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Model for coarsening froths and foams
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The coarsening process of froths and foams is described statistically in two dimensions by a
"random neighbor model. " This nonlinear dynamical model contains no free parameters; all rates
are determined dynamically. It describes normal growth, agrees with experimental results, throws
light on old data, and, hopefully, inspires new simulations and measurements. Lewis s lavr [Anat.
Rec. 38, 341 (1928); Am. J. Bot. $0, 74 (1943)], and some other properties, can be derived
analytically from the model.

PACS number(s): 05.70.Ln, 64.60.My, 68.90.+g, 82.70.Rr

I. INTRODUCTION

Soap froths and related physica! systems have recently
been investigated in very nice experiments [1—15] and
simulations [14—26]. The progress on the theoretical side
has been more scant [27—33], and a comprehensive theory
for froths, foams, and related domain boundary networks
is still missing. This is not to say that models for these
systems have not been suggested. The subject is believed
to have its conceptual equivalent to the ideal gas, Ising
model, and hydrogen atom in the ideal, dry soap froth,
which is believed to contain the quintessential physics of
a number of interesting problems in material science, ge-
ology, biology, . . . ; see [34], [35], and [36] for reviews. But
in contrast to the Ising model and the hydrogen atom,
the dynamics of the ideal froth has not been finally de-
fined, let alone solved, not even in two dimensions, where
von Neumann's law (see below) acts as a local decoupling
theorem. So for lack of better, computer simulations have
taken over the role of real theory in the discussion of ex-
periments; see, for example, Ref. [11].

But simulations are in a sense experiments themselves,
albeit ideal ones. Even when they reproduced experi-
mental results perfectly, they only provide us with an
algorithm, not an understanding in terms of a few, well-
understood principles. This, then, is where more sim-
plistic models become useful. In the construction of such
models, we ignore the system's less important properties,
and construct a more transparent description in terms
of the important ones. Which properties are what, we
decide ourselves, with an eye on the model's ability to
describe results from experiments and simulations.

In the model presented and solved below, a froth's
physical forces, unavoidable geometrical constraints, and
spatial disorder are considered important for the dynam-
ics of its individual bubbles. Correlations between prop-
erties of individual bubbles are judged unimportant and
neglected. The model thus arrived at is transparent in
its workings, contains no free parameters, and reproduces
experimental and simulation data well. It should be seen
as a minimal model: it was constructed with the min-

imum number of properties necessary to yield reason-
able results Mo. re properties may be added to refine the
model and make its predictions agree even better with
experimental results. This is discussed at some length,
but not done, in the present paper. The model and pre-
liminary results for its solution were brieHy described in

[30] and [37].
Section II below describes the system to be modeled.

Section III describes the model. Section IV describes the
model in scale-invariant form and the "normal growth"
following from it. Section V describes how the model was
solved numerically. Section VI presents the solution in
various ways. Sections VII—X describe various aspects of
the solution, and derive some of them analytically: the
topological distribution in Sec. VII, moments of this dis-
tribution in Sec. VIII, Lewis's law in Sec. IX, and the area
distribution in Sec. X. Section XI discusses one of the two
approximations, we have done, when defining the model.
Section XII concludes on what we have learned, points
out some challenges for simulations and experiments, and
suggests some ways to extend the model. Some ques-
tions of interest for further model building, which may
be answered by simulations and experiments, are also
given. Appendix A collects our notation, which is intro-
duced wherever needed throughout the paper. Appendix
B describes an analytical, ansatz-based, approach to the
model's solution.

II. THE IDEAL, DRY FROTH
IN Two DIMENSIONS

A froth has two kinds of dynamics, a fast and a slow.
On the short-time scale, it is a disordered systems with
an infinity of stable states. On the long-time scale, it is
a deterministic system with a relaxation dynamics that
may be as sensitive to initial data as chaotic systems are,
and with no stable state. After the instantaneous settling
of a froth in one of its multitude of stable states, the slow
dynamics may be observed: The pressure difference be-
tween neighbor bubbles causes diffusion of air molecules
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= v„= v7(n —6), V7 = —677 (1)dt 3

(von Neumann's law), where cr is the constant of dif-
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through the film forming the wall between bubbles. This
process takes the froth through a continuous series of
states, which are stable with respect to the fast dynam-
ics. Figure 1 shows two time series for two-dimensional
dry froths, photocopied by Glazier, Gross, and Stavans
at intervals of several hours [38]. The two-dimensional
froths were formed from three-dimensional froths caught
between two glass plates. They are called dry when the
film between bubbles has been drained of excess liquid
to its minimal thickness, is homogenous throughout the
froth, and much thinner than the typical bubble diame-
ter. The froths clearly coarsen with time.

The mechanism of coarsening is easy to understand: in
two dimensions, bubble walls in a dry froth are sections
of circles that join three at a time at 120' angles. The
angles are necessarily 120' in order for the tensions of
the three joining walls to balance each other, rendering
the froth static with respect to its fast dynamics. Thus
few-sided bubbles must have walls that curve outward.
That requires excess pressure relatively to the neighbors
in such bubbles. Consequently air slowly diff'uses through
the walls to the neighbors, and few-sided bubbles shrink
in time, to vanish, eventually, with a larger average bub-
ble size as result.

In two dimensions, simple geometrical arguments lead
to von Neumann's law for the rate of change with time t
of the area A of any bubble with n neighbors [39],

fusion through the bubble walls, ~ is the tension in the
walls, and the area A of the bubble is the two-dimensional
equivalent of its volume. Notice that the rate of change of
the area depends on only one property of the bubble, its
number of neighbors n, which is also called its topological
class, or its topology

Bubbles with topology n ( 6 shrink according to
von Neumann's law. When a bubble has shrunk to zero
area, it has disappeared from the froth, and thereby
changed the number of neighbors of some of its neigh-
bors; see Fig. 2(a). Figure 2(b) shows a different pro-
cess, neighbor Snitching, which also changes the number
of neighbors to the bubbles involved. We shall neglect
these so-called Tq processes in the present paper because
those that are not related to the vanishing of bubbles
are responsible for less than l%%uo of the topology changing
processes, according to experimental observations [38].
Those Tq processes that are related to the vanishing of
bubbles occur frequently [38]; but their net effect might
be negligible; see Sec. XI. So, effectively we have no
explicit Tq processes in our model. This is our first ap-
proximation. It keeps our model simple. So simple that
it will contain no free parameters.

Prom Euler's theorem for the plane follows that the av-
erage number of neighbors to a bubble is 6. The vanishing
processes sketched in Fig. 2(a) respect this theorem by
conserving the average value 6: a vanishing bubble has
less than six neighbors; its deficit, 6 —n, is transferred
to its neighbors in the vanishing process, thereby keep-
ing constant an average equal to 6. For example, when a
bubble with topology 5 disappears, two of its neighbors
lose an edge, and one gains one.

The correct description of how these vanishing pro-
cesses affect the ensemble of bubbles involves neighbor
correlations. Nearest-neighbor correlations are expressed
in Aboav-Weaire's law,

m(n) = 6 —a+ (6a+ pq)/n (Aboav-Weaire's law),

(2)

(C) (0) (c)

where m(n) is the average topology of nearest neighbors
to bubbles with topology n, a is a constant of order 1,
and p2, defined below, is the second moment of the dis-
tribution of n, [40—44]. Experiments and simulations give
pq 1.4 —1.5 [36] and p2 1.2 [25]. As our second and
last approximation we neglect all neighbor correlations,
efFectively replacing m(n) with m(6) for vanishing bub-
bles. This approximation is worse for bubbles with fewer
sides. But because they turn out to be rare, our results
turn out quite well.

III. THE RANDOM-NEIGHBOR MODEL

(F) (F')

FIG. l. Evolution of (a) initially ordered and (b) initially
disordered soap froths in 2D [38]. Photos were taken after 1
h, 2.52 h, 4.82 h, 8.63 h, 19.87 h, and 52.33 h for series (a),
and after 1.95 h, 21.50 h, and 166.15 h for the series (b).

&-(t) = dA p„(A; t).

Let p„(A;t) denote the froth's relative frequency of
bubbles with area A and topology n at time t. A notation
for the frequency of bubbles with topology n and any area
will also be useful,
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The time evolution of p„(A; t) is partially determined by
von Neumann's law,

l

—+v„
l p„(A;t) =8,(8 8)

BA)

where the right-hand side 8 must describe the conse-
quences of the fact that bubbles with n ( 6 disappear
from the ensemble when their areas vanish. It is found
as follows.

