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Structural changes accompanying densification of random hard-sphere packings
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Local icosahedral order is found to increase as random hard-sphere packings (one- and two-
component) generated on the computer are densified from the (recently established) “loose random-
packing” limit to the “dense random-packing” limit. While icosahedral ordering in “atomic” systems is
frequently ascribed to the energetic stability of icosahedral clusters, the present results show that
icosahedral ordering can arise from packing constraints alone. However, the icosahedra are often dis-
torted, partly due to the lack of preferred distance between hard spheres. At high density one-third to
one-half of the pairs in the first peak of the radial distribution function (RDF) are icosahedral fragments.
The splitting of the second peak, which is characteristic of packings of spherical particles, was studied by
decomposing the RDF into components according to the local environment of the pairs. Linear trimers
of spheres are responsible for the second subpeak while the first subpeak arises roughly equally from
tetrahedra sharing a face and triangles with adjacent sides. The hard-sphere packings were compared
with packings of soft, attracting spheres by relaxing the configurations under a Lennard-Jones potential.
The fraction of pairs characteristic of local crystalline order in the first peak of the RDF was found to
increase. The reversal of the relative height of the two parts of the split second peak results from a
broadening of the distribution of distances within the linear trimers, while the distribution sharpens for
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the face sharing tetrahedra and adjacent triangles.

PACS number(s): 64.60.Cn, 81.20.Ev, 82.70.Kj, 64.70.Pf

L. INTRODUCTION

Packings of hard spheres have been studied extensively
because they serve as useful models for a variety of physi-
cal systems, such as powders [1], porous materials [2],
colloidal suspensions [3], liquids [4], and glasses [5].

Numerous experiments have been done to study the
packing of spheres. Smith, Foote, and Busang [6] poured
lead shots in a glass beaker and used a corrosion tech-
nique to mark contacts. For various densities, they
counted the number of contacts made by each sphere and
reported the frequency of contact numbers. Bernal and
co-workers [7,8] used steel ball bearings, which more
closely approximate hard spheres, and soaked the pack-
ings in paint to mark the contacts. After the paint dried
the spheres were broken apart and the number of con-
tacts recorded. In other experiments Bernal and co-
workers poured molten wax into the packings and used a
modified milling machine to record the coordinates of
each sphere in the solidified packings.

Scott and co-workers [9-11] poured ball bearings into
cylindrical tubes and carefully measured the packing den-
sity as a function of the container size. By extrapolating
to infinite size, they arrived at values for the packing den-
sity in two reproducible limits. By gently rotating the
cylinder into a vertical position, the spheres assembled in
a low-density packing termed ‘loose random packing”
(LRP) with a measured packing fraction (volume of the
spheres divided by the total volume) of 0.60. By vibrat-
ing the cylinders at a suitable frequency for a few
minutes, the density had increased to a high-density limit
termed ‘“‘dense random packing” (DRP) with packing
fraction of 0.637.
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The DRP has been studied extensively. Values of the
packing fraction ranging between 0.635 and 0.640 have
been reported for a variety of materials, and the radial
distribution function and Voronoi analysis of structure
have been reported [12]. A derivation of the upper limit
of the packing fraction in random hard-sphere packings
remains a challenging mathematical problem [1].

Much less is known about the LRP. This is the loosest
packing that is stable against compaction under an exter-
nal load. In the experiments of Scott, Bernal, and others
the external load is the gravitational force. Onoda and
Liniger [13] recently gave a more fundamental definition
of LRP, also taking the limit g—0, and performed a
series of well-defined experiments on glass spheres in
liquid mixtures adjusted to include neutrally bouyant
conditions. The extrapolated data gave a LRP packing
fraction of 0.555%0.005 in the limit of vanishing load.

Spherical colloidal particles with thin polymer coatings
interact with a steeply increasing repulsive interaction
which closely mimics the hard-sphere system. Light-
scattering experiments make it possible to study structure
and dynamics in colloidal suspensions in considerable de-
tail. Pusey and van Megen [14] observed ‘‘structural
arrest” in random packings at a packing fraction of 0.56.
This compares reasonably well with molecular-dynamics
simulations of hard spheres by Woodcock [15] that indi-
cated a glass transition at a packing fraction of
0.58-0.60. Mode-coupling theories of the hard-sphere
system [16,17] predict that a glass transition occurs at a
somewhat lower packing fraction, 0.52-0.54.

