to transient moments by the following expression
[2o]:

du u" '(1 —u)" '2Fi(a, P; p; u)

sF2(o', P, p; Y, p+r;1),r(p)r(
r(p+ r)

Re(p), Re(r), Re(p+ r —n —P) ) 0.

ni,T = 2 —a/A —2V I —a/A. (13)

In the critical case a = 0 (p ) 0), K(r) has the long-time
tail ~-'/'

The resulting explicit form of the autocovariance func-
tion C(r) is provided in Appendix A, Eqs. (Al), (A3b),
and (A3c). These formulas have been used to calculate
the autocorrelation coeKcient. The comparison with the
results of digital simulation is presented in Fig. 3 (the
left graph).

The analysis of asymptotic properties of K(r) for large
~ becomes now elementary. In the case of 0 & p,A & p,a
[see Eq. (Al)] ACF relaxes exponentially with the rate

ni,T = —il(1) = pa— (pA)
1+pA

In cases (b) and (c) (see Appendix A), the relaxation
is governed by the slowest convergent from the possi-
ble terms Aq, Bo, Co, or—if they are all excluded from
summation in Eqs. (A3b) or (A3c)—by the continuous
spectrum K,(r). More detailed considerations show the
following.

(i) For v ) 0 only the term Ai may appear, and it
happens provided the distance between ~v/A~ and B =
v/A~/gl —a/A exceeds unity (i.e. , for sufficientl small
A~). Then, the long-time relaxation rate is given by

Eq. (12). Otherwise, the relaxation is governed by the
continuous spectrum and follows according to the non-
purely exponential law r ~ exp( —nzTr), where

K(r)/K(0)

10

'10 v ~ ~ ~ ~ ~ v ~ g ~ r ~ ~ I
~

~ ~w ~ v r ~

0 5 10 15
l ~ ~ I I ~ ~ $ f 1 0 I g ~0

0,0 0.1 0.2 0.5
A

FIG. 3. Numerical results for the true Verhulst model p, = 1, a = b = 0.2. The time-dependence of the (stationary)
autocorrelation coefFicient is shown on the left graph. The upper, middle, and lower solid lines, which correspond to A =
—1, O. l, 0.4, are calculated from Eqs. (A3c), (Al), and (A3b), respectively. Marks represent appropriate values obtained by
digita1 simulation [22j. The right graph shows the relation (15). The data points are computed by the use of appropriate series
(or series + integral) representation of T. The (power) best-fit line, T = 25A, is presented. The quadratic dependence was
obtained also for negative values of A (however, for numerical accuracy reasons, ~A~ and a should be of the order unity, or
greater, in such case).
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(ii) For v C (—1,0) and for sufficiently small ~A~ the
conclusions of (i) remain still valid. However, increasing
~A~ successively we find such conditions that Bo and/or
Co are no longer excluded from summation. Because
K, (~) vanishes faster, the relaxation becomes dominated
by the discrete spectrum again (see Fig. 4).

(iii) The remaining case v & —1 covers in particular
the special cases of negative integers v, for which ACF
is simply given by a finite sum (as well as all moments
of an integer order). Therefore, one can expect that the
asymptotic behavior should not depend on properties of
K,(w). In fact, the relaxation turns out to be governed
either by Ai, or possibly by Bc for sufficiently large ~A~.

Note that considering the long-time relaxation of (xq)
(to its stationary value) we obtain the same conclusions
(i)—(iii), with the only exception that the term Co is not
allowed at all [there are no terms corresponding to CK in
the spectral decomposition of the transient mean value;
the additional poles appear in (A3a) just as a result of
the integration in Eq. (10)]. In all the considerations
above the values of A should be (additionally) restricted
according to the proper conditions of the existence of
stationary moments, see Eqs. (3).

