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The Landauer cost for erasing information demands that information about a physical system be
included in the total entropy, as proposed by Zurek [Nature 341, 119 (1989); Phys. Rev. A 40,
4731 (1989)]. A consequence is that most system states —either classical phase-space distributions
or quantum pure states —have total entropy much larger than thermal equilibrium. If total entropy
is to be a useful concept, this must imply that work can be extracted in going from equilibrium to
a typical system state. The work comes from randomization of a "memory" that holds a record of
the system state.
PACS number(s): 89.70.+c, 03.65.—w

I. INTRODUCTION

To say that a system occupies a certain state implies
that one has the information necessary to generate a com-
plete description of that state. This apparently innocu-
ous statement acquires physical significance from I.an-
dauer's principle [1, 2]: to erase a bit of information in
an environment at temperature T requires dissipation of
energy & k~Tln2. Landauer's principle demands that
information be granted a physical status as a negative
contribution to free energy. This leads to a total free
energy

P = F —kgyT ln 2 I = E —k~ T ln 2 (H + I),
where E, H, and F are conventional energy, entropy (in
bits), and free energy, and I is the information (in bits)
required to describe the state of interest. The absolute in-
formation measure I, called algorithmic information [3],
is defined as the length (in bits) of the shortest program
on a universal computer that can generate a complete
description of the state of interest. Defining total free
energy is equivalent to de6ning a total entropy

(1.2)

as proposed by Zurek [4, 5]. Throughout this paper I refer
to the conventional entropy H as the statistical entropy,
and I call the entity that stores information about the
system a "memory. "

This paper explores consequences of including informa-
tion in free energy and entropy. The bottom line is that
it takes an enormous amount of information to describe
most system states —either classical phase-space distribu-
tions or quantum pure states much more i—nformation,
in fact, than the statistical entropy of thermal equilibrium
[6]. As a result, most phase-space distributions and most
pure states have total entropy much larger than equilib-
rium and total free energy much lower than equilibrium.
If total entropy and total free energy are to be useful

concepts, this means that work —indeed, an enormous
amount of work —can be extracted in going from equi-
librium to a typical phase-space distribution or a typical
pure state.

This initially puzzling conclusion is illustrated by two
gedanken examples —one classical and one quantum-
mechanical —which are aimed at removing the puzzle-
ment. They show that the work comes from randomiza-
tion of the memory that holds a record of the system
state. In the language of conventional statistical physics,
the memory goes from a low-entropy, high-free-energy
state, when it stores a record of the system in equilib-
rium, to a high-entropy, low-free-energy state, when it
stores a record of a typical phase-space distribution or a
typical pure state.

Far from just demystifying a theoretical puzzle, how-
ever, this paper establishes a framework for more am-
bitious investigations. Having established that typi-
cal phase-space distributions and typical pure states
are algorithmically extremely complex and, furthermore,
that it makes sense to attribute to them a high to-
tal entropy, one can proceed to the following question:
can Hamiltonian evolution "ither classical or quantum-
mechanical —take an algorithmically simple initial state
to one of the typical algorithmically complex states? In-
vestigation of this question has begun [6—8], with interest-
ing consequences for the second law of thermodynamics
and the nature of irreversibility and for the connection
between chaos and quantum mechanics.

Section II reviews pertinent elements of algorithmic in-
formation theory. Section III considers the total entropy
of the conventional distinct states of a physical system
and reconciles the memory's "inside view" [5], taken in
this paper, with the "outside view" of conventional sta-
tistical physics. Section IV introduces the phase-space
patterns and pure states that are the subject of this pa-
per. Section V presents the gedanken examples that elu-
cidate the meaning of total entropy and total free energy.
Section VI concludes with a brief discussion.
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II. ALGORITHMIC INFORMATION

Consider a set of K alternatives, labeled by an index
k and occupied with probabilities pk. In the remaining
sections the alternatives become states of a physical sys-
tem.