The structure of the DRP has been applied to model
various systems [1]. One of the most successful applica-
tions of the DRP structure has been to model metallic
and metal-metalloid glasses [18,19]. Cargill [20] showed
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that the radial distribution function (RDF) for a one-
component DRP agrees remarkably well with the total
RDF for amorphous Ni;¢P,, while microcrystalline mod-
els do not give good agreement. However, there are some
clear differences. The second peak in the total RDF mea-
sured for these materials is split into two subpeaks.
While the RDF for the hard-sphere packings also has a
split second peak, the relative height of the two subpeaks
is reversed. In the DRP the second subpeak is higher
than the first subpeak, whereas experimental measure-
ments invariably show that the first subpeak is higher.

Many workers have pointed out that relaxation of
hard-sphere packings under a model interatomic poten-
tial, such as a Lennard-Jones potential, improves the
agreement between the DRP model and measurements on
metallic glasses. Barker, Hoare, and Finney [21] (BHF)
found that relaxation under a Lennard-Jones potential re-
versed the relative heights of the two subpeaks. It has
even been proposed that such relaxation mimics structur-
al changes during annealing of amorphous metals [22].

An important question is how the structure of the LRP
compares with that of the DRP. The only detailed study
of structural changes accompanying densification that we
are aware of is a Voronoi analysis by Finney [23] of a
small (500-sphere), computer-simulated cluster. The free
surface significantly increases the “configuration space”
available to the spheres beyond that available to spheres
in a bulk configuration. A very high effective packing
fraction was obtained, 0.665, resulting in a reversal of the
intensities of the two components of the split second
peak.

In this paper we analyze the local structure of the one-
component and a two-component random packing of
hard spheres using a method that decomposes the RDF
according to the local environment of the pairs of
spheres. This allows us to identify structural patterns re-
sponsible for various features in the RDF and clearly
identify spheres in, for example, crystalline and
icosahedral environments. In particular, we focus on the
structural changes which occur as the density of the
packings is gradually increased. Starting with a LRP
with a packing fraction of 0.56, we analyze intermediate
configurations at increments of 0.02 in the packing frac-
tion, until the densification converges to the DRP limit
with a packing fraction of 0.64. We briefly describe the
simulations of the hard-sphere packings in Sec. II. In
Sec. IIT we discuss a comparison of the structure of high-
and low-density packings with experimental data. While
the RDF is itself a rather insensitive and uninformative
measure of the structure, it is the starting point for the
structural analysis and will be the basis of our discussion.
In presenting our results, we begin with the first peak in
the RDF and then analyze the second peak. The effect of
densification on the radial distribution function is
presented in Sec. IV. The decomposition of the RDF us-
ing common-neighbor analysis is discussed in Sec. V and
its application to one- and two-component hard-sphere
packings is presented in Sec. VI. In Sec. VII we compare
the one-component hard-sphere packings with Lennard-
Jones configurations obtained by relaxation. Section VIII
contains a discussion of the results and conclusions.
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II. THE SIMULATIONS

All the hard-sphere configurations consisted of 2000
spheres subject to cubic periodic boundary conditions.
The packings were constructed using an algorithm that
can briefly be described as follows (a more detailed
description is given in Ref. [24]): Random points in a
cube are chosen as sphere centers. Radii are assigned so
that the initial (nominal) packing fraction is approximate-
ly 0.5. In general, the spheres overlap. They are moved
sequentially with each move accepted only if it decreases
the maximum overlap of the sphere being moved. This is
repeated until the maximum overlap among all spheres is
nearly zero. Then the radii are increased by a small frac-
tion and this cycle is repeated. Eventually, the spheres
become tightly packed and the overlap drops
insignificantly over many moves. At this point, the radii
are decreased by a very small fraction and the spheres
moved to reduce overlaps. The radii are decreased fur-
ther and the spheres moved until all the overlaps are
nearly zero. This cycle of increasing the radii and mov-
ing to reduce overlaps, then decreasing radii and moving
to reduce overlaps, is repeated many times with decreas-
ing amplitude until the packing fraction at zero overlap
converges. Periodically, the spheres are “vibrated” by
giving each sphere a small random displacement irrespec-
tive of how the overlaps change. That greatly improves
the rate of convergence of the calculation.

