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‘We present results of computer simulations of the motion of shock fronts in a variety of one-
dimensional stochastic lattice models with parallel and serial dynamics, infinite and finite temper-
atures, and ferromagnetic and antiferromagnetic particle interactions. We find that fluctuations in
the shock location, about an average determined by evolving an ensemble of systems with the same
initial conditions, generically grow in time like t'/3. We discuss the robustness of the t'/3 growth
and determine the density dependence of the coefficient in a simple case. We compare this with
models where the dynamics are specially tuned so that the growth is reduced to ¢'/4, and with the
situation where the ensemble members have different initial conditions, in which case the growth is

like £1/2.
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I. INTRODUCTION

The familiar equations of hydrodynamics, such as
Navier-Stokes and Euler, are “derived” by summing over
the motion of a large number of molecules [1]. While mo-
tion at the molecular level appears random, the result-
ing hydrodynamic equations for the conserved quantities
(momentum, energy, and mass density) are deterministic.
These equations have been very successful at describing
fluids on the macroscopic scale when the flow is well be-
haved [2, 3]. To see the molecular structure, however,
one has to go beyond the macroscopic equations; this
can be particularly important when the gradients in the
hydrodynamic variables diverge and the hydrodynamic
equations break down in which case these equations need
no longer tell the whole story [1, 4]. This happens, for
example, when discontinuities (such as shocks) in macro-
scopic variables (such as density) appear. Since these
situations are not uncommon, we would like to gain a
better understanding of them at both the macroscopic
and microscopic levels.

The example we shall consider here is the one-
dimensional analog of the Euler equations, the inviscid
Burgers equation [5], written in standard form as

op(z,t)
ot

This equation, which can be derived from various micro-
scopic models [6, 7] in the hydrodynamical scaling limit,
i.e., when the ratio of microscopic to macroscopic scales
formally goes to zero, is well known to permit the for-
mation and propagation of shocks. To investigate the
microscopic structure of these shocks one can use two
approaches.

o, ) 225D, M)

In the first approach one adds a conservative, stochas-
tic noise term £(x,t) plus a diffusive term 8%p/8x? to
Eq. (1). This yields the noisy Burgers equation [8-10]

dp _ _ 9p | 9%  O&(z,t)

ot~ Poz +D8x2 + o 2)
Both white noise, where the covariance is

(&(z,t)€(a", 1)) = 2D8(t — t')é(x — 2'), (3)

and noise terms with nontrivial correlations that are de-
signed to more accurately model the microscopic dynam-
ics, have been considered, [9, 11].

This approach has been used for a variety of fluid
systems [8] including surface growth models [9, 12, 13].
Of interest are the statistical properties of the solu-
tions to Eq. (2). One of the more successful techniques
in the study of nonlinear stochastic partial differen-
tial equations like (2) is the dynamical renormalization-
group approach [8, 9, 12-14], or, in a simpler version,
the use of scaling concepts [15]. Using such methods,
one can see, for example, how the resulting correlations
(p(z,t)p(z’,t')) behave for large |z —z'| and |t —¢'| , and
how fluctuations in the fluid density profile spread [10].

The drawbacks of this type of approach are that the
derivations are purely phenomenological and the assump-
tions made are impossible to justify rigorously. In par-
ticular the assumption of white noise, Eq. (3), may be
too restrictive. It is generally expected, however, that
other noise terms reduce to white noise on the time and
length scales of relevance, unless one wants to consider
long-range interactions between particles.

The alternate approach (and the one on which we fo-
cus here) circumvents these problems by defining the fluid
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systems at the microscopic level. One simply prescribes
the dynamical rules of evolution for the individual micro-
scopic components and works from there. The advantage
is that no assumptions concerning the macroscopic equa-
tion or noise term need to be made. The disadvantage,
however, is that not just rigorous work, but any ana-
lytical work not reverting to the hydrodynamical level
is extremely difficult, and so computer simulation is the
only reliable tool for studying these systems at the micro-
scopic level. For practical reasons this usually limits the
types of interactions one can study to (often nonphysical)
short-range interactions.

In this paper we study the asymptotic behavior in one-
dimensional systems of shock spreading due to the ran-
domness of the dynamical evolution, given initial condi-
tions that are (microscopically) fixed. We find that the
results of simulations confirm the predictions of expo-
nents made by van Beijeren [10] on the basis of (2). By
carrying out such simulations for a number of models we
also check the class of particle dynamics for which (2) is
applicable. We also address the problem of how long it
takes models to get into the scaling regime, an important
criterion if scaling is to have practical value.