Three kinds of information arise in describing these
alternatives. The first is the background information
needed to give the statistical description. This back-
ground information, denoted by Ip, is the algorithmic
information required to generate an overall description
of the alternatives, including a list of all of them and
their probabilities. The second kind of information, con-
ventionally denoted Ii, p, but denoted just by I~ here,
is the joint algorithmic information needed both to give
the background information and to specify the particular
alternative k. The third kind of information, convention-
ally denoted Ii,~p, but denoted by AIi, here, is the condi
tional algorithmic information needed to specify alterna-
tive k, given the background information (more precisely,
given the minimal program for the background informa-
tion). The background information Ip, which is sufficient
to generate a list of att the states, is often very much
smaller than the the additional information AIy needed
to specify a particular typical alternative k.

Two results from algorithmic information theory are
needed. The first result is the sensible one that

Ii, = Ip + AIk + O(1), (2.1)

where O(l) denotes a computer-dependent constant,
which arises from defining algorithmic information in
terms of computer programs and which is bounded in ab-
solute value for any particular universal computer. Equa-
tion (2.1) reveals the reason for my unconventional no-
tation for algorithmic information: it is aimed at har-
monizing with the conventional thermodynamic notation
for difFerences between states area—sonable aim when H
and I are included on an equal footing in the total en-
tropy.

The second result from algorithmic information theory
is a double inequality [5, 9—ll],

ensemble. In this situation the double inequality (2.2)
becomes

K

logzK & —) AIi, & logzK+0(1) .
k=1

(2.4)

It reduces the remainder of this paper to counting al-
ternatives: the conditional information ZIi, to specify a
typical alternative A: is very nearly log2 iC; there are sim-
ple alternatives for which AI& « log2K, but they are
atypical.

III. CONVENTIONAL STATES AND THE INSIDE
AND OUTSIDE VIEWS

Consider now an isolated physical system that has J'
distinct states, labeled by an index j and all of energy Ep.
Classically these states are nonoverlappiny cells in phase
space, deGned by a phase-space coarse graining; quantum
mechanically they are orthonormal basis states in a J'-
dimensional Hilbert space. These states are distinguished
from the phase-space patterns and pure states introduced
in Sec. IV precisely because they are distinct in the usual
sense. To make a semantic distinction, I refer to a set of
distinct states as conventional states.

Thermal equilibrium for this system is described by the
microcanonical ensemble, in which all states are equally
likely. Equilibrium has energy Eo, statistical entropy

Hp = logz g,
and free energy

(3.1)

Fp = Ep —klan T ln 2 Hp = Ep —kz T ln 2 log2 J' .

(3.2)

The background information Ip needed to describe equi-
librium is small (Ip log&Hp [6, ll]) and can be ne-
glected. Hence, the total entropy and total free energy of
equilibrium are essentially the same as their conventional
counterparts.

Each conventional state j has statistical entropy Hz ——

0, corresponding to a statistical-entropy reduction

H & ) pi, AIi, & H+ O(l), (2.2) AH~ = Hz —Hp = —log2+

which relates the average conditional information to the
usual statistical information [12]

and a free-energy increase

6F~ = —k~T ln 2 6H~ = k~ T ln 2 log2 g, (3.4)
iC

H = —).pi log2pA:,
k=1

(2.3)

which is stored in iC alternatives that have probabilities-
pi, (log& denotes a base-2 logarithm, so H is in bits).
The left-hand inequality in Eq. (2.2) is strict, whereas
the right-hand inequality is soft because of the computer-
dependent constant. For typical alternatives, KIi, is very
close to the code-word length for alternative k in an op-
timal instantaneous code [12] for all jC alternatives.

For the remainder of this paper, I specialize to equally
likely alternatives (pi, = 1/iC), as in the microcanonical

relative to equilibrium. The additional information re-
quired to describe a typical conventional state j, however,
1s

AI~ log2 J' . (3.5)

AS~ =8~ —8p =b,H~+AI~ =0
and, likewise, the same total free energy, i.e. ,

(3.6)

Thus a typical conventional state has the same total en-
tropy as equilibrium, i.e. ,
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AX& = Xz —Xp = 6Fz —k~ T ln 2 AI&

= —k~T ln 2 (b,H~ + AI~) 0 . (3.7)

1—) (AF~ —k~T ln 2 AI~)

Physically, this means that once the Landauer erasure
cost is recognized, no uncork is available in going from a
typical conventional state to equilibrium.