Since the soap froth is space filling, when the number
A' of bubbles in some fixed reference area A decreases,
the average area A of bubbles within the reference area
must increase,

A = JVA w A/A = —A'/JV.

The rate at which bubbles disappear is

l/a=) I „l&„(0;t)
k=0

This disappearance of some bubbles increases the proba-
bility for the remaining bubbles. Consequently, the right-
hand side of Eq. (4) must contain an additive term

) [ i,v]pI, (0;t) p„(A;t) = A/Ap (A;t).
&. 0

This term assures conservation of probability,

' c+(n —1)

( A/A —(c++ c )n
c (n+1)

, 0

for m= n —1

for m=n
for m = n+1
for m P n —1,n, n+1

with

(3) Correlations are weak according to Aboav-Weaire's
law, suggesting that we may neglect them entirely with-
out seriously compromising results.

Neglecting correlations, we assume that any bubble is
the neighbor of any other bubble with a probability pro-
portional to its number of edges, or neighbors. Specifi-
cally, we assume that any bubble is an a+ected neighbor
of any vanishing bubble with a probability proportional
to the number of edges of the first bubble. With this
assumption, we have also given a specific answer to a dif-
ficult open key question in the formulation of any theory
for coarsening froths: when a four- or five-sided bubble
vanishes from a froth, which of its neighbors have their
topologies changed'? See [32, 1] and compare with [12].
Because of this assumption we call the model a "random-
neighbor model" [45]. Our random-neighbor relationship
is "annealed, " not "quenched, " meaning it is rechosen,
whenever it is used. Consequently, the only geometrical
relationships respected by this model are Euler's theorem
and those embodied in von Neumann's law.

Thus we arrive at a transition rate T„(t) from topol-
ogy m to n of the form

dAp„(A;t) =. ) P„(t) =1. (6) c, = —,'Iv,
l p, (0;t),

As pointed out in Sec. II, the vanishing processes
sketched in Fig. 2(a) respect Euler's theorem for the
plane, the average topology is 6, and conserved,

5

c =
s ) (k —6) vppg(0;t)+c+,

1c=o

dAp„(A;t) = ) nP„(t) = 6

(Euler's theorem). We choose to neglect neighbor cor-
relations in our description of these vanishing processes.
We have three motivations to do so.

(1) We wish to write down a minima/ model —the sim-
plest possible model yielding realistic results —as an ana-
lytic device for studying the relative importance of vari-
ous features of froths. Surely, whatever features we leave
out of the model cannot contribute to results, while it is
impossible to gauge the relative importance of features
included. We do not see this minimal model as a final
model, but rather as a starting point to which more fea-
tures may be added for realism, once the minimal version
is understood. That is not done in the present article,
however.

(2) Surely, a minimal model will more willingly yield
results than a more complex one. From many different
contexts it is well known that the neglect of correlations
is a crucial step towards a solvable model. Here too.
As shown in Appendix B, this step renders the model
"almost solvable" by analytical means. A popular hy-
pothesis for a certain distribution function is falsified; a
number of analytical results are obtained below.

A/A = ) [vk[ pi, (0; t). (10)

for n = 0, 1, 2, ... . (11)

This first-order partial-differential equation is neither lin-
ear nor local, since p (A; t) is multiplied by T which
contains py(0;t), k = 0, 1, 2, ... , 5. One can easily show,
though, that Eq. (11) makes the obvious relation

Here 6c+ and 6c are the rates at which topological num-
bers are incremented and decremented, respectively, by
the vanishing processes in Fig. 2(a). We simply neglect
the neighbor switching process shown in Fig. 2(b). We
have two motivations for this: our desire to define a
minimal model and experimental indications discussed
in Sec. XI. This leaves us with a model containing no
adjustable parameters at all. All rates are determined
dynamically.

Our final result for the master equation is

(g g ) n+1
l

—iv„
l p„(A;t) = ) T„, p (A;t)
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(a)

by an ensemble of individual bubbles obeying von Neu-
mann's law and Euler's theorem, but keep track of neigh-
bor relations. Where our model is annealed, their models
are quenched. Consequently, they have no master equa-
tion expressible in terms of single-bubble distributions.
All the mentioned models resemble each other, because
they all embody von Neumann's law and Euler's theorem.
They differ only in their treatment of neighbor relations
in topology changing processes. Apparently small dif-
ferences in that treatment have profound consequences
for the models' tractability, dynamics, and predictions,
however.

IV. SCALE-INVARIANT EQUATIONS,
NORMAL GROWTH

FIG. 2. (a) Vanishing of domains with 3, 4, and 5 neigh-
bors, so-called T2 processes. (b) Neighbor switching, so-called
T1 process.

A=) dAAp„(A;t), (12)

consistent with Eq. (10) when Eq. (7) is satisfied.
Equation (ll) is almost identical to the "gas approxi-

mation" by Fradkov, Udler, and Kris [46] with a crucial
difFerenee: We insist on having no neighbor correlations
in the model, and are consequently forced to accept the
presence of bubbles with 0 and 1 edges, in addition to
those with 2,3,4, ... occurring in [46]. We are forced the
following way: in the random choice of neighbors to a
vanishing bubble, bubbles with topology n are chosen
with probability proportional to n to become bubbles
with topology n —1. Consequently, the dynamics forces
all non-negative topologies into the ensemble. As we shall
see, our model assigns negligible probability to bubbles
with 1 and 0 edges. So though they are mathematical
artifacts, we accept their presence in order to be con-
sistent with the random-neighbor approximation. As a
fringe benefit, this also keeps the model mathematically
simple, to an extent that makes it possible to obtain sev-
eral results analytically. Actually, our model is so simple
that it is almost solvable when a simple assumption is
made; see Appendix B. Another difference to the model
in [46] is our dynamical definition of c~ above. In [46], c+
describes all topology-incrementing processes, i.e. , both
T~ and T2 processes, and is not determined dynamically,
but by fitting to experimental data. We could do that,
too, but we find a parameter-free theory more challenging
since its case can be argued, as we have done.

Equation (11) also resembles a theory by Marder [47],
but our expression for T„~ is much simpler. It also re-
sembles a mean-field theory by Beenakker [48], with the
crucial difFerence that Beenakker makes a specific ansatz
for the shape and topology n of a bubble with a given area
A. Finally one may compare our model with the simula-
tions of Fradkov and Udler and Beenakker, described in
[49] and [50], respectively. They also approximate a froth

and dimensionless functions

f„(x;t) = A(t) p„(A;t),

we have

(14)

p„(t) = dx f„(x;t),

and the master equation (ll) takes the form

0
A f„(x;t) = —

[
—(n —6)+Ax] + 2A

Ot

—(ci + c )n f„(x;t)

+c+(n —1)f„ i(x; t)
+c (n + 1)f„+,(x; t). (16)

Here c+ and c have been redefined by absorbing a factor
A/vr into them, so that now they are dimensionless,

5

c+ ——s fs(0;t), c = s ) (k —6) fg(0;t)+cp. (17)

So A is now

(18)

Finally we need

A(t) = dt'A(t')

to have a closed set of equations. In a numerical inte-
gration of Eq. (16) it is more convenient to work with a
scale-invariant, dimensionless "time" parameter

Our master equation (ll) contains only one indepen-
dent, dimensionfull parameter, v7 for example. We ab-
sorb a factor v7 in t. Then t has dimension area,
and the rates in Eq. (1) become dimensionless integers:
v„= n —6. Introducing the relative area

x = A/A(t),
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A(t')
(20)

since Ag~
——~.8 8

The norm and the two first moments of the dimension-
less distributions f„(x;t) are conserved as a consequence
of Eqs. (6), (7), and (13),

Po=). dxf„(x;t) = ) P„(t)
n=o

dxf(x) = 1, (21)

Pi =).
n=o

dxnf„(x;t) = ) nP„(t) = 6,
n=o

(22)

(x) =): dxx f„(x;t)

dxxf(x;t) = 1. (23)

In these equations we have used the definition

f(* t) =).f (»t)
n=o

(24)

= —,'(c - c+)[(-+1)f-+i - (- - 1)f--i]
+ 2 (c+ + c ) [(n + 1)f„+i —2nf
+(n —1)f„,]. (25)

Here the first term on the right-hand side describes a flow
of probability along the n axis with velocity —6(c —c+).
The second term describes diffusion of probability along
the n axis with diffusion constant 3(c++c ). This difFu-
sion term is the only dispersive term in the equations. It
is responsible for their having a unique attractive fixed
point for their development in time, in the form of a sta-
tionary solution f„(x). The corresponding value for A is

obviously also stationary, and consequently A = At at
the fixed point. This scaling law is usually expressed in
terms of a characteristic length-scale, which consequently
is proportional to ti~2. The exponent 1/2 is called the

for the frequency of bubbles with relative area x and any
topology. In Sec. VIII we detail how these conservation
laws are satisfied by Eq. (16).