II. MODELS

All models to be considered here are one-dimensional
models with local stochastic dynamic rules, i.e., parti-
cles may make jumps between different sites with jump
rates or jump probabilities determined by the occupation
of sites in the direct neighborhood of the jumping par-
ticle. Configurations are denoted 7; n(x) is the number
of particles at site z, x € Z. The parallel asymmetric
simple exclusion process and the Boghosian-Levermore
(BL) model are discrete time cellular automata (parallel
dynamics); the other models we consider are continu-
ous time stochastic processes (serial dynamics) for which
analysis is often simpler. In continuous time it is not
necessary to consider the jumps of more than one parti-
cle at a time, as the probability of this occurring is zero:
each particle waits independently for an exponentially
distributed time (with mean 1) and attempts to jump
to another site. The location of the target site and the
success or failure of the jump attempt depends on the
specific model. We will provide the details below, but in
all cases there will be an asymmetry with a preference
for jumping to the right.

A. Shocks and shock fluctuations

For all of the models discussed here we begin with
an ensemble of identical one-dimensional lattices with a
preimposed shock, whose subsequent evolution we will
track; i.e., we start initially with no particles to the left
of the origin while for z > 0 there is a nonzero den-
sity of particles per site p. This convention is mainly for
convenience. We could have instead begun with density
of particles p = p_ forz < 0 and p = py forz > 0
with p_ < p4, but tracking the shock would have been
more complicated. With this simplification, however,

the shock location is defined as the location of the left-
most particle [16]. The density profile as seen from this
leftmost particle remains sharp (with asymmetric jump
rates) in the sense that the average density profile in its
moving frame approaches its asymptotic value exponen-
tially fast (in space) [17].

Consider an initial configuration n chosen from some
probability distribution p with n(z) = 0 for z < 0 and
a positive density for £ > 0. Define the location of the
shock (first particle) at time ¢ to be z;. If we average over
all possible realizations of the dynamics resulting from
this particular initial configuration, then we obtain the
average location of the shock at time ¢ for this particular
initial configuration E,(x;) where E, is the expectation
value taken under the fixed initial configuration 7. The
actual location of the shock in any one realization will
deviate randomly from this average.

We are interested in how these deviations grow in time.
Thus we study the growth of the variance of the shock
position (with initial configuration %),

o5 (t) = Ey([z: — En(2:)]?) (4)

for many initial configurations 7. We are also interested
in average values of a;", (t) with respect to n—in particular,
consider the product measure g on the space of initial
configurations such that u{n(z) = 1} =0 for z < 0 and
u{n(z) = 1} = po for x > 0. Where computationally
feasible, we study the evolution of o2(t), defined by

o*(t)= [ uanod®) = Bullz - Br@)P),  (3)

where E,, is expectation with respect to the dynamics
and the initial condition measure.

B. Asymmetric simple exclusion

In the asymmetric simple exclusion process (ASEP),
there is at most one particle per site. A particle attempts
to jump to the site immediately on its right with rate
p, and to the site immediately on its left with rate 1 —
D, 1/2 < p < 1. If the target site is unoccupied, then
the jump succeeds; if not, then it fails. The asymmetry
enhances jump attempts in one direction which induces
a net particle current.

The ASEP is a good example to demonstrate the
heuristics entering in the derivation of the Burgers equa-
tion. The time evolution of the average density is given
by the continuity equation

0el) -z, ©

where 0/0x denotes a discrete derivative 8f(z)/0z =
flz+ %) - flz - %) The average current between sites
z and x + 1 is of the form
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i@+ 3) = (En@)1 —n(z +1)] = (1 - p)n(z + 1)[1 - n(z)])
= (2p = 1){[n(z) + n(z + 1)]/2 — n(z)n(z + 1)) — (n(z + 1) — n(z))/2

=(2p— D[o(z +1/2) — p*(z +1/2)] — 5

If we just keep the first term on the right-hand side of
(7) we obtain the inviscid Burgers equation. Additional
terms represent correlations (which vanish in the station-
ary state) and higher-order derivatives with respect to z
which are neglected. The second term is a microscopic
viscous correction.