The dependence of relaxation rates on the noise-
controlling parameter is shown in Fig. 4. We see that in
our model the (multiplicative) noise always slows down
the process. What seems particularly interesting is that
for (relatively) large ~a~ (compared to A) the presence of
the small "negative" (A/a ( 0) WSN results in drastic
decreasing of the long-time relaxation rate. This case
does not have a counterpart for GWN because in the
limit (9) the condition ~a~ ) A can no longer be satisfied

(Sec. VI). [The relation A = gD/A ) ~a]/A, valid for
sufficiently large A, shows that case (a) (when the con-
tinuous spectrum does not appear) does not have a GWN
counterpart as well. ]

A few others quantities have been proposed to charac-
terize globally the system's relaxation (not only the long-

time regime). One of the most important is the so-called
relaxation time T [5]

drK(w) (A g 0). (14)

A. Relaxation time T for thLe true Verhulst model

We have examined numerically the dependence of T
vs A (A ( 1) for different values of the deterministic
coefficients a, 5 ) 0 obtaining (with excellent accuracy,
see the right graph in Fig. 3)

AA2

g)2
v = 1(A = 1). (15)

If the "normalization" factor is cr = 1 or o = K(0) [5],
T given by (14) becomes "by the definition" the relax-
ation time of the ACF or of the autocorrelation coeffi-
cient, respectively. Note that for the deterministic case
(A = 0) Eq. (14) cannot be directly used, so the value
of T should be, generally speaking, speci6ed separately.
The first quantity (with o = 1) must be actually zero [23],
whereas the second one should be taken 1/pa ("lifetime"
of nonstationary states) [24] in the deterministic case. It
might suggest to identify the relaxation time of the auto-
correlation coefficient with the time of the system's relax-
ation. However, we will see on a particular example that
just the first integral (over ACF) reflects better the influ-
ence of the noise on the system's relaxation, so it seems
better to choose the o as the noise-independent quantity,
and interpret (14) as an additional noise-induced effect
on the relaxation of the system.

Using Eqs. (Al) or (A3) and carrying out the integra-
tion in (14) we obtain immediately the series (or contour
integral) representation of T. In the general case these
expressions are rather complicated. They radically sim-
plify for the true Verhulst model (see the last paragraph
of Appendix A).

0 0 ~ ~ I I I ~ I 1 I [ I I ~ I I I I I 'I
f I I I 0 ~ ~ I ~ 1 g I I 1 I \ ~ I I-2 —1 0 1 2

A/)a(

0..0 ~ 1 I I ~ ~ 1 I 1 '$ ~ ~ I I I I I I t $ ~ I I I I I ~ 1 I / I ~ 'I ~ 0 \ I \ T

A/la

FIG. 4. (Normalized) long-time relaxation rate against the "noise ratio. " The left and right graphs correspond to p = 1,
a = 0.2 (upper), 1, 5 and p = —0.2, a = —0.2, —1, respectively. For the positive p the relaxation of the mean value (to (x),t)
and decay of the (stationary) autocorrelation function are governed by the same long-time rates: (12) if A/~a~ lies inside the
interval determined by the positions of appropriate marks, or (13) when it is outside. Note that in the latter case the relaxation
is not purely exponential. On the right graph the "triangles" and "squares" indicate the points where the "transitions" in the
relaxation rates of (x&) and of K(w) appear, respectively. So, the "empty square" marks the position where relaxation of ACF
becomes dominated by the term Co (see the text), and these two rates are no longer equal. The dashed line (in fact almost
invisible on the graph), showing the relaxation of ACF for such a case, rapidly terminates on a certain value of A/~a~, starting
from which ACF no longer exists.
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The analytical proof of (15) is presented in Appendix B.
This very simple result shows that T given by Eq. (15)

(with the noise-independent 0) is proportional to D =
AA2 ("noise intensity" in the GWN limit). The "effec-
tive rate" a,ir ~ T A decreases with ~A~, which
remains in qualitative agreement with the previous anal-
ysis of long-time relaxation rates. Let us observe that
after the integration in (14) the asymmetry with respect
to the sign of A is lost.

As we have already mentioned the integral over the
autocorrelation coefficient [O' = K(0) = Var(x)], which
is equal to (1 —A)/a, is not a good quantity to repre-
sent the system relaxation. It linearly decreases with A,
whereas the relaxation time should increase with ~A~. In
the GWN limit (9) (cf. Marchesoni, Ref. [5]) it becomes
independent on the noise intensity and equal to the "life-
time" (1/a) of the deterministic nonstationary state, but
this is just coincidence.