Equations (16)—(19) are the fundamental equations of
our theory. The coupled, nonlinear and nonlocal partial-
difFerential equations (16) describe transport of proba-
bility and dilation along the x axis, and transport and
diffusion along the n axis. The transport in the x vari-
able is just von Neumann's law, while the dilation term
Ax

& reflects the time dependence of the unit A in which
x measures areas. The terms containing c+ and c can be
written as a sum of a transport term and a diffusion term
for the probability distribution for topology, n/6f„(x; t), '

—(c~ + c )nf„+ c+(n —1)f„ i + c (n+ 1)f„+i

V. NUMERICAL SOLUTION

The master equation (16) was integrated numerically
to t = oo, effectively, to find its fixed-point solution f„(x)
as limi ~ f„(x;t). This was not an entirely trivial task.
From the physical point of view, the fixed point is at-
tractive, and by integrating Eq. (16) forward in time we
should end up at this fixed point irrespective of our choice
of initial state, as long as this state does not belong to
the set of repulsive fixed points

f (*) = ~,sf(x) (26)

where f(x) is an arbitrary, non-negative function of x & 0
satisfying Eqs. (21) and (23). From the numerical point
of view, however, the fixed point is hyperbolic: any viola-
tion of the conservation laws (21) and (22) by discretiza-
tion errors, round-off errors, or finite-size errors, will grow
exponentially in time, and entrain exponentially growing
violations of Eq. (23). We used f„(x;;r~) with x, = iAx
and ~, = jar as numerical variables, and wrote an algo-
rithm for these variables which conserves their normal-

growth exponent. Its value is a consequence of von Neu-
mann's law.

At the attractive fixed point, the froth's coarsening
process is self-similar, since all distributions f„(x) for rel-
ative areas are constant; the only time-dependent quan-
tity is the overall scale set by A(t) Th. is is called normal
growth. Normal growth was established experimentally
for 2D soap froths by Smith [51] and, independently, by
Fullman [52] in 1952. Almost 30 years later, Aboav ana-
lyzed a different set of Smith's original data, and found
p, 2, the second moment of P„, increasing linearly with
time [42]. This absence of normal growth instigated
much creativity until Glazier, Gross, and Stavans demon-
strated experimentally that Aboav's finding for p, 2 was
transient behavior [38]. Normal growth was only recently
rigorously reestablished experimentally by Stavans and
Glazier [1],Stavans [3], and Glazier, Anderson, and Grest
[11]. In simulations representing the 2D froth by a Potts
model, normal growth was established in [53, 54]. In di-
rect simulations of froths, the second topological moment
p2 has been shown to be time independent asymptoti-
cally, but with some disagreement over its value [16,25].
Herdtle and Aref have rather convincingly demonstrated
that the topological distribution P„ is constant asymp-
totically in time, and independent of initial conditions, in
their direct simulations [25]. The vertex models studied
by Kawasaki and co-workers are computationally more
efficient than the ideal froth, and normal growth with ex-
ponent 1/2 has been established for these models, even
though they do not obey von Neumann's law [22].

In general, these demonstrations of normal growth are
difficult because it is pursued as an asymptotic property
of the system's dynamics for t ~ oo. Not that there is
any other way to do this. But since one always has to
start experiments and simulations with a finite sample,
and bubbles disappear as asymptotia is approached, the
closer the approach is, the poorer are the statistics.
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ization and two first moments exactly, without any dis-
cretization errors. The algorithm was implicit to assure
numerical stability, and was solved by Gauss elimination
with back substitution. We found finite-size effects neg-
ligible at the fixed point, when the necessary cutoffs in x
and n were chosen as x „=25 and n „=30. We set
f„(x;t) = 0 beyond these cutoffs, and used open bound-
ary conditions, i.e. , probability could flow out of the
system across the cutoffs, but no probability could flow
into the system, since f„(x)vanished beyond the cutoffs.
With these cutofFs, P„.„10 i and f(x ~„) 10
so the rate at which the conservation laws (21), (22), and
(23) were violated by loss of probability at the cutoffs was
negligible compared to the rate at which round-off errors
were introduced.

The values for po, pi/6, and (x) were monitored, and
whenever they difFered from 1 by more than 0.5 x 10
f„(x) was mapped back into the physical subset of dis-
tributions, and thereby onto a trajectory flowing into
the fixed point. This was done by multiplying it by
nexp( —Px —pn), and choosing n, P, and p such that
po ——1, pr = 6, and (x) = 1. Since the fixed point
is unique, and attractive in the physical degrees of free-
dom, the fixed-point result for f„(x) is independent of
how we get there. But it is, of course, not possible to
give the time evolution of f„(x;t) with this method.

Evidently, it is crucial to the success of our algorithm
that its makes f„(x;r)'s physical component flow faster
towards the fixed point than it makes its unphysical com-
ponent flow out of it. This is why the algorithm was engi-
neered to conserve pe, pr, and (x) without discretization
errors. With only round-off errors and negligible finite-
size errors contributing to the unphysical components,
this inequality between flows was amply fulfilled. Yet the
mapping back to physical distributions had to be applied
regularly.

As the initial state we used

f (* o) = P (0)f(x o)
P (0) =1/7(6/7)"
f(x; 0) = exp( —x)

x axis, which is necessary to make f (x; t) converge to its
fixed-point form, comes about only by dissipation along
the n axis, combined with transport along the x axis with
velocities depending on n. This is why the convergence
to the fixed point is slow.

VI. THE DISTRIBUTIONS f„(z)

Our fixed-point result for the functions f„(x) are
shown in Fig. 3. Table I lists our results for f„(0), P„
(see Sec. VII), and (x)„(see Sec. IX). Table II gives A,
c+, and c, and Table III gives the moments of P„(see
Sec. VIII).

The distributions f„(x) are traditionally displayed
as in Fig. 4(a), which shows xf„(x)/logro(e) against
logic(x) as fully drawn curves. The graph with the high-
est maximum corresponds to n = 6. Peaking to the right
of it are curves corresponding to n = 7, 8, 9, 10, and,
barely visible, 11. Peaking to the left of it are curves cor-
responding to n = 5, 4, and, barely visible, 3. The areas
under the curves are P„, the frequency of bubbles with
topology n and any area. The dashed curve shown is the
graph of xf(x)/logio(e), i.e. , the frequency of bubbles
with relative area x and any topology. The dotted curve
shown is x exp(x)/ logic(e), the distribution for x which is
obtained when the master equation (16), and the physics
embodied in it, is ignored, and the entropy of f(x) is
maximized under the constraints given in Eqs. (21) and
(23)

The results in Fig. 4(a) may be compared with those in
Fig. 4(b), obtained in a Monte Carlo simulation that rep-
resents the froth by a Potts model on a triangular lattice,
quenched from infinite to zero temperature [[53],Fig. 21].
Notice the trivial factor 10 between the quantities plot-

TABLE I. f„(0),P„,and (x)„at the attractive fixed point
of the scale invariant master equation (16).

with larger cutoffs than those mentioned above, but also
the rather large value 0.8 for Ax. This large value for
Ax permitted use of a rather large value for A~. After
a computationally fast convergence to the fixed point on
this coarse lattice, the cutoffs were lowered, since the so-
lution showed this was possible, Ax and Aw were halved,
and the integration continued on the finer lattice from
the state obtained on the coarser lattice (interpolated,
where necessary, to define its values on the finer lattice).
This procedure of solving, halving Lx, adjusting L7, and
solving again, was repeated several times. In the end,
converged results for each lattice were used to extrap-
olate to the continuum limit, Ax = 0. This procedure
much reduced the computational task of approaching the
fixed point. This was necessary, because this approach
is inherently slow on physical grounds. As we mentioned
in Sec. IV, the master equation (16) is dissipative only
along the n axis. The dissipation of probability along the

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

f (0)
0.262 x 10
0.146 x 10
0.319 x 10
0.340 x 10

0.179
0.416
0.270

0
0
0
0
0
0
0
0
0
0
0
0
0
0

P„
0.793x 10
0.471 x 10
0.111x 10
0.132x 10
0.827x 10

0.258
0.347
0.184

0.747x 10
0.266 x 10
0.870x 10
0.267x 10
0.787x 10
0.224 x 10
0.622 x 10
0.169x 10
0.450 x 10
0.118x10 5

0.305x 10
0.780x 10
0.198x 10

(*)
0.300
0.317
0.341
0.375
0.430
0.535
0.777
1,42
2.16
2.94
3.76
4.59
5.43
6,27
7, 13
7.99
8.85
9.71
10.6
11.4
12.3
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TABLE II. A, c+, and c as determined from f„(0) in
Table I.