An advantage of studying the ASEP is that a number
of rigorous results exist [6, 17-24]. Of immediate rele-
vance is that the rescaled particle density profiles in the
ASEP are related to the solutions of the Burgers equa-
tion (1) and that the growth of the average variance has
been proven to be sublinear [21]:

s -1 _2 — 0N
Jim 716 () = 0; ®

this gives an upper bound on the growth of dynamical
fluctuations. A nonrigorous scaling analysis [10] indicates
that the behavior of o2(t) for the fluctuating Burgers
equation (2) is asymptotically

o2(t) ~ t2/3, (9)

consistent with Eq. (8).

To test this result, we carried out simulations by a di-
rect serial implementation of the asymmetric simple ex-
clusion process described above. At time t = 0 we started
a system of length L = 1400 by randomly depositing a
particle with probability po = 0.5 independently at each
site x of the lattice 0 < z < L. Then we made 400 copies
of this system and evolved them independently. Jumps
were only to the right: p = 1. (Thus the system can
be viewed as semi-infinite with no particles to the left
of the origin.) A fixed, impenetrable wall at the right
end of the lattice caused particles to pile up at that end.
Two shocks result, one on the left sides between average
densities 0 and % and one on the right between average
densities % and 1. The dilute shock travels to the right
with average speed ¢ = (2p — 1)(1 — po) = 0.5 lattice
units per Monte Carlo step (MCS) and the dense shock
travels at the same speed to the left. The simulation
is valid over a time such that the two shocks have not
reached each other, and so we only looked at run times
up to t = 1000 MCS’s; since the time of the run is less
than L/(2c), they do not meet. At five-MCS intervals
we calculated the average shock location for those initial
conditions by averaging over location of the first particles
(respectively the last holes) in each of the 400 systems.
Then we determined the fluctuations of the first parti-
cles (last holes) about this average, yielding o2 (t) for the
given initial condition. We repeated the process for a to-
tal of 110 different initial conditions (each of which was
chosen independently from a product measure with av-
erage density po = 0.5); this yields o2(t).

In Fig. 1 we give the results of these simulations. The
data indicate that by first averaging over the randomness

10p(x+1/2)
—‘—8_:;;—__}““‘ (7)

r

in the dynamics with the initial condition fixed and then
averaging over the initial conditions a power-law behavior
for the fluctuations is induced with o(t) ~ t1/3. This
result agrees with van Beijeren’s scaling analysis of the
fluctuating Burgers equation [10]. Note that this power
law persists even to small times.

We also considered what happened when the final av-
eraging over initial conditions was not carried out, i.e.,
if one just considered o,(t) for an ensemble of systems
with initial condition 7. We discovered that the particu-
lar short-time growth can depend strongly on the initial
conditions, while the long term behavior was universal.
We saw this most clearly in our examination of periodic
initial configurations.

For initial conditions with short periods, such as the
“checkerboard” staggered particle-hole-particle-hole pat-
tern (po = 0.5), or a particle-hole-hole pattern (pg = %),
the short- and long-time behaviors appear to correspond,
so that o, (t) ~ t1/3. Thus one can (to some extent) pre-
dict the average behavior of o(t) from such a single initial
condition.

On the other hand, initial conditions with large-scale
structure, such as a periodic configuration with a large
period, will lead to deviations from ¢!/3 behavior for short
times, through a mechanism which is easily explained.
(Here we consider shocks with density zero on the left;
density 1 on the right is equivalent.) First consider the
very low density limit pp < 1. Prior to a collision of the
first particle with another, the first particle undergoes a
random walk with a drift (although p = 1 the jump times
are random). The fluctuations in its position are of or-
der ¢t1/2. At longer times the particles interact, and the
simple random-walk description breaks down; the inter-
acting model then yields a crossover to ~ t!/3,

Now consider the high-density limit 1 — py < 1. The
same mechanism produces a different result: prior to the
time when two holes have a significant probability of col-
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FIG. 1. Serial model, time dependence of fluctuations.
The line has the form 0.65t/2.
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liding (near the shock) the holes undergo simple random
walks with a drift. Thus provided t/2 < O((1 — po)~!)
the holes do not interact and the shock is hardly ever
more than one site from its expected average position; the
short-time behavior of o,(t) therefore consists of maxima
(with value %) at the expected arrival times of each hole
and minima midway between expected arrival times, as
seen in Fig. 2 for short times, prior to the crossover to
t1/3 behavior.

When neither the high- nor the low-density limit is ap-
plicable, the same basic mechanism is still responsible for
the transient phenomena. Here larger-scale density fluc-
tuations play the same role previously held by particles
and/or holes.