Eq. (4) we obtain that for the positive system parame-
ters the first limit A ~ 0+ is appropriate, whereas for the
negative a, b, p, the point A = 0 should be approached
through negative values of A. In fact,

p(+)
p ( )

xpo ifx~0
~p+

where

po
) ———1+a/(D —aA): —1+a/D,

A —+0

P(+) = —1 —p, —1/A: goo,
A —+0+

p(-) p(+) p(-) p(+)

and where the sign (+) or (—) refers to the case of pos-
itive or negative system parameters, respectively. To be
normalizable [on (0, oo)] (16) requires just such a way of
carrying out the limit, the way resulting in

VI. CONCLUDING REMARKS

The relaxation and stationary properties of the exactly
solvable Verhulst model driven by the linearly coupled
white shot noise (with exponentially distributed weights)
have been considered. The stationary probability density
distribution, its shape, domain, and character of bound-
aries, have been examined versus the noise-controlling
parameter A, Fig. 1. %'e have shown that in spite of
occurrences of the so-called noise-induced transitions the
averages (moments) change continuously with A, Fig. 2.
The explicit expressions for the stationary autocorrela-
tion function have been found, and the asymptotic behav-
ior has been analyzed. It was shown that the long-time
relaxation rate is continuous as a function of A, but given
piecewise by different analytical formulas. The long-time
relaxation rate monotonically decreases with ~A~ (but it
is not symmetric with respect to the sign of A), Fig. 4. It
means that the noise slows down the relaxation. It was
shown that this effect may be relatively large, even for
the case of "small noise. " The so-called relaxation time T
(defined as the integral over the autocorrelation function)
has been examined for the true Verhulst model, and we
have found the simple relation T Ix A2. The comparison
of numerical and analytical results is provided in Fig. 3.

In Sec. V we have pointed out certain qualitative ef-
fects, which cannot appear for the case of GWN. Let us
now consider the GWN limit in more details. First of
all note that in order to carry out (9) we should remove
the implicit assumption A = 1(= D/A ), replacing the
dimensionless parameters a, b, and t by aA2/D, bA2/D,
and Dt/A~ in the formula of interest. The resulting ex-
pression„as a function of A, is usually singular at A = 0,
so the GWN limit should be taken with care. In partic-
ular, limits A —+ 0+ and A ~ 0 may be difFerent, and
then only one of them will lead to correct results. Using

]

P, (z) tx z '+'~ exp( — ),Dp,

which is the well-known form of the stationary probabil-
ity density for the GWN present. Therefore, only the
WSN cases specified by the relations

0(a(A or A(a(0, (17)
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APPENDIX A: AUTOCOVARIANCE FUNCTION

Suppose that the second moment (x2),& exists [see the
conditions in Eqs. (3)]. Then, the stationary autocovari-
ance function C(~) is given by the following formulas:

(a) For 0 ( pA ( p.a

with dimensionless parameter a[= O(A2)] and with suf-
ficiently small [A~, correspond to appropriate results for
GWN. Thus, the autocovariance function for GWN (and,
in particular, the behavior of the long-time relaxation
rate, cf. Graham and Schenzle [4]; [19]) is given by a lim-
iting form of Eq. (A3b) [case (b)]. Conditions (17) mean
also that the areas A/~a~ ( 0 (on the left graph in Fig.
4) and A/~a

~

) 0 (on the right graph in Fig. 4) are not
accessible in the case of GWN (especially, the difference
between long-time relaxation rates of the mean value and
of the autocorrelation is then not possible).

(I'(1+ —— ) I'(1+ 8o) ) .
—I' (—") I'(1 —v+ 80)

I'(v + j)I'(8z) [j + 6j] exp[0(j)w]
j!I'(v)I'(1 —v+ 6~)j[+v/A]

V V
+3+2 py 8jy 1 + vj y

1 v + 80j 1 (A1)
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where

g. = —+
A (a —A)(1 + zp, A)

'

1
i)(z) = —p, (a —A)z —1+ 1+zpA'

This equation results from term-by-term integration in
(10) [by the use of (ll)], where (x ) is given by Eq. (4.5)
of Ref. [15].