A
0.890

C+
0.0693 0.318

ted in Figs. 4(a) and 4(b). The two sets of results are
seen to agree both qualitatively and, to quite an extent,
also quantitatively. The "wiggles" in the curves shown
in Fig. 4(b) are due to counting and binning problems
caused by limited statistics.

Log-normal distributions have been used with some
success to describe distributions like those shown in
Fig. 4(b), but obtained from 2D sections of SD polycrys-
tals [55]. Clearly, the distributions obtained here and
shown in Fig. 4(a) come closer to those in Fig. 4(b) than
any log-normal distributions possibly can, because they
are symmetric about the positions of their maxima. In
addition to this phenomenological advantage, our distri-
butions are also the result of a theory, and involve no
fitting.

Figure 5(a) shows f„(x)/P„against x for n = 5, 6, 7,
and 8, The curve with maximum at x = 0 corresponds to
n = 5. As n increases, the x coordinate of the maximum
increases, and the maximum value decreases. One may
convince oneself, using Eq. (16), that f„(x) ~ x" s for
x 0 for n & 6. This is also seen in Fig. 5(a). These
curves should be compared with those in Fig. 5(b), which
are experimental results for 2D soap froths (full curves)
and simulation results for a Potts model on a triangular
lattice (dashed curve) ([ll],Fig. 19). These figures, too,
are seen to agree both qualitatively and to some extent
quantitatively. It would be very nice to have less noisy
experimental and simulation results to compare with.

Figure 6 shows f„(x) against x plotted with a loga-
rithmic second axis in order to make visible the graphs
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I:I
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corresponding to small and large values for n. One sees
that f„(x)decreases exponentially for x large. The graph
just visible in the lower left corner of the figure is that
of fp(x) T. he decreasing graph immediately above it is
that of fi(x), etc. up to fis(x) just visible in the lower
right corner of the figure. The smooth and regular nature
of the curves invites speculations whether simple analyt-
ical expressions for them exist. After all, Eq. (16) con-
tains only integers —with 6 having a special status —and
the constants A, c+, and c themselves determined from
Eq. (16). Since Eq. (16) maximizes the entropy, the ex-
ponential function occurs naturally. But since the integer
6 replaces 2~ in our kind of two-dimensional geometry,
not even vr may occur naturally. Unfortunately, we know
no such simple expressions for f„(x), but Appendix B
gives an impression of what they might look like. Here
we only remark that the functions f„(x) shown in Fig. 6
seem to decrease as exp( —3x) for x & n.

Figure 7 shows yet another way to present the distri-
butions f„(x): The curves shown are P„", p f„~(x)/f(x),
starting with the curve for n = 3 in the lower left corner
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FIG. 3. Distributions f„(x) vs x, starting with n = 3 in
the lower left corner. Distributions having n = 0, 1, and 2
are too small to show in this plot. For n & 6 and x 0,
f-(*)-z" '.

FIG. 4. (a) Fully drawn curves: distributions
zf„(z)/ log, p(e) vs log, p(x). Dashed curve: their sum
zf(x)/ logip(e) vs logip(x). Dotted curve: distribution
z exp(z)/ logip(e) vs logip(z) ~ (b) Potts model simulation re-
sults for 0 lz f„(x)/logip(e) .vs logip(z) (fully drawn curves),
and their sum 0 lxf(x)/logip. (e) (dashed curve); from [53].
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TABLE III. Moments and width of topological distribution P as obtained with the ran-
dom-neighbor model (RNM) and in experiments [11].

Source
RNM
Experiment

po
1
1

pz
6

5.933

pg
1.70
1.486

P3
1.34
1.105

p4
12.4

7.154
0.936
0.940

of the Bgure and ending with the curve corresponding to
n = 17 just visible in the upper right corner. The vertical
distance between the (n —1)th curve and the nth curve
is f„(x)/f(x) So .the figure shows the partitioning of 1
into f„(x)/f (x) for 0 & x & 10. Beenakker's mean-field
theory in [48] replaces the curves in Fig. 7 with vertical
lines at specified x coordinates. It is rather obvious from
Fig. 7 that (n) approximately is a first-degree polyno-
mial in x.

A P„—= Os „(n —6)f„(0;t) + AP„
—d

ck
—(c++ c )nP„+ c+(n —1)P„
+c (n+1)P„+„

where 0 is Heaviside's function

1 for k)0
0 for k %0.

(28)

VII. THE DISTRIBUTION OF TOPOLOGY P„

We obtain an equation for P„by integrating both sides
of Eq. (16) with respect to x,

1.6

1.2

0.8

0.4

Since Stavans, Domany, and Mukamel recently have sug-
gested a somewhat similar equation [28], we compare the
two equations in some detail: In [28], the notation xr is
used, where we use P„. To avoid confusion, we maintain
our own notation. There are three difFerences between
our Eq. (28) and theirs.

(1) We choose any bubble as neighbor to a vanishing
bubble with a probability proportional to the number of
sides possessed by the chosen bubble and the frequency
with which its topology occurs. This gives the explicit
factors n and n+ I in the last three terms in Eq. (28), and
the factors P„and P„~i they multiply. In [28], neighbor
bubbles are also chosen at random, but simply with the
frequency P„with which they occur.

(2) In [28], bubbles with zero, one, and two neighbors
are excluded from the theory. The terms assuring this in-
troduce nearest-neighbor correlations, and give a higher-
order equation in P„ than ours. We permit bubbles with
zero, one, and two neighbors as a mathematical artifact,
forced upon us by our insistence on a theory without
correlations. Simpler equations result.

(3) In [28], the equation corresponding to Eq. (28) con-
tains three unknown functions, the equivalents of fs(0; t),
f4(0;t), and fs(0;t). Their values at t = oo are treated

l.6 I

(b)
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0/ l.6 0.01
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n=7 n =8 0.001

0.0001

0
0

I

4 Q 4 5
0.00001

FIG. 5. (a) f„(x)/P vs x for n = 5, 6, 7, and 8. (b) The
same functions from 2D soap froth experiment (fully drawn
curves) and Potts model simulation (dashed curves) [ll] .
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FIG. 6. f„(x) vs x with logarithmic second axis.
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o.e

0.6

0
g 0.4

~ &

0i IH

0.2
c5

10

FIG. 7. The partitioning of 1 by f„(x)/f(x) for x E [0, 10).
The curves shown are Q„, p f„I(x)/f(x) vs x, starting with
n = 3 in the lower left corner of the plot.

and 6 are significant. They may not signal a shortcoming
of our model, however, but rather a difference between
the experimental froths and the ideal, dry, 2D froth we
model: while it is experimentally well established that
P & P6 both for foams and for low anisotropy metals,
Herdtle and Aref report Ps ) P5 by a factor 1.2 from
their extensive simulations of ideal, dry froths in 2D [25].
Clearly, we should compare our result with theirs rather
than with experimental results, when the two types of
results difFer, since it is the ideal, dry 2D froth we model.
Unfortunately, Herdtle and Aref do not report their nu-
merical values for P„apart from Ps = 0.35—to be com-
pared with our value P6 ——0.347—so a closer compari-
son is not possible. We can only compare our value for
Ps/Ps, 1.34, with their value 1.2. Comparing again with
experimental values for 2D soap froth listed in [[11],Ta-
ble I] and [[35],Table VII], we notice that our values for
P„come closer than any of the mean-field results listed
in [[11],Table I] and [[35],Table VII]. Our results for P„'s
moments are discussed in the next section.

as free parameters and used to fit P„ to experimental
results. We have f„(x;t), not P„(t), as a fundamental
variable, and thereby obtain a closed set of equations,
the master equation (16). This set of equations uniquely
determines f(x; oo), and f(0; oo) with it, independent of
initial data. Our P„(oo) is just the integral of f„(x;oo),
with no parameters to be fitted.