C. Density dependence

If we vary the parameter D controlling the strength of
the noise in Eq. (3), scaling analysis indicates that the
fluctuations behave like (D?t)!/3 [15,25]. In the limit
where 1 — p < 1 (small hole density), D o< 1 — p. Thus
we expect to see o (t) ~ (1 — p)?/3t1/3. To check this we
took the density (on one side of the shock) very close to
1, and extracted the coefficient of the t1/3 behavior. We
reduced the computational load of simulating such sys-
tems by only keeping track of the holes and the distances
between them, i.e., we do not keep track of attempted
jumps to occupied sites; this allows one to study much
larger systems in the dilute hole limit. This simulation
method produces the same jumps (in the same order) as
a direct simulation but at possibly different times; as long
as the total number of holes is large this corresponds to
an exponential waiting time distribution, like that which
would be obtained by sampling from both particles and
holes.

We performed an extensive series of simulations for low
hole density. Typically we chose between 100 and 250
holes (with a periodic initial configuration) and observed
the evolution of an ensemble of 500 to 1400 systems. Each
system was allowed to evolve so that the t!/3 behavior
of o,(t) was apparent (see Fig. 2); this required T =
400000 for the least dense system we examined phole =
1/1600. Such long times are possible for this specific set
of simulations because the effective size of the system is
greatly reduced by the hole tracking algorithm when the
hole density is small. The coefficients of the growth are
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FIG. 2. Time dependence of fluctuations with density
0.992. Initial condition 7 has holes spaced uniformly, 125 sites
apart. The solid line 0.033t'/3 gives the asymptotic behavior.
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FIG. 3. Coefficient of t}/3 growth of o vs hole density for

the ASEP. The line has the form O.85pﬁé]3e. Deviation for large
Phole is expected.

plotted in Fig. 3 and compare well with the predicted
theoretical behavior.

D. Parallel ASEP

We have also studied a parallel version of the dynam-
ics, which was easily implemented on a Connection Ma-
chine. Here all particles simultaneously pick a direction
in which to move. Each choice is made independently:
to the right with probability p and to the left with prob-
ability 1 — p. As with serial dynamics, jumps are only
made to unoccupied sites, but as a result of the simul-
taneous hopping, conflicts can arise when two particles
try to occupy one previously unoccupied site at the same
time. These conflicts are resolved in the following man-
ner. After all particles have designated where they wish
to jump, the number vying for each unoccupied site is
determined. If no particles wish to occupy site z, then
nothing is done. If exactly one particle wishes to occupy
z, it succeeds. If, however, two particles attempt to oc-
cupy z (one jumping from the left and one jumping from
the right), only one is chosen to succeed. This decision
is random. Specifically, the particle moving to the right
wins with probability p and the leftmoving one wins with
probability 1 — p. Again we measured the fluctuations
about the average over dynamics, given the same initial
condition. Here, however, we restricted the simulations
to 512 copies of a system with length L = 2048 and an
initial staggered (periodic particle-hole) configuration at
density pp = 1/2. We chose p = 0.9. Our findings were
consistent with serial simulations in that the fluctuations
also grew as t1/3. We display the results in Fig. 4.

10 ———r—ry O

on(t)

L 1
100 ¢ 1000

FIG. 4. o,(t) vs time for parallel ASEP model. The line
has the form 0.56¢'/3,
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E. Boghosian-Levermore model

The BL model [26] exists on a one-dimensional lattice
whose sites can accommodate either 0, 1, or 2 particles.
At each site there are two velocity modes—one for right-
moving particles and one for left-moving particles. An
exclusion prevents a single mode from being occupied
by more than one particle at a time. The (discrete-time)
evolution consists of two steps. First is advection. In this
step each particle moves one lattice unit in the direction
of its velocity. Second is the collision. When there are
either zero or two particles at a site, nothing is done
(the collision is trivial). If there is one particle at a site,
then with probability p > % it is placed in the right-
moving mode, and with probability 1 — p it is put in the
left-moving mode. The asymmetry gives rise to a net
current, as in the ASEP. Also like the ASEP, solutions of
Burgers-like equations properly characterize the behavior
of the BL model when viewed on a large scale [26,27]. In
the case of weak asymmetry, the Burgers equation can
be proven to give the correct hydrodynamic limit [28],
while in general, the appropriate equation on the Euler
time scale is

01

2 =2 1~ Gp-1%(2 - )]

i
_ 2p—1

9
BT T RLt Tl

(10)

where p is the spatially rescaled particle density.