Equation (3.7) is the contemporary formula for exor-
cising Maxwell demons [4—6, 10, 11]. A demon-memory
can operate an engine cycle in which it first observes the
system in equilibrium, finding it in state j (with probabil-
ity 1/J'), then extracts work AF~ as the system returns
to equilibrium, and finally pays a Landauer erasure cost
k~T ln 2 AI~ to return to its background state of knowl-
edge Th. e net work extracted on the average,

entropy of another physical system, the memory.
In contrast to typical conventional states, a simp/e con-

ventional state j has AI& (( Ho, so the information con-
tribution to the total entropy and total free energy can
be neglected. A simple conventional state has lower total
entropy and higher total free energy than equilibrium by
the conventional amounts. Work

(3.9)

must be supplied to transform the system reliably from
equilibrium to a simple state and can be extracted as
the system returns to equilibrium from a simple state.
In conventional statistical physics, simple conventional
states and equilibrium constitute the entire subject, pre-
cisely because the information needed to describe them
can be neglected; typical conventional states are dealt
with not individually, but only statistically within the
equilibrium ensemble.

= k~Tln2 log2+ ——) AI~ & 0, (3.8)

is guaranteed not to be positive by the strict left-hand
inequality of the double inequality (2.4). Though the
demon-memory cannot win, the soft right-hand inequal-
ity implies that it can come close to breaking even, at
least in principle. Equation (3.8) illustrates how the Lan-
dauer erasure cost leads naturally to the notion of total
free energy.

This analysis —and this paper —use the memory's own
inside view [5], which assigns to the memory the specific,
minimal amount of information (relative to a particu-
lar universal computer) needed to describe the system
stat" --an amount of information that varies from one
system state to another. The memory is also a physical
system. Viewed from the outside, the memory should
be treated by conventional statistical physics, like any
other physical system. Once the demon-memory has ob-
served the system's state, the outside view assigns equal
probabilities to the J' different memory configurations
that record the system states and thus attributes a sta-
tistical entropy log2 J' to the memory. Thus, from the
outside view, the demon-memory cannot win because its
conventional statistical entropy increases after it observes
the system and must be reduced to return to its back-
ground state of knowledge. The double inequality (2.4) is
a consistency condition: it ensures that an average over
the inside view is equivalent to the conventional outside
view.

The import of the first sentence of this paper is that
a system state implies the existence of a memory that
contains its description. Aside from the computer de-
pendence, the amount of information I contained in the
memory and, hence, the total entropy 8 are properties of
the system state. From the inside view, it is a convenient
shorthand to say that a system state has total entropy
8, even though from the outside view the information
part of the total entropy is the conventional statistical

IV. TYPICAL PHASE-SPACE PATTERNS
AND TYPICAL PURE STATES

Typical conventional states are already too complex
algorithmically to be dealt with individually in con-
ventional statistical physics, but they are by no means
the most algorithmically complex states that have a
statistical-entropy reduction b,H = —log2 J' relative
to equilibrium. Classically, any pattern of fine grained-
phase-space cells whose total phase-space volume is the
same as the volume of a coarse-grained cell has AH =
—log2 J'. Quantum mechanically, any pure stat" i.e. ,
any linear combination of the orthonormal basis states-
has AH = —log2 Q. The number of fine-grained phase-
space patterns is much greater than the number J of
coarse-grained cells and is limited only by the scale of the
fine graining; the number of pure states is much greater
than the dimension g of Hilbert space and is limited
only by the number of significant digits in the basis-state
amplitudes —i.e., in J' probabilities and J' phases [6, 13].
Hence, the information EI needed to specify a typical
fine-grained phase-space pattern or a typical pure state,
beyond the background information (which must be sup-
plernented by a small amount to specify the scale of the
fine graining or the number of digits in the quantum am-
plitudes), is much greater than the equilibrium entropy
log2 Q [6]. Thus emerges the key result of this paper: a
typical fine grained phas-e space patte-rn or a typical pure
state has total entropy much greater than equilibrium, .