At the fixed point, the left-hand side of Eq. (28) van-
ishes, and we can find P„'s asymptotic dependence on n.
Assuming P„A",we find

C4
-4

bg)0

~ ~

(a)

0= —(c++c )A+c+A +c A, (30)

Poc( c/+c)"n~ ('- '+)j '[1+ai/n+O(l/n )], (31)
—A(A —c + c+)(c + c+)

Gy
2(c —c+)s. (32)

which is solved by A = 1 and by A = c+/c . So P„
can be any linear combination of 1 and (c+/c )", with
P„~ (c+/c )" obviously being the only normalizable
solution. We have also found the first two correction
terms to this result in a systematic expansion in 1/n,
and have

0.4

0.3

0 2 4 6 8 10 12 14 16 18 20
n

(b)

Figure 8(a) shows our result for logip(P~). The expo-
nential decrease at large values of n shows clearly. So
does the relative unimportance of P„ for n = 0, 1, and 2.
The numerical values for P„are given in Table I.

Figure 8(b) shows our result for P„as filled circles, and
the experimental values given in [ll] as diamonds with
error bars. The two sets of results are seen to agree, albeit
with some discrepancy for n = 5 and 6, where the exper-
imental error bars are smallest. A comparison of our val-
ues for P„with the experimental values gives y~ = 14.3.
There are nine degrees of freedom in the 11 data points
we compare with, because they satisfy the linear con-
straints pp = 1 and p, i = 6. Consequently, we have 12'Fo

backing for the hypothesis that the data are described
by our results. We believe that the discrepancies at n = 5

Pn 02—

0.1

%/ ~ IJ

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

FIG. 8. (a) log, o(P„) vs n. (b) P„vs n Filled circles.
show results of the random-neighbor model. Diamonds with
error bars are results from 2D soap froth experiments [11].
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VIII. MOMENTS

By summing Eq. (28) over n, we find

—d
A —po = A(po —1).

A—p, i = (A —c + c+)(pi —6).

It is easy to prove that A ) c —c+, so Eq. (34) shows
that Euler's theorem, p, i = 6, is conserved in time, if it
is satisfied from the start, but also that it is a repulsive
fixed point for the dynamics. Similarly, we find for (x):

-d
A—(x) = pi —6po,

dt
(35)

which shows that even if initially (x) = 1, as it should be,
it does not remain at this value, if p, i/po = 6 is violated
for example by round-off errors in a numerical integration
of Eq. (16).

The moments p~ beyond the first two do not have
fixed values, and their equations derived from Eq. (16)
contain some information about the fixed-point solution
to Eq. (16). For example, the second moment obeys

5

A —p, z = —) (6 —n) f„(0;t)+6(ci+c )
n=O

e

+[A —2(c —c+)]p (36)

This equation tells us two things. First, the total prob-
ability po is conserved in time, as it should be, by our
model, provided it is 1 from the start. Second, the value
1 is a repulsive fixed point for the dynamics; so any dis-
cretization or round-off error in a numerical attempt to
solve Eq. (16) will grow exponentially with time. Put
another way: the attractive fixed point for the Markov
process described by Eq. (16) is elliptic only for the phys-
ical degrees of freedom. Viewed as a numerical problem,
other degrees of freedom are invoked, and the fixed point
sought is hyperbolic.

The situation is the same for the other two conserved
moments: By multiplying both sides of Eq. (28) with n,
and summing over n, we find

point. The time dependence of p2 expressed in (36), how-
ever, may be used to explain the nonmonotonic approach
of pz to its asymptotic fixed-point value observed for an
initially ordered froth in [[1], Fig. 1], [[11],Fig. 9], and
[[16], Fig. 1]. Using the definitions (17) and (18), we
write out (36) as

—pz = s(3+ pz)fs(0 t) ——',(6 —pz)f4(0;&)

—18fs (0) t) —
s (36 + pz) fz (0; t)

s (30 + p&) fi(0 t~)
—6(30 + / &)fo(0; t).

(38)

In an ordered froth consisting mainly of six-sided bubbles
with a low density of five- and seven-sided bubbles, pz is
small —actually equal to Ps + P7 = 2Ps—and the right-
hand side of (38) contains only non-negative terms. To
the extent five-sided bubbles vanish, fs(0; t) ) 0 and p, z

grows exponentially plus linearly with time. The vanish-
ing of five-sided bubbles creates more five-sided bubbles
from the predominant six-sided ones, and some four-sided
bubbles from five-sided ones. Both creation processes in-
crease pz s value by increasing P5 and P4, while it is only
later, when the four-sided bubbles have shrunk to van-
ish, that the second term on the right-hand-side of (38)
turns negative from zero. It takes even more time be-
fore three-sided bubbles are created from four-sided ones
and the third term on the right-hand side turns negative
from zero, and so forth for the fourth, fifth, and sixth
terms. The key point then is as follows: (38) shows that
it is only the vanishing of bubbles with four or fewer sides
that will decrease p2, and only if it happens at a suKcient
rate compared to the vanishing of five-sided bubbles. But
before four- and fewer-sided bubbles can vanish at a suf-
ficient rate, they must be created. And their creation
increases p2. Consequently, pp must first increase and
keep increasing, overshooting its equilibrium value, be-
cause only through this increase and with a delay —the
time it takes few-sided bubbles to shrink to zero area-
can those processes get started which will make dpz/dt
decrease and vanish.

Our numerical results for P~'s width

At the fixed point, the right-hand side of this equation
vanishes, and we have

iv = ) /n —6/P„
n=O

(39)

) (6 —n)sf„(0) —6(c++c )
n=O

P2 =
A —2(c —c+)

For p, 2 & 0, the numerator and denominator in this ex-
pression must have the same sign. This gives two in-
equalities between the values of f„(0;oo), n = 0, . . . , 5.
Similar equations of increasing complexity may be de-
rived for higher moments. These fixed-point equations
must not be read as relations between more or less free
parameters, however. They are direct consequences of
our master equation which also determines the values of
A, c~, c, and f„(0), n = 0, 1, . . . , 5 at its unique fixed

and moments at the fixed point are shown in Table III,
together with experimental values for 2D froths from [11].
Our value for the second moment may also be compared
with the values obtained in direct simulations of the ideal,
dry, 2D froth. This is a more relevant comparison when
the quality of our two approximations is the issue, since
the contribution of nonideal efFects in experimental re-
sults is unknown. Unfortunately there is no agreement
between simulation results: p2 ——1.42+0.05 according to
[16], while pz = 1.2 according to [25] with no error bars
given. The error bars are significantly smaller than the
discrepancy of 0.2, however, judging from Fig. 10 in [25].
See [25] for a discussion of this discrepancy. It would be
nice and useful if the precision of direct simulations could
be pushed to a level where higher moments could also be
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IX. LEWIS'S LAW

Lewis discovered that a simple linear relationship is
obeyed by cell structures in cucumber skin, human am-
nion, and pigmented epithelium of the retina [56]. With
our notation, and in terms of scale invariant, dimension-
less variables, it reads

(x)„=a.(n —6) + 1 (Lewis's law). (40)

Most undifferentiated biological tissues seem to obey this
phenomenological law, though the evidence is not conclu-
sive [57, 13]. Rivier and Lissowski have derived it very
elegantly by a simple maximum entropy argument ap-
plied to the topological distribution P„[58—60], and Riv-
ier has suggested that von Neumann's law may be valid
foz averages as a consequence of Lewis's law, even when
von Neumann's law is not valid for individual cells, as is
the case for some cellular structures [61—63].

On the other hand, the general validity of Lewis's law
ha."-. been questioned on the basis of experimental evi-
dence: In [11] and [35] it is concluded that Lewis's law is
val. icl only for biological tissues which have a constrained
area distribution, while for coarsening froths and grain
patterns it is the average perimeter of cells with a given
number of neighbors which is proportional to that num-
ber. Iglesias and de Almeida [33] have given a maximum
entropy argument for such a perimeter law

(x)„„ocn2 (41)

given.
Our too large value for p, 2 would presumably be re-

duced if we took into account that nearest neighbors to
vanishing bubbles have topologies which, on the average,
are larger than those obtained with our random choice,
according to Aboav-Weaire's law. Yet, as they stand,
our results for the moments of P„are much closer to the
experimental values than any of the mean-Beld results
listed in [[11],Table II].