It is easy to construct a hard-sphere packing with low
density on the computer. However, the computer pro-
gram spends about 90% of the CPU time in going from a
packing fraction of 0.60 to 0.64. The structural rear-
rangements which occur are not trivial, such as simply
filling in large holes, but involve rearrangements of
groups of spheres to form more compact structures.

Intermediate configurations with packing fractions
differing by 0.02 were saved during the densification pro-
cess for later analysis. By repeating the simulation with
different random number seeds, a total of ten one-
component runs were made.

While most of the results presented here are for the
one-component system, ten packings of a two-component
system were simulated and analyzed for comparison. The
ratio of diameters of the two component spheres is 1.2
and our 2000 sphere configurations consisted of 80%
small spheres. All final configurations of both the one-
and two-component systems have a packing fraction of
0.64 in good agreement with the measurements and other
computer simulations. Comparison with other simula-
tion algorithms is given in Ref. [24].

III. COMPARISON WITH EXPERIMENT

A simple measure of the local structure is the number
of “contacts” made by the spheres. In Fig. 1(a) a histo-
gram is shown for our computer-simulated packing both
for low (0.56) and high (0.64) packing fractions. Not only
does the distribution shift to a larger number of contacts
as the packing is densified, but the distribution also
changes shape. This qualitative change from a nearly
symmetric distribution at low packing fraction to a high-
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ly asymmetric distribution at higher density was experi-
mentally observed by Smith, Foote, and Busang [6].
However, the agreement is not quantitative, possibly be-
cause of the softness of the lead shots used and/or the
corrosive technique used in marking the contacts.

A better comparison is with the ball bearings of Bernal
and Mason [7]. They reported contact statistics for both
the DRP as well as for their LRP with an estimated
packing fraction of 0.6. Figure 1(b) shows the compar-
ison of our packing at packing fraction 0.64 with the
DRP of Bernal and Mason obtained by shaking and
compressing packings of up to 5000 ball bearings. The
agreement is quite good. In Fig. 1(c) our simulated pack-
ing at 0.60 is compared with their less-dense packing.
The agreement is very good, indicating that the simula-
tion produces packings quite similar to both the LRP and
the DRP of ball bearings. The cutoff distance used here
to define “contact” is 1.057 diameters and was chosen in
such a way as to give the same average number of con-
tacts as reported by Bernal and Mason from analyzing
the markings on the painted spheres. They estimated
their method for determining contacts to be sensitive to
pairs separated by 5% of the radius or less, in good

(a) Simulation o

0.56 T 0.64

T T T T T

(b) pf.0.64

—— bearings
————— simulation

(c) p.f.0.60

— bearings

----- simulation

Number of contacts

FIG. 1. The figure shows histograms of the number of con-
tacts (meaning r < 1.057) made by the spheres in one-component
packings. (a) shows the histogram for the computer-simulated
packings at a packing fraction (p.f.) of 0.56 (solid line) and 0.64
(dashed line). In (b) and (c) the computer-generated packings
(dashed lines) are compared with the packings of steel ball bear-
ings measured by Bernal and Mason (solid lines) [7]. (b) Pack-
ing fraction of 0.60, (c) packing fraction of 0.64.

correspondence with our cutoff value.

Finney [12] analyzed the structure of the DRP of ball
bearings using the Voronoi method. In the Voronoi cell
(or Wigner-Seitz cell) construction [25,26] a polyhedron
is defined about each sphere center i, so that each point of
space in the ith cell is closer to the ith center than any
other center. Two spheres are defined to be neighbors if
they share a Voronoi cell face. The local environment of
each atom is characterized by the number of faces per
cell, the number of edges per face, by the cell volume and
surface area. The structure of the dense random pack-
ings generated with the algorithm used here is very simi-
lar to the structure of the ball-bearing packings analyzed
by Finney as measured by Voronoi cell statistics, RDF,
and packing fraction (see Ref. [24]). It is also similar by
these criteria to other isotropic DRP generated with a
somewhat different computer algorithm [27]. Experimen-
tal data on hard-sphere LRP’s with packing fraction
below 0.60 are not available, to our knowledge.