Although this key result has far-reaching consequences,
it is by no means dificult to understand. It is a conse-
quence of dropping the usual insistence that states be
distinct. The fine-grained phase-space patterns can over-
lap, so one is freed from the constraint set by the number
of nonoverlapping patterns that can be fitted into the
available volume of phase space. The pure states need
not be orthogonal, so one is freed from the constraint set
by the number of Hilbert-space dimensions.

Figure 1 depicts the resulting entropy and free-energy
relationships. The two systems of Fig. 1—one classi-
cal and one quantum-mechanical —focus the remainder
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Total free energy
g = E—k&Tln2(H+I)
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of the paper. The classical system has N containers, each
enclosing a single molecule; the choice of coarse graining
divides each container into two equal volumes, which can
be separated by a partition. The quantum-mechanical
system is made up of the polarizations of N photons; the
chosen orthogonal basis states are vertical and horizontal
linear polarization. For both systems there are g = 2~
distinct states.

For the classical system, suppose the fine graining di-
vides each container into K boxes of equal volume. A
fine-grained pattern is formed by selecting half the boxes
in each container. These boxes (white in Fig. 1) can
be separated physically from the other half of the boxes
(black in Fig. 1) by a suitable partition. The number of
patterns is JV~, where

I I~ I a a+a Ioa I ... I

g( 6!/(3!)2 201 a~l a a a I I ~ I I+a I

g=.use=2' g
t(&/2)!]' (4.1)

Ep-
Nlog2+ kgT1 n2

11001001101011001011" 01101
0 -- Nlog2g(

Typical fine-grained pattern
or product pure state

h, H = —N
d, I =- Nlog2+

Total entropy
S= H+I

is the number of patterns per container. Suppose the
quantum system is restricted to product states of linear
polarizations [14]. Then a pure state is a product of N
linear polarizations, each specified by an angle 0 relative
to vertical. If this polarization angle is given to accuracy
b8, the number of pure states is JV~, where

(4 2)
FIG. 1. Total free energy (upward) and total entropy

(downward) for a classical system —N molecules enclosed in
separate containers —and a quantum system —N linear po-
larizations (double-ended arrows). There are Q = 2 dis
tinct states: coarse graining divides each container into two
equal volumes; basis states are vertical and horizontal polar-
izations. In equilibrium each molecule explores its entire con-
tainer, and both polarizations are equally likely. A classical
coarse-grained state or quantum basis state has AH = —N
and is represented by an N-digit binary string —0 for left or
vertical and 1 for right or horizontal. Typical classical coarse-
grained states or typical quantum basis states are represented
by random strings, whose specification requires AI N bits;
typical coarse-grained states or typical basis states have the
same total entropy as equilibrium. Simple classical coarse-
grained states or snnple quantum basis states, illustrated by
extreme cases in which all molecules are on the left or all po-
larizations are vertical, are represented by strings that can be
specified by AI &( N bits—in the cases here, essentially one
bit, for 0 or 1; simple coarse-grained states or simple basis
states have total entropy lower than equilibrium by nearly
N bits. Classical fine-grained patterns and quantum pure
states, both of which have AH = —N, are depicted at the
bottom. Fine graining divides each container into K identical
boxes; for each container there are JV = |C!/[(K/2)!] fine-
grained patterns, each made up of half the boxes (white in
the drawing) and each represented by a (log2 JV)-digit binary
code word. For each photon a pure linear-polarization state
is represented by an angle 8, defined relative to vertical and
given modulo vr to log2 JV binary digits. A typical fine-grained
pattern or a typical product pure state for all N constituents
requires AI Nlog2 JV bits for its description and thus has
total entropy much larger than equilibrium. Work can be
extracted in going from equilibrium to a typical fine-grained
pattern or a typical pure state.

is the number of linear polarizations per photon. A fine-
grained pattern or a pure state has a statistical-entropy
reduction

AH = —logs J' = N, — (4.3)

but the information needed to specify a typical pattern
or a typical pure state is

b,I = log 2 Af = N logs JV . (4 4)

For the classical system EI NiC for K )) 1.
A typical fine-grained pattern or typical pure state has

total entropy higher than equilibrium by

AS = AH + AI N log2(JV/2) (4.5)

and total free energy lower by

k~T ln 2 AS —k~T ln 2 N logs (—JV/2) .