Another experimentally accessible moment is f(x)'s
second, (x2) —1, for which we find the value 0.858 nu-
merically. It may be compared with the value 1 obtained
for f(x) = exp( —x)—a form for f(x) discussed in Sec. X
and Appendix B—and with the value 0.5 found in exper-
iments with froth patterns in monolayers [8].

a perimeter law. We shall argue that this is indeed the
case.

First, we observe the obvious: Lewis's law (40) cannot
be valid for small values of n in cases where o, is so large
that the right-hand side becomes negative. This is the
situation for froths. So if Lewis s law is generally valid, it
must be for large values of n, where the specific meaning
of "large" presumably depends on the value of n in (40).
In the cases studied by Lewis, o, is so small that all values
for n encountered are large. Thus he found his law. For
coarsening froths and grain patterns, n is larger, hence
so are the values for n where the law can be valid —with
the unfortunate consequence that there is not sufficient
experimental and simulation data to decide for or against
it. It is a definite advantage of our random-neighbor
model that it allows us to prove that Lewis's law is valid
as an asymptotic law at large n. Before we do that, we
must clarify where we stand on another issue, however;
that of what we consider fundamental to the model, and
what are derived properties.

For soap froths, the fundamental dynamics is known,
and von Neumann's law is an exact consequence of it,
valid for each individual bubble. Statistical statements
like Lewis's law are consequences of this dynamics, and
should be derived from it as such, when possible. As
elegant as maximum entropy arguments are, they are in-
complete and may go wrong when they neglect dynamics.
It is, after all, the dynamics of the froth that gives the
entropy a chance to grow and become maximal —within
whatever constraints the dynamics impose on this maxi-
mization process. And, as we shall see in the next section
and in the Appendix, it is a question of major interest
what signatures are left by the dynamics on the distribu-
tions found in the asymptotic scaling state.

Our master equation represents the fundamental dy-
namics of the soap froth only through one of its con-
sequences, von Neumann's law. Thus, from our point
of view, Lewis's law is a consequence of von Neumann's
law. Entropy maximization does play a role in obtaining
this consequence, since it is at the attractive fixed point
for the master equation that we obtain Lewis's law. But
it is the entropy of the functions [f„(x)]„—c i z that
is maximized, and under the constraint that they obey
the time-independent master equation, i.e. , essentially
the constraints of von Neumann's law and Euler's the-
orem. So they are fundamental, and Lewis's law is a
consequence.

Now the proof: By multiplying both sides of Eq. (16)
by x and integrating over x, we find

Herdtle and Aref have addressed the issue in their sim-
ulations of the ideal, dry froth and found that first de-
gree polynomials in n fitted average areas and average
perimeters, though perimeters were fitted slightly bet-
ter, especially for small-n values [25]. It is important to
realize here that experimental as well as simulation re-
sults are limited to a finite range of n values and by error
bars that grow rapidly with n. So Lewis's law could in
principle be the correct law asymptotically for large n,
while at the same time a fit to available data could favor

A —(P„(x)„)= (n —6)P„—(c++ c )nP„(x)„
-d

dt

+c+ (n —1)P„,(z)„,
+c (n+1)P„+,(z)„+,. (42)

Using the asymptotic form (31) for P„, we find at the
fixed point
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0 = n —6 —(c++ c )n(2:)„+c n — —A(A —c + c~)c+(c —c+) /n l(&)~
C —C+

+ A(A —c + c+)c (c —c+) /n) (x)„+i + O(l/n),
C —C+

(43)

which is solved by

(x)„=a(n —6) + P + O(1/n)

with

A+c —c+
if

c—+ ci
(c —c~

6(c —c+) l

(45)
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Equation (44) shows that Lewis's law only is an asymp-
totic law, valid for large n.

Figure 9(a) shows our results for (z)„. Lewis's law

is seen to be well obeyed for n & 6, while a perime-
ter law would appear as a quadratic form in this plot
and definitely not fit our results. Figure 9(b) compares
our results for (x)„, shown as black squares, with av-
eraged experimental results for froths with helium gas
(diamonds) and air (circles). The data were taken from
tables given in [35] and [11].Unfortunately these sources
give no error bars for the numbers plotted. But if we
take the differences between the two sets of experimental
data as indicators for the size of error bars, we see that
there is full agreement between our theory and experi-
ments for n & 5. The total agreement between the three
sets of data for n = 6 is due to the normalization conven-
tion used: (2:)s = 1. The very fine agreement between
theory and experiments at n = 10 and n = 11 must be
coincidental if the differences between the two sets of ex-
perimental data really do indicate the experimental error,
because we expect this error to increase with n for n & 6.
No experimental result was given in [35] for the helium
froth and n = 10.

The disagreement between theoretical and experimen-
tal results at low values of n is due to failure of the theory
in predicting (z)„correctly. This quantity is particularly
sensitive to our permitting bubbles with n = 0, 1, and
2. The negligible probabilities that such bubbles occur
within our model do not suppress (2:)„, because (x)„ is
the average iaithin the topological class n

We conclude the following.
(i) On the basis of experimental evidence, Lewis s law

is not valid for all systems for atl values of n.
(ii) The same experimental evidence cannot exclude

the possibility that Lewis's law is valid for all systems
asymptotically, for n large, with some systems demon-
strating asymptotic behavior already at small values of
n—such systems must have small values for n in (40),
and include those studied by Lewis.

(iii) Our random-neighbor model has as a consequence
that Lewis's law i8 valid asymptotically for n large.

X. THE DISTRIBUTION OF AREAS f(z)

~ ~

I I

0 1 2

~ ~

3 4 5 6 7 8 9 10 il 12 —0
A f(x;t)=-

Bt
0—((n). —6) + Ax + 2A

Ox

By summing over n on both sides of Eq. (16), one
obtains an equation for the frequency f(x; t) of relative
area x at time t,

FIG. 9. (a) (x)„vs n from the random neighbor model.
(b) (2:)„/(x)s vs n Black squares .show the results of the
random-neighbor model. Averaged experimental results for
froths with helium gas (air) are shown as diamonds (circles)
[35, ll]. There is no result for helium at n = 10. This equation has as a stationary solution
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f(x) = exp( —x),

provided

(n). = A(x —1)+6. (48)

This solution is interesting because it maximizes the en-
tropy of f(x) under the constraints (21) and (23) [62, 63,
33]. We know, of course, that the distribution of areas
we are considering is the result of a complicated dynam-
ical process described by Eq. (16). We may obtain its
fixed-point solution by entropy maximization, since that
is precisely what a Markov process does for us, but, as
discussed in Sec. EX, the entropy to be maximized is not
that of f(x), but of f„(x) An.d in addition to the con-
straints (21) and (23) there are other constraints: the
average topology must be 6, and the stationary versions
of the infinite set of coupled equations (16) must also be
satisfied. So maximum entropy methods are of no practi-
cal use to us: there are too many constraints, a countable
infinity for every value of x.

Still we may ask whether the details of the dynamics
contained in Eq. (16) leave a signature on the fixed-point
distribution f(x)? Or do the dynamics "mess up" f(x)
maximally'? As solution (47) to Eq. (46) shows, the last

possibility requires (n) ~ = A(x —1)+6. Now, (n) has its
own equation derived from Eq. (16), which it must satisfy.
But that equation is satisfied by (n) = A(x —1) + 6,

provided (n ) —(n) = (c —c+)(Ax+6) —A . And so
on: (n ) must satisfy an equation, which is satisfied by
the form just given, provided (n )~ is a particular third
degree polynomial in x.

Our numerical solution of Eq. (16) shows a small
difference between f(x), shown as a fully drawn line
in Fig. 10(a), and exp( —x), shown as the dashed line.
Figure 10(b) shows our numerical results for (n) vs

e 4

6 —A+ Ax, and ((n )~ —(n) + A )/(c —c+) versus

6+ Ax. The two graphs in Fig. 10(a) are so close that
one may fail to distinguish between them in a numerical
solution based on Monte Carlo simulation [30, 46, 49], or
in experimental data [[49], Figs. 2—6]. Their difference
is important, though, conceptually and practically. The
differences between the fully drawn and dashed curves
in Fig. 10(b) are even smaller and typically more dif-
ficult to distinguish in simulation results, because (n)~
and (n2)~ —(n)z have larger error bars than f(x) when
calculated from the same data set.