IV. THE RADIAL DISTRIBUTION FUNCTION

Figure 2 shows the RDF of the one-component system
at an intermediate packing fraction of 0.60 and at the
densest packing, 0.64. The difference between the two
curves is also shown. All the peaks increase in height and
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FIG. 2. The RDF at a packing fraction of 0.60 (dotted line)
and 0.64 (solid line), averaged over ten one-component
configurations. Also shown is the difference between the two
(lower solid line). The minima and maxima become more pro-
nounced as the density is increased, but their positions do not
change significantly.
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the minima deepen, indicating a more-structured packing
at the high density, but the positions of maxima and
minima remain nearly unchanged.

The clearest change in shape is in the second peak.
The splitting of the second peak is characteristic of ran-
dom packings of spheres. The figure shows that the first
subpeak grows more than the second as the packing is
densified. This is consistent with the simulation of Fin-
ney [23] on a 500-atom cluster, where eventually, at the
extremely high packing fractions obtained in the finite
cluster, the relative height of the two subpeaks is re-
versed.

As noted before, the RDF for the simulated packings
at a packing fraction of 0.64 agrees very well with the
measured RDF for a DRP of ball bearings [12]. Scott,
Charlesworth, and Mak [28] reported RDF for a packing
of steel balls with a packing fraction of 0.60 as well as for
a DRP with a packing fraction of 0.637. While the reso-
lution in those data is too low to separate the two sub-
peaks, the shape of the second peak changes in a way that
is qualitatively consistent with our results: the left side
becomes higher, while the right side becomes lower as the
packing is densified. Similar changes in the RDF have
been observed during thermal annealing of amorphous
metals [25,29].

V. COMMON-NEIGHBOR ANALYSIS
OF STRUCTURE

An essential part of many computer-simulation studies
is a powerful technique for systematically analyzing the
structure. The method we use, common-neighbor (CN)
analysis [30], can be thought of as a decomposition of the
RDF according to the environment of the pairs. The first
peak of the RDF represents the nearest neighbors.
Defining the first peak to be at r <r,, where 7, is the posi-
tion of the first minimum of the RDF, and referring to
those as ‘“bonded” pairs, each pair of atoms is systemati-
cally classified in the following way: A set of three in-
dices jkl specifies the local environment of the pair. The
first index j is the number of neighbors common to both
atoms. The second index k is the number of bonds be-
tween the common neighbors. The third index [ is the
number of bonds in the longest continuous chain formed
by the k bonds between common neighbors (see Fig. 5 for
examples). After each pair has been assigned to one of
the various jk/ types, the distribution of distances can be
calculated in the usual way and a radial distribution func-
tion for each type of pairs obtained, g, (7). These will be
referred to as the CN components of the RDF function
and are normalized in such a way that the RDF can then
be written as

g(r)= z gjk,(r) .
Jkd
This method can be used to interpret various features in
the RDF. In a two-component system, a cutoff r, is
found for each of the partial distribution functions
8.44(r), gpp(r), and g ,5(r) and the CN components la-

beled g 4 4jx1> 8spjii> and & 4pjii-
When the distribution itself is not of interest, the total
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number of pairs corresponding to each peak in the RDF
is an efficient measure of the structure. Pairs correspond-
ing to the first peak in the RDF are denoted a jkI and
their number, N, y,, is given by

4N '
Najk1= rzgjk,(r)dr .

V Yo

Similarly, pairs corresponding to the second peak, be-
tween 7, and the second minimum in RDF, are denoted
by B jkl. An earlier and simpler version of this kind of
structure analysis was used by Blaisten-Barojas [31] to
analyze three-body contributions to the energy of small
clusters. Honeycutt and Andersen [32] extended the
method and used it to analyze the structure of various
stable configurations of one-component LJ clusters.
Jonsson and Andersen [33] used the method to identify
structural relaxations in one- and two-component LJ
liquids.

This method has several advantages over other
methods we are aware of. It has a simple interpretation,
the number of types of features is manageable and yet it
is powerful enough to clearly distinguish between various
local structures, in particular fcc, hcp, and icosahedral
environments. Different types of pairs are associated
with different types of local order. For example, bonded
pairs of type 555 are characteristic of icosahedral order,
whereas 421 and 422 pairs are characteristic of fcc and
hcp order. The only bonded pairs in the fcc crystal are
421, while the hcp crystal has equal numbers of 421 and
422. The difference between the two pairs is the arrange-
ment of the two bonds between the four neighbors. In
421 each of the neighbors forms one of those bonds, in
422 one of the neighbors forms two, two neighbors form
one, and the fourth neighbor does not participate in ei-
ther of the two bonds. While the highly symmetric crys-
talline packings cause singularities in the Voronoi con-
struction and minor perturbations in the coordinates
dramatically change the Voronoi statistics, the common-
neighbor analysis is quite insensitive to small displace-
ments of the spheres.