(4.6)

To erase the memory's record of a typical fine-grained
pattern or a typical pure state, energy k~T ln 2 N log2JV
must be dissipated, of which k~T ln 2 N can be recovered
in work as the system "expands" to equilibrium. Thus,
to go from a typical fine-grained pattern or a typical
pure state to equilibrium, energy k~T ln 2 N log2 (JV/2) =
—L~ must be dissipated. There should be a reverse
transformation, in which work —AP is extracted in go-
ing from equilibrium to a typical fine-grained pattern or
a typical pure state. Section V spells out such a reverse
transformation.



4014 CARLTON M. CAVES 47

V. GEDANKEN EXAMPLES

System Memory

I sl sl sl sl sl sl sl sl sl sl

To describe the transformation requires just one
molecule or one photon, so henceforth I specialize to the
case X = l. I aim for clarity by presenting the gedanken
examples in terms of typical fine-grained patterns or typ-
ical pure states, thereby neglecting the possibility of com-
pressing records for simple states. A more rigorous ac-
count, particularly for the engine cycles discussed below,
uses the double inequality (2.4) to constrain averages,
but reaches the same conclusions.

Consider first the classical system, a single molecule
enclosed in a container (Fig. 2). The objective is to trans-
form the molecule from equilibrium, where it roams the
entire container, to occupation of a fine-grained pattern
that is recorded in the memory, while extracting work
—6P = k~Tln2 log2(JV/2). To store the (log2JV)-bit
record for which pattern —i.e. , the additional information
beyond the background information —the "memory" uses
log&JV binary registers, which are initially in a "stan-
dard" state, storing no information. The fine-grained
patterns come in complementary pairs (white and black
in Fig. 2), for each of which the memory has a partition
that separates white and black boxes. There being A/2
pattern pairs, it takes log2(JV/2) bits to specify a pair or

its partition. Figure 2 shows a three-step transformation.
Step 1: The log2(lV/2) memory registers after the first

are allowed to randomize, with extraction of work (in-
verse of erasing [10])

Wi+ ——A:~T ln 2 log2(JV/2),

after which the memory stores

AIi ——log2(JV/2) bits .

(5 1)

(5.2)

AIs = 1 bit

An explicit way for the memory to perform this step is
to use an auxiliary system that has JV/2 distinct states,
one for each record that can be stored in the log&(JV/2)
memory registers after the first. This auxiliary system is
initially in equilibrium, with equal probability to occupy
each of its distinct states. The memory erst observes
the state of the auxiliary system, storing a record of the
observed state in its log2(A/2) registers after the first
and thereby reducing the statistical entropy of the aux-
iliary system by log2(JV/2) bits. The memory then uses

its record to extract work Wi(+ as the auxiliary system
returns to equilibrium, after which the auxiliary system
is irrelevant to the further discussion.

Step 2: The memory uses its [log2(JV/2)]-bit record to
select a partition and applies it to the container.

Step 8: The memory observes whether the molecule
is in the white or the black part of the container and
records

h, Hi ——0 hI& ——9 bits W1'+'=9I BTln2 for white (0) or black (1) in its first register, thereby
changing the molecule's statistical entropy by

I sl il ol il il ol il ol ol ol AHs = —1 bit . (5.4)

h, H2 ——0 h, I2——0 W(+&=0
2

After step 3 the molecule occupies a particular pattern,
with statistical-entropy reduction

hH3 ———1 bit

I sl il ol il il ol i I ol ol ol

hI3 ——1 bit

EH = AHs = —1 bit;

the memory stores

AI = AIi + DIs = log2 JV bits,

(5.5)

(5 6)

I &I il &I il il &I il &I &I &I which record which pattern the molecule occupies; and
work

Totals: h, H= —1 bit BI=10 bits W + =9k&Tln2
W(+) = W+ = k Tl 2 log (JV/2)

FIG. 2. A single molecule, initially free to explore its en-
tire container, is transformed in three steps to occupy a fine-
grained pattern consisting of 6 out of K = 12 boxes. A
memory with 10 binary registers, each initially in a stan-
dard state (denoted by "8"), stores the 10 bits (log~ JV =
log2[12!/(6!) ] = log~ 924 = 9.85) needed to specify the pat-
tern. Given at each step are the change in the statistical
entropy, the change in the number of bits of memory used,
and the work extracted. After the transformation, the sta-
tistical entropy has changed by DH = —1 bit, the memory
stores DI = 10 bits, and work W + = k~Tln2(AH+BI) =
9k~T ln 2 has been extracted.

has been extracted, as promised. An alternative transfor-
mation lets all log& JV memory registers randomize, with
extraction of work k~T ln2 log2 JV, of which k~T ln 2 is
used to "compress" the system into the pattern stored in
the memory's record.