Recently, by mapping the BL model onto the six-vertex
model, Spohn and Gwa [29] proved that correlations in
the BL model scale in the same way, t=2/3, as the noisy
Burgers equation (2), which suggests that shock fluctua-
tions in the BL model should also scale as t1/3. To check
this, we performed a number of simulations on the BL
model.

While we considered a wide range of parameters, we
only performed extensive simulations on one system (pre-
liminary analysis of the others indicated qualitatively
identical behavior). We considered p = 0.75; the ini-
tial condition had all the left-moving states empty; the
right-moving states to the left of the origin were empty
and those to the right of the origin occupied.

The BL model possesses the subtlety that the odd and
even sublattices decouple from each other [27]; we were
thus concerned about using the leftmost particle as the
shock identifier. To this end we studied four measures
of the shock position: the leftmost particle, the leftmost
particle on the even sublattice, the leftmost particle on
the odd sublattice, and the average of the leftmost par-
ticle on the even and odd sublattices. As the data were
similar for all four, we only present those for the leftmost
particle. In these simulations we considered an ensemble
of 1500 systems of length L = 10000. Every 30 MCS’s
we computed the shock positions and af, (t). This is plot-
ted in Fig. 5; notice that it takes quite a long time to
establish the ¢!/3 asymptotic behavior.

407

10

oy (t)

100 t 1000 10000

FIG.5. oy(t) vs time for the Boghosian-Levermore model.
The line has the form 0.45¢'/3.

F. ASEP with temperature

One can modify the ASEP to include a nearest neigh-
bor interaction among particles [30, 31]. Let the configu-
ration energy be given by

H(n) =-2J > n(i)n(),

i—j=1

(11)

so that for J > 0 (ferromagnetic), the particles “attract”
each other, while for J < 0 (antiferromagnetic), they re-
pel. The asymmetry in the jump rates is now generated
by an electric field with strength E which drives particles
preferentially to the right. Starting with a configuration
71, we select a pair of neighboring sites z,y and exchange
their occupancy, resulting in a new configuration indi-
cated by n*Y. The change in configuration energy and
the work done by or against the field to perform this
exchange is [30]

AH = H(n™) - H(n) — E(z —y) [n(z) —n(y)] -

We imagine that the system is in contact with a heat
bath at inverse temperature (3, and accept or reject
the exchange in a Metropolis-like manner. To deter-
mine whether the exchange is performed, we calculate
¢ = exp(—BAH) and select a uniformly distributed ran-
dom number r, 0 < r < 1. If r < ¢, then the exchange
is performed, if not, then it fails. [This model belongs to
what is commonly referred to as the class of driven dif-
fusive systems (DDS’s), many of whose properties have

(12)

. been studied extensively [30-33].]

We performed simulations on the ferromagnetic model
and found that they were consistent with t1/3 behavior
for o(t); the addition of the interaction did not seem to
affect the qualitative behavior of the interface.

From a physical viewpoint a more interesting situation
occurs when J < 0 [34, 35]. The ground state (8 = o)
of the equilibrium system E = 0 for p = % is a staggered
particle-hole configuration. At 8 = oo and p = % there is
no (steady-state) current for |E| < 2J, while for p # } a
small field does produce a current. One sees remnants of
this behavior at low (but finite) temperature: at p = 1
the only excitations are thermally activated and thus the
current is exponentially small (in 8); for p #  there are
free excitations and the current is much larger.

This difference in scales has a significant effect on the
behavior of the shock fluctuations. For a given initial
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configuration 7 with density p = %, the details of 5 will
determine the shock fluctuations so long as the current
due to excess “free” excitations is of the same order as the
thermally activated excitations. For low temperatures, it
may therefore be a very long time before the asymptotic
t1/3 behavior reveals itself: if —3(2J + E) is large then
thermally activated excitations are produced at a rate
approximately given by

exp|B(2J + E)] (13)

while their rate of destruction is approximately given
by the product of the excess particle and hole densities
P2 cit/4. This leads to the approximate equation

apg)t(cit — exp[ﬂ(2.] + E)] - ngcit/4

for the excitation density. For long times pexcit will ap-
proach its asymptotic density as

2exp|B(J + E/2)] + const x exp[—ePT+E/D)y), (15)

This implies that the asymptotic behavior of t!/3 should
be valid in the region exp[—ePU+E/At] < 2exp[B(J +
E/2)]. We examined a system where the parameters were
J = -4, F =2 and B =1, so that the asymptotic result
should be valid for t 2 100. This is the behavior we see
in Fig. 6.