Since the cutoff r, is chosen to be the position of a
minimum in the RDF, the results of the CN analysis are
relatively insensitive to small changes in r,. However, in
hard-sphere systems there is no preferred distance be-
tween spheres since there is no attractive interaction at
long range. The first minimum in the RDF is therefore
not as deep in hard-sphere packings as in LJ packings,
for example. This, in turn, means that the distinction be-
tween ‘“‘bonded” and “nonbonded” pairs is not as clear.
However, a similar problem affects other useful measures
of short-range order that we are aware of. For instance,
in the Voronoi cell construction, an arbitrary cutoff is fre-
quently used [25] to narrow down the definition of a
bond. Two spheres that share a Voronoi cell face are
only considered to be neighbors if the face has an area
bigger than a certain cutoff.

Fortunately, the position of the first minimum in the
RDF does not change significantly over the range of
packing fractions studied here. Therefore, we consistent-
ly use the same cutoff distance for all configurations of
the same type. In the one-component hard-sphere system
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TABLE 1. Cutoff distance r, used in the common-neighbor
analysis. The hard-sphere cutoffs are relative to the (smaller)
hard-sphere diameter d 4. The Lennard-Jones cutoffs are rela-
tive to the (smaller) zero of the potential function o 4.

Two component

One component AA AB BB
Hard spheres 1.35 1.35 1.46 1.54
Lennard-Jones 1.40 1.40 1.54 1.68

we use 7, =1.35 diameters. The values of r, for the vari-
ous systems are given in Table 1.

VI. RESULTS OF COMMON-NEIGHBOR
ANALYSIS

A. The first RDF peak

Figure 3(a) shows the relative numbers of various kinds
of pairs corresponding to the first peak in the RDF,
N, jui» as the packing fraction is increased from 0.56 to
0.64 in the one-component system. The coordination
number increases from 10.9 to 12.4 over this range. To
reduce the effect of the overall increase in the number of
bonded pairs, the relative numbers, N, jkl /N,, are re-
ported. All pairs with more than 5% abundance at pack-
ing fraction of 0.64 are shown.

The relative number of 555 and 544 pairs more than
doubles as the packing fraction increases from 0.56 to
0.64. A smaller increase occurs in the number of 433
pairs. However, the number of 421 and 422 pairs, which
are characteristic of fcc and hcp crystals, remains nearly
constant, showing that local crystalline order does not in-
crease. The increased packing efficiency in going from
LRP to DRP is therefore entirely different from an ap-
proach toward the optimal, crystalline configurations. A
dramatic decrease is found in the 311 and 321 pairs. The
321 pairs (not shown) are roughly half as abundant as the
311 at all packing fractions.

All bonded pairs in an icosahedral arrangement of 13
spheres are 555 pairs—the central sphere forms a 555
pair with each of its 12 neighbors. The increased abun-
dance of this pair indicates increased icosahedral order in
the sense that fragments of icosahedra involving seven
spheres become more numerous. A regular 555 fragment
has the structure of a pentagonal bipyramid, with a
fivefold-symmetry axis.

The icosahedral arrangement of 12 spheres around a
central one is a very efficient one. The outer spheres are
not in contact but are separated from each other by a gap
amounting to 5% of the sphere diameter [34,35]. This is
not the case with 13-sphere clusters carved out of fcc and
hcp packings, where the outer spheres are in contact with
four other outer spheres. The gap between the outer
spheres in the icosahedron can be used to squeeze more
spheres in towards the central one. Since there is no pre-
ferred distance between hard spheres there is no penalty
in rolling the 12 spheres around on the central one in
such a way as to enlarge this gap in some places and
reduce it in others. For example, if the five neighbors of
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a 555 pair are all touching, a 7.35° gap is formed [34,35].
If the environment of the icosahedron is not symmetric,
this will most likely be preferred so that an additional
sphere can be brought closer in. If one bond is broken
between a pair of outer spheres in the icosahedron, two of
the 555 pairs get transformed into 544 pairs and two get
transformed into 433 pairs. The observed increase in the
544 and 433 pairs is therefore indicative of increased dis-
torted icosahedral order.