It is instructive to consider two engine cycles based on
this example. The two cycles differ in what is regarded as
the memory's background state of knowledge. The erst
cycle has the same initial state (situation before step 1):
the molecule is in equilibrium, and the memory stores no
information. This cycle proceeds through steps 1—3 and
adds two further steps to get back to the initial state.

Step g: The molecule returns to equilibrium with ex-
traction of work
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(5.8) Totals: hH= —1 bit M=10 bits ~ + =9k8Tln2

One way to extract this work is to move all the black
boxes to one side of the container and all the white boxes
to the other side, separating the two by a partition down
the middle; then, knowing which side the molecule is
on, the memory inserts a piston into the empty side and
extracts work k~T ln 2 as the molecule pushes the piston
out of the container.

Step 5: The memory returns to its standard state (all
registers empty), paying a Landauer erasure cost

Iolilolililolilololol

AH3 =1 bit 3 Al'3 i bi t ——W + =0
3

8&
——0.0101101000m rad

Ws ——k~Tln2EI = k~Tln2 log2JV. (5.9) Photon
h,H1 ——0 Is I 1 I0I1 l1 IOI1 IOI0IOI

The net work extracted, W(+) + W(+) —W, is zero.
In this cycle the background information is the informa-
tion needed to generate a description of the system at the
level of division into boxes. The information gathered by
the memory during the cycle includes both the log& (JV/2)
bits for choosing a partition and the 1 black-or-white bit
from observing the molecule.

The second kind of cycle uses the result of step 1 as the
initial state: the molecule is in equilibrium, the memory's
first register is in the standard state, and the remaining
log&(JV/2) memory registers store which-partition infor-
mation. Step 4 is the same, but in step 5 only the first
memory register needs to be erased —at cost kBT ln 2—to
return the memory to its background state of knowledge.
In this cycle the log&(JV/2) bits for choosing a partition
are background information, which tells the memory how
to partition the container into two equal volumes. The
cycle is just a fancy Szilard [15] engine, with the container
partitioned in an unusual way instead of by inserting a
partition down the rniddle.

These two cycles emphasize that the change in total
entropy must be defined relative to some initial system
state and to some initial background information. The
difFerence between the two cycles is precisely whether the
log2(JV/2) which-partition bits are background informa-
tion, to be carried forward from cycle to cycle, or fore-
ground information, collected afresh during each cycle
and erased to return to the initial background informa-
tion. The total-entropy increase when the molecule is
confined to a typical pattern is real, but it must be un-
derstood as an increase relative to physical equilibrium
and to equilibrium background information.

Turn now to photon polarization. The objective is to
take an initially unpolarized photon to linear polarization
at some angle 8 (within 68 = vr/JV) that is recorded in the
memory, while extracting work k~T ln 2 log2(lV/2). The
memory has log2 JV binary registers, initially in a stan-
dard state, to store the (log& JV)-bit polarization angle.
The analog of the classical partitions is a polarizing beam
splitter that, when set at angle 8„, separates orthogonal
polarizations at angles 8„and 8„+x/2. Figure 3 shows
a transformation that mimics the three steps in the clas-
sical example.