(b) For 0 ( pa ( pA and (c) for pA ( 0 ( pa the
calculation of C(7) is more complicated, because appro-

I

V
Qz A +Z)
b, = v —z +z,

V
&z =& —

A +Z)
d, =1+z,

a v R
A z

6 = V —
A

V
z a—A

1+ R
z

R
z

R2

Here and hereafter the upper and lower signs cor-
respond to cases (b) and (c), respectively, and R

V2

(A )A. Let

priate conditions required by (11) are not satisfied in gen-
eral. Let us introduce the notation

~q~-'"r(a, )I'(a, )I'(b, )r(b, )r(c, )r(c, )
zI'(v)I'(~(~ ))I'(—z+ R2/z)I'(z —Rs/z)I'(a, + c,)

(A2a)

where

I'(1 —v + —")I'(1 — ) (F (z) = st~ v —l, c„c,;a, + c„v-
l~&+A I'&— —A'p' (A2b)

I'(—~)I'(d, )I'(d, )F+(z) = „st(a,+ c, —v+ 1,c„c,; a, + c„d, + c„.l), (A2c)

respectively, and

a B~
»»(z) = ——2~»z(a —A)(z+ ).

C(r) =
—R—ioo

. 4(z),
27rt

where the second integral is taken along the counterclock-
wise oriented circle C(0, R) of the radius R at the origin,
is valid under the condition that all poles ( = z~(u)
(where uq = —K, and K = 0, 1, 2, . . .; u = a, b, c [and
d in case (c)]) lie outside the circle C(0, R). All the re-
maining poles z~(u) are then inside, as the images of the
former poles by the inversion with respect to this circle.

The restrictions related to the location of z~(a), z~(b)
[and z~(d)] validate the proper integral representation of
the transient mean value (Eq. (Bl) of Ref. [15]),and the
condition for zR (c) enables us to carry out the integra-
tion (over y) in Eq. (10) by the use of (11). Then, the
final form (A2) of the integrand in (A3a) results from the
identity (Luke [21])

st(p, q, r; v, u);1)

r( )r( )r( )=
r(p)r(~+ q)r(
x sF2(" p» u' p» 2:» & + q» & + r»1)»

where x = v+ m —p —q —r.
However, all these restrictions are not essential for the

convergence of the integrals in (A3a), and may be re-
moved in the following way (compare [15]). Let U~ =

Then, the following representation of autocovariance
function:

—R+ioo

I

res[4((), ((:u~ = —K)], where U = A, B, C, or D, re-
spectively, when u = a, b, c, or d.

The first integral in Eq. (A3a) may be evaluated as
the sum of residues at the poles lying to the left of the
line Re(z) = —R, P~ B~ in case (b) and P~(A~ +
C~ + D~) in case (c). The relations U~ = —UR, which
are easily verified by direct calculations of appropriate
residues, show that the second integral contains implic-
itly the contribution —

2 P~(A~+ B~+C~) in case (b)
and —

2 Qz (A~ + B~ + CK + D~) in case (c); among
that from the essential singularity (at z = 0).

It means that C(7) consists of the continuous part
K, (w) given by the integral over the circle in (A3a),
and of the discrete part such that the total contribu-
tion from the successive pairs of poles [z~(u), zK(u)] is
B~/2 —A~/2 —C~/2 in case (b) and A~/2 + C~/2 +
D~/2 —B~/2 in case (e), respectively. This formulation
enables us to write the following generally valid expres-
sions.

For case (b)
Kme, x Lmax

C(r) = Kc(r) —) Az —) Cl, + ) BM, (A3b)
K=O L=Lmin M=O

L=O M=O

+ ).Div,
X=[X+R]

(A3c)

where K~ „=[R —&], L;„=max(0, [—R —v+, 'z])»„= [R —v+ &], and the prime above the sum-
mation symbol indicates that terms BM with M E

[z —v —R, z —v+ R] should be removed.
For case (c)

Kmax

C(r) = K.(r) —).B~+) A~+ ).C~
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where K ~„= [R —v + &], and all the terms AL, with
L E [

—~ —R, —~ + R], and CM with M E [
—R —v+

&, R —v+ "&] are excluded from the summation.
The middle sum of (A3b) and the first sum of (A3c) are

empty for v ) 0. For v = 1 the last series in Eq. (A3c)
disappears (all D~ vanish). The term Ap lii Eqs. (A3b)
and (A3c) does not depend on r being equal to (x)2t. The
integrand of K,(r) written in the angular parametriza-
tion (z = Re'~) becomes explicitly real.