0.3

(a) One component system

433

Normalized number of CN pairs

0.56 0.6 0.64

Packing Fraction

0.3

(b) Two component system

Normalized number of CN pairs

0.6 0.62 0.64

Packing Fraction

FIG. 3. The relative number (normalized by the total number
of bonded pairs) of various CN pairs corresponding to the first
peak in the RDF as a function of packing fraction in hard-
sphere configurations. (Cutoff distances are given in Table I.)
Each data point is an average over ten configurations of 2000
spheres. All pair types amounting to more than 5% of the total
in the dense random packing (at 0.64) are shown. (a) One-
component system. The number of 555, 544, and 433 pairs in-
creases very significantly with packing fraction. The 322 pairs
(not shown) have a similar variation to 311 pairs but are only
half as abundant. (b) Binary system with size ratio of 1.2 and
80% small spheres. The number of 555 pairs show the most
significant increase.
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TABLE II. The number of selected pairs corresponding to the second peak of the RDF in one-
component packing of 2000 spheres at various stages of densification. All pairs that give counts larger

than 300 at a packing fraction of 0.64 are presented.

Packing fraction

Pair type 0.56 0.58 0.60 0.62 0.64
100 19923 20061 20295 20413 20461
211 11511 12167 12727 12902 12917
322 2198 2387 2405 2177 1788
333 3807 4488 5920 6877 8308
433 452 491 515 510 460
444 559 662 856 1055 1329
455 262 326 528 642 804

The number of complete icosahedra (i.e., 13 sphere
clusters, where the central sphere has 12 neighbors and
forms a 555 pair with each one) increases with packing
fraction but remains fairly small, ca. 10, in the DRP.
Typically, some of the icosahedra share a face (with three
atoms in common) or interpenetrate (with seven atoms in
common) and the total number of atoms in icosahedra is
ca. 15% smaller than 13 times the number of icosahedra.
No complete icosahedra were found in LRP packings.
The number of distorted icosahedra (defined as 13 sphere
clusters with the central sphere forming eight 555 pairs,
two 544 pairs and two 433 pairs with its neighbors) is ap-
proximately twice as high.

Bernal [4] emphasized the importance of tetrahedral
order in DRP, but favored structures where the tetrahe-
dra are organized in twisted spirals rather than the spher-
ical clusters related to icosahedral arrangements. These
“Bernal spirals,” however, do not include 555 pairs and
therefore fail to explain the large increase in the number
of those pairs during densification.

2
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Figure 3(b) shows the result for the two-component
system. Again, a clear increase in the numbers of bonded
555 pairs is found here, indicating an increase in
icosahedral order. The number of 555 pairs is further-
more nearly twice as large as in the one-component sys-
tem. (Note the narrower range here in the packing
fraction—the lower limit is 0.60 rather than 0.56.) How-
ever, unlike the one-component case, the numbers of 544
and 433 pairs are nearly constant, and the 666 and, to a
lesser extent, the 444 pairs become relatively more abun-
dant. It is not clear how to interpret those results. The
latter two pairs are indicative of bce order. The numbers
of other pairs, in particular 421 and 422 pairs, remain
nearly constant.

B. The second RDF peak

An increase in the number of bonded 555 and 544 pairs
necessarily affects the abundance of 333 pairs in the
second peak of the RDF. Each symmetric @ 555 frag-
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FIG. 4. CN components of the second peak in the RDF for one-component hard-sphere packings (averaged over five
configurations). Solid curve, total RDF; dotted curves, the 333, 211, and 100 components; dashed curve, sum of 333 and 211 com-
ponents. (a) At packing fraction 0.60. The first subpeak is due to 333 pairs (face-sharing tetrahedra) and 211 pairs (adjacent trian-
gles), while the second subpeak is due to 100 pairs (linear trimers). (b) Dense random packing with packing fraction 0.64, otherwise
the same as (a). As the density is increased, the 333 pairs increase in abundance and the left shoulder of the 211 peak becomes higher,

resulting in a large rise of the first subpeak of the RDF.
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ment contains five 3 333 pairs and a a 544 pair contains
two. The a 555 fragment can be regarded as five tetrahe-
dra arranged around a common bonded pair—the 8 333
pairs are formed by each pair of tetrahedra that share a
face.