Step 1: The logz(JV/2) memory registers after the first
are allowed to randomize, with extraction of work

hI
&
——9 bits

Memory

Islslslslslslslslslsl Islilolililolilololol

W =9kgTln2

~ ~ ~ ~ ~ ~ ~I---""-~" """-"-"-"-"""}Ilit&'

Polarizing
beam splitter

h,H2——0

h.l2 ——0

W(+)=0
2

FIG. 3. An unpolarized photon is transformed in three
steps to linear polarization at angle 8 (relative to the vertical)
given to 10 binary digits (accuracy b8 = 2 om.). The state
of linear polarization is depicted in a plane rotated by 90
so that it lies in the plane of the paper. A memory with 10
binary registers, each initially in a standard state (denoted
by "S"),stores the 10 angle bits. Given at each step are the
change in the statistical entropy, the change in the number
of bits of memory used, and the work extracted. After the
transformation, the statistical entropy has changed by AH =
—1 bit, the memory stores AI = 10 bits, and work W +~ =
k~T in 2 (AH + b,I) = 9k~T ln 2 has been extracted.

AIi = log2(JV/2) bits . (5.11)

Step 8: The memory sets the polarizing beam splitter
at angle 8„=0.0r vr (0.0r is the binary representation of
8~/vr), after which the photon passes through the beam
splitter.

Step 8: The memory observes the photon's output di-
rection, recording in its first register the

AI3 ——1 bit (5.12)

for which orthogonal polarization —0 for angle H„and 1
for angle 8„+a/2; the observation changes the statistical
entropy by

AH3 ———1 bit . (5.13)

After step 3 the photon has linear polarization at angle
8 = 8„=0.0r vr or at angle 8 = 8„+~/2 = O. lr 7r and
thus has statistical-entropy reduction

AH = AHs = —1 bit; (5.14)

after this step the memory stores a binary string r of
length

Wi ——k~T ln 2 log2(JV/2); (5.10)
the memory stores the polarization angle modulo vr as
the binary string Or or 1r of length
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AI —AIg + AI3 —log& JV bits

and work

W(+) = W+ = lc Tl 2 log (JV/2)

(5.15)

(5.16)

VI. DISCUSSION

This paper provides background and motivation for ad-
dressing the following question: can Hamiltonian dynam-
ics, either classical or quantum-mechanical, take a simple
initial stat" i.e. , an algorithmically simple phase-space
cell or an algorithmically simple quantum basis stat"- ——

has been extracted.
In both examples the memory's record splits naturally

into two parts: log&(JV/2) bits that tell the memory hour

to observe the system —which partition or which beam
splitter angl" and 1 bit from the subsequent observa-
tion. The log&(JV/2) bits of which-observation informa-
tion are not stored in the system and cannot be obtained
by observing it. The logs(JV/2) which-observation regis-
ters are "called into existence" in a standard state when
one contemplates storing a record of a typical fine-grained
pattern or a typical pure state. The work W~+~ comes
wholly from randomizing these which-observation regis-
ters.

From the outside view of conventional statistical
physics, the standard memory state is a low-entropy,
high-free-energy state. Supplying memory registers in
the standard state is the same as supplying fuel that can
be turned into useful work [10]. Indeed, from the outside
view, the work is extracted as the which-observation reg-
isters go from the low-entropy standard state, far from
equilibrium, to the high-entropy equilibrium state, in
which they store a record of how to observe the system.

The inside and outside views agree on the average work
extracted or dissipated in steps j.—5. Thus both views
agree on the average free-energy decrease in going from
the system in equilibrium, with a record of equilibrium
stored in the memory, to the system's occupying a fine-
grained pattern or pure state, with a record of the pattern
or pure state stored in the memory. The outside view
achieves all this using only the conventional statistical
entropies of the system and the memory. The inside view
agrees with the conventional outside view on the average,
but it has the advantage that it gives an account —indeed,
it must give an account —of each memory state. This
advantage is of little consequence in analyzing an engine
cycle, since only average behavior is relevant for questions
of thermodynamic efficiency, but it becomes important
when one applies the concept of total entropy to system
dynamics that begin with a particular initial state.

to one of the typical fine-grained phase-space patterns or
typical quantum pure states, which are algorithmically
extremely complex and thus have high total entropy?
This question, foreshadowed by Zurek's [5] analysis of
classical ergodic, but nonmixing systems, is only begin-
ning to be investigated. Initial work [6] indicates that the
answer is no, at least for reasonable times. The negative
answer holds both for classical systems, either regular or
chaotic, and for quantum systems.