In a number of special cases the Clausen function 3FQ
of the unit argument may be summed up (see, e.g. , Luke
[21]). For instance, for v = 1 it simply turns to be unity
in Eq. (A2b) or becomes a Gauss hypergeometric func-
tion for Eqs. (Al) and (A2c), and may be expressed in
terms of I' functions,

where the path of integration consists of a large counter-
clockwise oriented circle of radius R at the origin, and of
three sufficiently small (clockwise oriented) circles cen-
tered at ( = —n —r, ( = —n, and ( = 0, respectively.

Evaluating the integral by the use of the Cauchy the-
orem one obtains

T~ = &+([R])

On the other hand,

TR =
C(O, R) C(o,e) C(—a, ~) C(—n —r, e)

e oc —. (B4b)
1

Re(c —a —b) ) 0. (A4)

APPENDIX B: ANALYTICAL DERIVATION
OF EQ. (15)

We want to show that for v = 1, A ( 1

drK(r) = (Bl)

provided the integral converges.
Note that it is sufficient to prove (Bl) in the certain

area of parameters a, A only, because such a result may
be extended by analytical continuation on the whole do-
main of the existence of the integral. Consider the case
0 (A ( a. Then K(r) is given by the series (Al) (with-
out the first term with j = 0), which takes the particular
form K(r) = 2 (oo)

(rj/(o'+ j)) '

(&+ rh

(B2)

a d( rn n+(
b' 2~i (n+ $)' g(r + n+ g)

(rg/(n+ g)),
, , (~+r) (& j)'—(B3)

where o. = A-', r = (a —A) ', (u j, = u(u+ 1) . (u+j —1), and

1 j(r+o. + j)= —exp r-r r(a+ j)
Thus, in the series representation of T = T+ the functions
Q+(j) = .

~

+~ .
l

are included.
Consider the contour integral

The first integral of (B4b) vanishes like R . In fact,
this integral for large B is estimated by the value of the
sum in (B3). Each summand with j ( R/2 is estimated
by 2R i(r)~/(n+r3~, and each term from the remaining
ones, say, with j = [R/2] + k by ( +„)~+~~~+" = (1—
A/a)~+~ ~+". Therefore, the whole sum does not exceed
2R 2Fi(l, r;n+ r;1) + &(1 —A/a)~+~ j. For A ( 1
the last series is convergent in view of (A4). Thus, the
conclusion follows.

The contribution to the second integral comes from
the first term of the series in (B3) only. Calculating the
residuum at the (second order) pole g = 0 one obtains
A /b2, which is just the right-hand side of Eq. (Bl).

In order to complete the proof, we have to show that
the third and fourth integrals of (B4b) vanish when
R —+ oo. To this end note that on the paths of integra-
tion Re(() ( 0. Therefore, we can replace (( —j) i by—

Jp dq e«~ ~& in all terms of (B3). In the limit R —+ oo
the resulting series approach 2Fi [1,r(/(n+(); a+ r; e q].
Assuming for a moment that Re(() ) —1 we can carry
out the integration over q, obtaining

a d( rn n+g
b2 2~i (n+ ()2 ((r + n+ ()

~r(o. + r)I'(1 — "+~)
X (B5)»n~gr(~+ r+ g)r(1 —( — "

&)

where the integral is taken along C(—a, e) or C(—&—
r, e), respectively. [The restriction Re($) ) —1 may be
removed by analytical continuation. ] The latter is equal
to zero because there is no singularity at ( = —n —r.
The former, in view of Eq. (7), vanishes like e oc R

In conclusion, taking the limit R ~ oo in Eqs. (B4),
we get

T~ = A /b = T+(oo) = T.

This finishes the proof.
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