The difference between the two graphs in Fig. 10(a) is
of practical importance, because if f(x) = exp( —x) had
been valid, we could have obtained the form of Eq. (16)'s
fixed-point solution analytically. This is demonstrated in
Appendix B. Since f(x) differs little from exp( —x), one
may instead consider using the analytical results from the
appendix as a starting point for an analytical approxima-
tion scheme for the solution to Eq. (16).

Conceptually, the difference between the two graphs in
Fig. 9(a) is important, because it shows that the partic-
ular dynamics of the coarsening process has left a signa-
ture on f(x). It is actually possible to see this small
difFerence between f(x) and exp( —x) in experimental
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0 0.5 1 1.5 2 8.5 3 3.5 4 4.5 5
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FIG. 10. (a) f(z) vs x (fully drawn curve) and exp( —z)
vs x (dashed curve). (b) (n) vs z (lower fully drawn curve)
and 6 —A+ Ax vs x (lower dashed curve). ((n ) —(n) +

2
A )/(c —c~) vs x (upper fully drawn curve) and 6+ Ax vs
x (upper dashed curve).

data for coarsening 2D aluminum polycrystals plotted
in [[49],Fig. 2—6]. So our random-neighbor model throws
light on old data. Conversely, the agreement between
data and model on this subtle point shows we have in-
vented a realistic model.

Experiments with soap froths have not yet provided
data that can resolve the difFerence between exp( —x) and
f(x) B.oth functions fully agree within experimental er-
rors with the experimental result in Fig. 17 of Ref. [11].
The precision it takes to resolve this difference is a new
target for such experiments. Since our random-neighbor
model replaces nearest-neighbor correlations with ran-
domness, our result is presumably closer to the maxi-
murn entropy distribution exp( —x) than the exact func-
tion f(x) of an ideal 2D froth is. So it may require less
experimental precision to distinguish f(x) from exp( —x)
than Fig. 10 indicates.

In general, whatever the functions f(x) and (n)~ are,
they are related to each other by the fixed-point version
of Eq. (46). That is an ordinary differential equation,
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solved by

(n) = 6+ Ax —A/f(x) dx' f(x')

This equation may be inverted to give

f(x) =
6+ Ax —(n)

)6+ Ax' —(n) )
(50)

which shows (n) ( 6+ Ax for all x & 0

XI. Tg PROCESSES AND SIDE-SHEDDING

FIG. 11. Side shedding by T& process in a shrinking bub-
ble. Compare the result with Fig. 2(a).

Our random-neighbor model is based on two approx-
imations: (1) neighbor relations are random, and (2)
neighbor switching Tq processes, as shown in Fig. 2(b),
do not occur. The last approximation has a dual motiva-
tion. (a) Experimentally, it is observed that Tq processes
that are unrelated to vanishing processes make up less
than 1% of all topology changing processes, Tq and T2
[38]. (b) Theoretically, we notice that even if Tq pro-
cesses cause side shedding in a bubble that shrinks to
vanish, they leave no apparent efFect once the bubble has
disappeared.

In a recent article, Fradkov et al. discuss under which
conditions bubbles may shrink without shedding sides
[32]. Working with plausible assumptions, they find that
a rather symmetric geometry of a shrinking bubble suf-
fices. Since such a geometry typically has a lower energy
than an asymmetric one, the dynamics of a froth favors
such geometries, thereby suppressing side shedding.

On the other hand, Stavans and Glazier [1] observed
that only 16% of shrinking pentagons disappear directly
[64] and only M% of shrinking quadrangles do so accord-
ing to Glazier, Gross, and Stavans [38]. Herdtle and Aref
report a frequency ratio of T1 to T2 processes of 3:2 in
the scaling state, as investigated in their state-of-the-art
defining simulations of the ideal, dry 2D froth [25]. They
also provide a rough and simple explanation of this ratio,
which assumes that no four- or five-sided bubbles disap-
pear directly, but only through side shedding to three-
sided bubbles which then disappear.

However, even when side shedding occurs, it may
not affect the precision of our model. As exemplified
by Fig. 11 compared with the vanishing pentagon in
Fig. 2(a), side shedding by a shrinking bubble does not
affect the net result left over when the bubble has van-
ished. Of course, this net result is obtained faster when
shrinking bubbles shed sides, because fewer-sided bub-
bles shrink faster. But if it is only at small areas x that
side shedding sets in, only a small fraction of the bub-
bles in the froth are afFected, and only for the short while
that it takes the shrinking and shedding bubble to van-
ish. So f (x) may very well change little because of side
shedding, except at small values of x. All this is just
hypothesizing, of course.

It is unfortunate that Herdtle and Aref report no re-
sults for the distributions f„(x), since such results could
replace hypothesis with facts. Experimental results for

grain growth in aluminum, Figs. 2—4 in [49], show a dif-
ference to our results for f„(x) for n = 4, 5, and 6 and
x 0, which could well be explained as the result of
side shedding. The functions seem to vanish as x ap-
proaches 0. However, one should not uncritically iden-
tify grain growth with coarsening in froths; especially
not when side shedding is in focus. The fast and the
slow dynamics in froths occur on the same time scale
in grain growth, and domain boundaries in grain growth
may consequently deviate from the perfect arcs of circles
they form in froths. The question of side shedding is
particularly sensitive to this difference between the two
systems. Also, recent experiments on 2D grain growth
in thin polycrystalline films of succininitrile show four-
and five-sided grains shrinking almost to the vanishing
limit without shedding sides [12]. These experimental
results are in accord with computer simulations of single,
shrinking grains, presented in the same article.

So all we can conclude about side shedding for the
present is that it is under investigation, and that it should
be investigated also in direct simulations of ideal, dry
froths. But this lack of hard facts does not affect our
model building in the present paper. Our goal was a
minimal model, and we have arrived at that goal. Side-
shedding may then be added to this minimal model, as
done by Fradkov and Udler in their model [49], for exam-
ple. On the basis of their results, we expect side shedding
to increase the ratio Ps/Ps towards the experimental val-
ues shown in Fig. 8(b).

XII. CONCLUSIONS, SUGGESTIONS

We have described a minimal model for the ideal, dry,
2D froth and seen that the single-bubble distributions
f„(x;t) to a good approximation form a complete set
of variables, sufFicient to describe the dynamics of these
variables. von Neumann's law and Euler's theorem for
the plane, supplemented with a random-neighbor approx-
imation, give a closed and complete set of dynamical
equations for these distributions. These equations have a
unique attractive fixed point for their time evolution. At
this fixed point, we found normal growth with exponent
1/2. We also found the asymptotic n dependence of P
and (x)„analytically. The latter result amounts to an
analytical proof of I ewis's law, and shows that it is an
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asymptotic law. That is one important result obtained
with our model.

We found f (x) = limi f„(x;t) numerically, and
see a major analytical challenge in our master equation:
it is sufBciently simple to invite speculations about its
analytical solvability at the attractive fixed point. Ap-
pendix B gives some ideas and our results from a first at-
tempt of an analytical solution. It is based on the ansatz
f(x) = exp( —x), a form suggested by experimental as
well as simulation results. It is, however, another impor-
tant result of the present paper that f(x) g exp( —x).
We find that directly, numerically, and we find it indi-
rectly, analytically, in Appendix B. The difFerence be-
tween exp( —x) and our f(x) is not big—14% on the sec-
ond moment ((x —1)z)—but the difference to the exact
distribution f(x) for an ideal, dry, 2D froth is presum-
ably bigger. Existing results from direct simulations of
this system do not resolve this difference. This is a chal-
lenge waiting to be met. Neither do existing experimen-
tal results for 2D soap froths. That is another challenge.
Experimental results for 2D grain growth in aluminum
show the same qualitative difference between f(x) and
exp( —x) as our f(x) does. There might, of course, be
other reasons why these experiments give the function
f(x) that they do, reasons related to the experimental sit-
uation or reasons stemming from the difference between
grain growth and coarsening froths. But it would be in-
teresting to reanalyze these experimental results in light
of our findings for f(x)

With further model building in view, it would be in-
teresting if direct numerical simulations of the ideal, dry,
2D froth could be pushed to a precision, where the distri-
butions f„(x) could be given, and the role and rates of Ti
processes elucidated for individual topological classes. In
particular, it would be interesting to understand the con-
ditions for, and rates of, side shedding in shrinking bub-
bles. Potts model simulations have already given f„(x),
but with large statistical errors, and these lattice simu-
lations are ill suited to the study of Ti processes in ideal
froths. The same questions are, of course, at least as in-
teresting to study experimentally in dry 2D froths. Ex-
isting results for f„(x) demonstrate that these functions
can be obtained. It is "merely" better statistics that is
needed.