Things get more interesting, however, when one re-
alizes that the state that evolves from a simple initial
state under classical chaotic —but not regular "volution
or under quantum-mechanical evolution, although itself
algorithmically simple, can be easily perturbed into one
of the typical algorithmically complex phase-space pat-
terns or pure states [6]. Detailed analyses of a stochas-
tically perturbed version of the baker's map [7], a proto-
type for classical chaos, and of a stochastically perturbed
version of a quantized baker's map [8], indicate that the
algorithmic information needed to keep track of the per-
turbed state grows extremely fast. Indeed, the growth
of algorithmic information is much faster than the in-
crease in statistical entropy that follows from averaging
over the stochastic perturbation. These detailed analy-
ses, together with the heuristic analyses [6] that moti-
vated them, have deep implications for the second law of
thermodynamics and for the nature of irreversibility and,
moreover, hint at a previously unrecognized connection
between classical chaos and quantum mechanics.

One further question can be addressed profitably to
the gedanken examples in Sec. V: how are classical and
quantum systems different? Successive observations of
the classical molecule, using different partitions, eventu-
ally isolate the molecule in a single box, thus uncover-
ing the fine-grained structure beneath the initial coarse
graining. Successive observations of the photon, using
difFerent beam splitter angles, yield fresh information as
long as there is memory space to store it, never revealing
any structure beneath the pure states (no hidden vari-
ables). This ability of quantum systems to manufacture
new information is the central mystery of quantum me-
chanics, stated in information-theoretic language.

ACKNOWLEDGMENTS

I thank W. G. Unruh for challenging me to come up
with the examples in Figs. 2 and 3, and I thank S. Lloyd,
R. Schack, and W. H. Zurek for advising me how to revise
this paper from its original, shorter form. This work
was supported in part by the Complexity, Entropy, and
Physics of Information program at the Santa Fe Institute.

[1] R. Landauer, IBM J. Res. Develop. 5, 183 (1961).
[2] R. Landauer, Nature (London) 355, 779 (1988).
[3] G. J. Chaitin, Information, Randomness, and Incom

yleteness (World Scienti6c, Singapore, 1987).
[4] W. H. Zurek, Nature (London) 341, 119 (1989).
[5] W. H. Zurek, Phys. Rev. A 40, 4731 (1989).

[6] C. M. Caves, in Physical Origins of Time Asymme
try, edited by J. J. Hallimell, J. Perez-Mercader, and
W. H. Zurek (Cambridge University, Cambridge, Eng-
land, 1993).

[7] R. Schack and C. M. Caves, Phys. Rev. Lett. 69, 3413
(1992).



47 INFORMATION AND ENTROPY 4017

[81

[9]

[10]
[11]

[12]

[13]

R. Schack and C. M. Caves (unpublished).
A. K. Zvonkin and L. A. Levin, Usp. Mat. Nauk 25 (6),
85 (1970) [Russ. Math. Surveys 25 (6), 83 (1970)].
C. H. Bennett, Int. J. Theor. Phys. 21, 905 (1982).
C. M. Caves, in CompIexity, Entropy and the Physics
of Information, edited by W. H. Zurek (Addison-Wesley,
Redwood City, CA, 1990), p. 91.
R. G. Gallager, Information Theory and Reliable Com
munication (Wiley, New York, 1968).
I. C. Percival, in Quantum Chaos, Quantum Measure
ment, edited by P. Cvitanovic, I. Percival, and A. Wirzba,
(Kluwer, Dordrecht, Holland, 1992), p. 199. Percival em-
phasizes that so much information is required to specify
a typical pure state that it is impossible in practice to
prepare one.

[14] If one allows arbitrary pure states within the (P = 2 )-
dimensional Hilbert space of the N photon polarizations,
then the information to specify a typical state is AI
gx(number of bits to specify a real amplitude and a
phase for each Hilbert-space dimension). The number of
pure states, at the Hilbert-space resolution defined by
the number of digits in the amplitudes and phases, is
JV 2 —an enormous number even for Hilbert spaces
with a modest number of dimensions. A more rigorous
discussion of this point can be found in Ref. [6].

[15] L. Szilard, Z. Phys. 53, 840 (1929) [English translation
in Quantum Theory and Measurement, edited by J. A.
Wheeler and W. H. Zurek (Princeton University, Prince-
ton, NJ, 1983), p. 539].