To reduce the problem of excess initial noise, we also
considered the antiferromagnetic model where we chose
the initial condition to contain the appropriate level of
thermal noise. This was done by allowing a larger system
(started with an 7 chosen from a product measure) to
evolve for a long time. A relevant portion of this system
was then used as the initial condition for the ensemble;
we see in Fig. 6 that the t!/3 behavior begins at a much
earlier time than when we start with product measure.

(14)

G. Variable initial conditions

In all of the previous models, we have been considering
the fluctuations about a fixed initial condition, i.e., fluc-
tuations due solely to the dynamics. For completeness we
wish to compare this with the result obtained when one

40F T T T T T T
o(t)
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6 °° Pre-equilibrated o ]
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FIG. 6. Growth of shock fluctuations for model with an-
tiferromagnetic interactions. In one case (¢) the initial condi-
tion is chosen from product measure (with density %), in the
other (o) the system has been “preequilibrated.” The solid
line has the form constxt!/3.
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FIG. 7. Coefficient of linear time growth of aﬁ vs density
for the ASEP. The line is 0Z(t)/t = 1 — p.

immediately averages over the initial conditions, obtain-
ing the total variance:

o5 (t) = Eu([ze — Eu(z0)]?) - (16)

In the ASEP, one expects aﬁ(t) ~ t: this has been proven
for the case where the density is zero on one side of the
shock in which case the limiting behavior of z; — E, ()
is Brownian motion [16,20] with diffusion constant 1 — p.

There is a simple explanation for this behavior. De-
note the density to the left of the shock by p_ and to
the right by p4. The variance of the shock position is
the variance in the number of particles that it “sweeps
through” [divided by (p4 — p—)? since one particle moves
the shock a distance 1/(p4+ — p—)]. The shock moves with
velocity 1 — p; — p—. The particles it is “running into”
are moving with velocity 1 — p4 or 1 — p_, but those are
irrelevant phase velocities. What is relevant is the group
velocity vgroup = 95/0p = 1 — 2p, since fluctuations on
the basic density travel with this velocity.

The variance per “effective site” hitting the shock is
p+(1 — p4+) on the right, p_(1 — p—) on the left. The
number of “effective sites” hitting the shock from either
side after time ¢t is |Vgroup — Ushock|t = (p+ — p—)t. Thus,

a2 (t) = (o4 — p-) (o4 — p-)tlo+ (1 — p4)
+p-(1-p-)]
=[p+(1 = p4) + p-(1 = p-)] t/(p+ —-p-).
In the case p_ = 0, p4 = p this reduces to
o2(t) ~ (1= p)t. (18)

In Fig. 7 we present our simulation results for this case
which clearly agree with the theoretical results.

(17)

III. SYSTEMS WITH SPECIAL SYMMETRY

All the models discussed so far share one common fea-
ture: the current-density relationship is noncritical, i.e.,
8%j/0p? # 0. Since this is expected to have important
repercussions [15], we also investigated a model tuned to
make 82;/9p% = 0.

Consider an asymmetric exclusion process with the fol-
lowing jump probabilities:
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(i) With probability %, attempt to jump to the nearest
neighbor on the right. Succeed if the target site is
empty.

(ii) With probability %, attempt to jump four sites to
the right. Succeed if the target site is empty and
the intervening three sites are either all occupied
or all unoccupied.

In a product measure with density p (it is easily shown
that product measure is stationary) the current is thus

i=3p(l—p)+4-3p[°+(1-p)°] (1-p)

=2p(1 — p)(1 — 2p + 20%). (19)

The derivatives of j are
-g%g =12(1 - 2p)?, (20a)
g% =48(2p - 1), (20Db)
—Z-;% = 96. (20c)

Thus at p = &, 8%j/8p% = 8%j/0p® = 0. The RG analysis
is therefore different at this point than in the generic
case, and may produce different scaling behavior for the
fluctuations.