On the theoretical side, we see several directions in
which we can extend the work presented here. What we
presented above we regard as a minimal model. Con-
sidering how well it already agrees with experiments, it
might be rewarding to refine it, with an eye on what was
left out in its minimal version. That was correlations
and T~ processes. So one may contemplate the following
extensions.

(1) Instead of choosing neighbors to vanishing domains
at random with bias n/6, one may choose them with
a more realistic bias, one that takes into account the
topology of the vanishing domain, and results in Aboav-
Weaire's law. In this way Aboav-Weaire's law is built into
the model by hand, but it remains a random-neighbor
model. What is interesting is how this change aKects
f„(x) and P„Will they, as .one would expect, agree
even better with experiments than they already do'?

(2) One may add terms describing Tl processes, side
shedding in particular. Such terms should preferably
have a form based on general arguments and rates that
are determined dynamically to make their addition more
than a mere ad hoc adjustment. Taking Tl processes and
side shedding into account needs not interfere with the
random-neighbor approximation.

(3) The random-neighbor model may presumably be
used as the starting point for a systematic perturba-
tion theory that takes correlations into account. Cor-
relations are of secondary importance for the functions
f„(x), judging from how well we can describe them with
a model neglecting correlations. Experimentally, one has
not been able to measure correlations beyond the nearest-
neighbor correlations expressed in Aboav-Weaire's law.
So one correction term may be all that is needed to ob-
tain full agreement with experimental results.

(4) At least as interesting is the question of coarsen-
ing and domain growth in three dimensions. The higher
dimension gives a larger average number of neighbors to
bubbles. This should make the random-neighbor approx-
imation even better than in two dimensions. There is,
however, no known equivalent to von Neumann's law in
three dimensions. References [31], [23], and [26] give re-
sults that point towards an approximate substitute.

(5) Our model for soap froths may be adapted to
describe and interpret the dynamics of other domain
boundary networks in 2D. It has been used successfully to
model domain pattern dynamics in magnetic garnet film
[65]. We already mentioned grain growth in aluminum.
Grain growth in other materials are obvious cases. So is
the bubble pattern in the liquid-gas coexistence region of
monolayers studied in [8].

In summary, the random-neighbor model that was pre-
sented here agrees so well with experimental and simu-
lation data that it should be refined, as suggested. As
it stands, the model has already helped clarify the sta-
tus of Lewis's law, and presents some challenges to the
precision of experiments and computer simulations. It
also suggests a reanalysis of experimental data on grain
growth in aluminum. Refined versions of the model will
surely present even stronger challenges, but may also re-
quire better data to guide the model building.
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APPENDIX A: NOTATIONS

This appendix collects our notation, which was intro-
duced gradually through the paper wherever needed for
the first time.

A bubble's topology n is just its number of neighbors.
p~(A;t) denotes a froth's relative frequency of bubbles
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f„(x) = lim f„(x;t). (A1)

c+ and c are one-sixth of the rates for positive and
negative change in topology, respectively, and are given
in dimensionless form in Eq. (17).

P„ is the fraction of bubbles with topology n, and is
called the topological distribution, or side distribution,
since n is also the number of sides in such bubbles,

with area A and topology n at time t. A is the average

area at time t, and A its rate of change. x = A/A is
a relative measure of area. f„(x;t) = Ap„(A; t) is di-
mensionless, and independent of t in the scaling state of
normal growth. That gives rise to the notation

these conditions. They are violated by a few per mil,
when they are closest to being fulfilled. If one can prove
analytically that there is no solution, one has proven that
f(x) g exp( —x). That we know already from our nu-
merical solution, so it is maybe not so interesting. More
interesting is the observation that exp( —x) is a good ap-
proximation to the exact numerical result for f(x). So
we believe that an efficient perturbative solution may be
formulated, using our analytical expressions for f„(x) as
the leading-order approximation. We have not tried this
out, and here just demonstrate how to find f„(x) for
given f(x).

To this end we introduce the generating function

P„=P„(t) = dAp„(A;t) = dx f„(x;t) (A. 2) f(x, y) =).V"f (x),
n=O

f(x; t) is the fraction of bubbles having relative area x,

f(x;t) =) f-(* t)
n=O

The moments of the topological distribution are called
topological moments,

pa=) P =1,

pi ——) nP„= 6,

and find from the fixed-point version of Eq. (16) that
f(x, y) must satisfy the equivalent equation

O = (6+ Ax)

8 0
+2A + c (1 —

V) —c+y (1 —y) —y Bx By

x f(x, y). (B2)

This is a partial-differential equation of second order,
which we must solve on the strip

p =) (n —6) P„ for m & 2.

The average relative area is written

(A6)
((x, y)~0&x, 0&y&1).

Inspection of Eq. (B2) shows that a solution is deter-
mined by its value for y = 1 and its behavior at x ~ oo.
For y = 1

dxxf(x;t) = 1.

dx xf„(x;t)/P„, (As)

The average relative area for a given topology is written
as

f(»1) =).f (x) =—f(x)
n=O

which is the frequency with which the relative area 2:

occurs in the ensemble irrespective of its topology.
By an inverse Laplace transform we turn Eq. (46) into

a first order partial--differential equation: writing

and the topological moments for a given relative area is
written f(x, v) = d(exp(-x() f((, y), (B4)

(n). = ) nf„(x;t)/f(x;t),
n=O

(n ) = ) n f„(x;t)/f(x; t).
n=O

APPENDIX 8: ANALYTIC SOLUTION
AT FIXED POINT?

(Ag) Eq. (B2) becomes equivalent with

(Alo)
0= —6( —A(—+A

(B5)

+ c 1 —y —c+y 1 —y +y, y.

In this appendix we demonstrate that if one assumes
that f(x) = exp( —x), then one can find exact analytical
expressions for all the functions f„(x). These expressions

contain three numerical constants, c+, c, and A which
must be determined from nonlinear self-consistency con-
ditions. We have not been able to find any solution to

This equation is solved by the method of characteristics.
Writing

f((, V) =(e p( —6(/A)e(( V), (B6)

the function g is constant on lines [((y), yj in the ((, y)
plane which satisfy the ordinary first-order differential



47 MODEL FOR COARSENING FROTHS AND FOAMS 4053

equation

d( —A(
c-(1 —y) —c+y(1 —y) + y(

(B7)

f(x, y) = d(exp( —x()(/(i

x exp[6((i ()/A]f((i, 1), (B8)

which gives f(x, y), and therefore f„(x), in terms of (the
inverse Laplace transform of) f(x). In general this ex-
pression may be too complicated to be useful, since we
cannot solve (B7) analytically. It is equivalent to a Ric-
cati equation. But in the special case of f(x) = exp( —x)

i.e. , g((, y) = g((i, 1), where (i ——(i((,y) is the value

((1) for the solution to (B7) passing through ((, y). In-
serting in (B6) and (B4), we find

f(x, y) = (function of y) exp[ —x((y)]

from which follows

(B9)

f (x) = —,]

1 t'0
n! ), By

= P„(x)exp( —(px),

f(*,y)

(B10)

where (p ——((0), and 'P„(x) is a polynomial of degree n
in x. Now that we have proven that f„(x) has the form
just given, these functions are most easily determined
from the original equation (16) in its time-independent
version. Solved for f„+i(x), it gives the recursion relation

we have f((i, 1) = 6((i —1), so there is only one charac-
teristic line on which f((, y) has support, the one passing
through ((, y) = (1, 1). Consequently, Eq. (B8) gives

—1 '— 0
f„+i(x) =

+ [
—(n —6) + Ax] ~2A —(c~ pc )n f„tc;t)+ ~( c1)nf &(c;t)), -

which is initialized with

f i(x) =0,
f, (*)=f,(0) e p( —(ox).

(B12)
(B13)

Throughout the calculations leading to these expressions we have treated c+, c, and A as free parameters. Now
they must be determined self-consistently from their definitions (17) and (18), while fp(0) in (B13) is determined
from the normalization condition (21). As mentioned in the beginning of this appendix, we have not been able to
determine self-consistent values for c~ and c . This suggests f(x) g exp( —x). On the other hand, we found the
relative violation of the self-consistency conditions to be small. This suggests, as does direct inspection of Fig. 10,
that the form exp( —x) is a good approximation to the exact solution.
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