We performed a series of simulations for this model,
considering both checkerboard and random initial condi-
tions. For the random case, we chose 36 different initial
conditions from a density % product measure. For each
initial condition 7 we considered an ensemble of 200 sys-
tems of length L = 2240; ag(t) was computed every five
MCS up to t = 2000. Then 0?(t) was determined by aver-
aging the 36 different o2(t). For the checkerboard initial
condition we considered an ensemble of 800 systems of
length 4400 which were allowed to run until ¢ = 4000.
This data is presented in Fig. 8. The asymptotic behav-
jor appears consistent with t1/4 behavior, not t1/3; the
single checkerboard simulation accurately depicts aver-
age behavior. The value of i for the growth exponent
is what one expects from an RG analysis given that the
second and third derivatives of the current vanish.

a(t), oq(t)

o(t) o
checkerboard i.c.: o,(t) o

1
10 100 1000
t

FIG. 8. Exclusion process with two types of jumps, time
dependence of fluctuations. The line has the form 0.96¢'/4.

IV. DISCUSSION

Our simulations give strong evidence to a universal be-
havior of corrections to hydrodynamics. Changes both
in the interaction potential and in the details of the dy-
namics apparently do not affect the dominant t1/3 fluctu-
ations in the shock position at fixed initial configuration
while changes in symmetry change the exponent from %
to %. These results are in agreement with the results ob-
tained (or obtainable) from the fluctuating Burgers equa-
tion. The question thus arises of why is the fluctuating
Burgers equation as robust as it apparently is? The first
thing to remark is that the “derivation” described in Eqgs.
(6) and (7) is easily generalized—one combines a conti-
nuity equation with a constitutive equation expressing
the average current density j in terms of p(z,t) and its
spatial derivatives. The constitutive equation can be ob-
tained by using j(p), the average current in a stationary
state of average uniform density p, and supplementing it
with a diffusive term of the form —Ddp/dz. If the con-
stitutive equation contains a term linear in p, this can be
removed by an appropriate Galilean transformation. A
quadratic term gives rise to the first term on the right-
hand side of (2). Notice that the coefficient can always
be adjusted by scaling p.

If the current depends on density in a local way, and
a quadratic term is present, it will be the dominant non-
linearity: simple scaling arguments show that all higher-
order local nonlinearities or local linear terms with second
or higher derivatives with respect to  become irrelevant
in the long-time large-scale limit. Generically a quadratic
term will be present and it takes special care to suppress
it, although this can be done, as we showed in Sec. III.

The other ingredient in the fluctuating Burgers equa-
tion is the assumption of the local nature of the noise.
This is based on the assumption that the local structure
is determined completely by the local density and re-
laxes rapidly to the characteristic structure imposed by
the actual form of p(x,t). While the precise form of the
noise is not expected to be important the local charac-
ter of the fluctuating current plays a crucial role in the
derivation of the scaling laws. Zhang [11] recently showed
that if one changes this character of the noise in the
equivalent Kardar-Parisi-Zhang—type equation [12], the
long-time behavior of density-density correlation func-
tions (and as a consequence also that of shock fluctu-
ations) may change drastically. In models with simple
local dynamics, in which the only independent slowly
decaying field is the density, it is hard to envision any
mechanism by which the deviations of the instantaneous
local currents from their expected values at a given den-
sity field could be correlated to the random currents at
previous times. In none of the models considered here
do we think that there are any additional independent
slow variables. While it is true that in the models con-
sidered here the full current-current correlation function
exhibits a t=2/3 long-time tail, which will manifest itself
in the form

(@, )i (', )y ~ =3 f(jlo — 2’| /|t — ¢'|*/3),  (21)
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this basically is a correlation between the random current
at the initial time and the resulting systematic current
at the final time.

Of course the inclusion of sufficiently long-ranged in-
terparticle interactions could also change the long-time
behavior of shock fluctuations, but this falls outside the
scope of the present paper.

In two and higher dimensions the fluctuating Burgers
equation is also expected to be widely applicable. The
computational demands of multidimensional systems al-
most certainly rules out a comprehensive numerical in-
vestigation, however.

Will any of the fluctuation behavior observed in
stochastic lattice gases carry over into models with deter-
ministic dynamics such as real physical systems? In one
sense, this is the true test of the universality of the fluc-
tuating Burgers equation. Clearly we can not export our
results directly as the concept of “first averaging over the

dynamics and then over the initial conditions” is trivial
in the deterministic case, but this concept is easily gen-
eralized so that it can be applied. Additionally, under
certain conditions, we can expect other aspects, such as
current correlations, to behave similarly [15].
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