Table II shows how the total number of the pairs
changes with packing fraction. Types that have fewer
than 300 pairs in the densest packing are not included. A
very large increase is indeed found in the number of 333
pairs, but smaller than is expected from the increased
number of 555 and 544 pairs alone. A smaller but
significant relative increase is found in 441 and 451 pairs.
Other types stay remarkably constant. The 333 pairs in
the a 555 fragments can be turned into 444 and 455 pairs
by adding another sphere to the side.

The CN components of the RDF directly relate the
two subpeaks of the second peak to the local order in the
packings. Figure 4 shows the relevant contributions at
packing fraction 0.60 (a) and 0.64 (b). The first subpeak
(at r=1.7) clearly arises roughly equally from 211 pairs
(triangles with adjacent sides) and 333 pairs (face-sharing
tetrahedra), whereas the second subpeak (at »=2.0) is
mainly due to 100 pairs (linear trimers). Figure 5 illus-
trates the various types of pairs. The abundance of near-
ly linear trimers of touching spheres is remarkably high.
The sharp edge means that trimers with even small gaps
between the spheres are rare. Although the relative in-
crease is small, the absolute number of 100 pairs does in-
crease appreciably during densification. The 100 pair is
not part of the 555 or 544 fragment, but a complete
icosahedron has six 100 pairs (along the six fivefold-
rotational axes). Based solely on the position of the two

100
—_—
2
211
333

—_—y
1.63

FIG. 5. The three configurations giving the dominant contri-
butions to the second peak in the RDF. The pair is shown with
open circles with the distance given below. The shaded circles
represent their common neighbors which define the local envi-
ronment of the pair. The three indices used in the common-
neighbor analysis to specify each of the configurations are given
to the right.

TABLE III. This table illustrates how 211 and 333 pairs giv-
ing rise to the first part of the second peak in the RDF can be
interconverted by varying the cutoff distance 7. in the common-
neighbor analysis. The table gives the number of pairs separat-
ed by a distance lying in a small interval about the first subpeak
[from r=1.70-1.75; see Fig. 4(b)] in a one-component hard-
sphere configuration with packing fraction 0.64. The numbers
of the four most numerous pairs are given. A substantial frac-
tion of the 211 pairs is converted into 333 pairs as the cutoff is
increased.

Pair type
Cutoff 100 211 333 454
r.=1.34 39 1741 1827 75
r.=1.37 20 1506 2017 150

subpeaks, Finney [12] had proposed the importance of
these three geometries, but did not analyze their abun-
dance quantitatively.

The 211 and 333 pairs are quite closely related. A 211
pair can be converted to a 333 pair by bringing in one
new neighbor. Therefore, the distinction between 333
and 211 pairs can be quite sensitive to the cutoff distance
r. used to define neighbors. Table III gives the integrated
pair count over a small range in r about the first subpeak
(1.70<r < 1.75) for a slightly smaller (by 1%) and a
slightly larger (by 2%) value of the cutoff than otherwise
used. There is indeed appreciable conversion of 211 pairs
into 333 pairs (ca. 10%) as the cutoff is increased. How-
ever, the qualitative picture remains the same.

VII. COMPARISON OF HARD-SPHERE
AND LENNARD-JONES (LJ) RELAXED PACKINGS

A major difference between hard-sphere systems and
systems of soft attracting spheres is that no particular
distance within the allowed range is preferred between
the hard spheres. In order to make a more direct com-
parison with such systems, we took the coordinates of
spheres from the hard-sphere configurations and turned
on a Lennard-Jones potential

v(r)=4e[(o/r)?—(o /r)®]

between the centers. The LJ “atoms” were then allowed
to adjust their positions until the force acting on each one
vanished. This steepest-descent ‘“‘relaxation” was done
using a molecular-dynamics program, zeroing the kinetic
energy of all atoms at each step. It is important to use a
small-time step size in order to bring the system into the
nearest local minimum on the potential surface. A very
small step size was used initially (as small as 107°) but it
was gradually increased as the relaxation progressed.
This kind of relaxation has frequently been used to
bring the structure of hard-sphere packings into closer
correspondence with that of amorphous solids [19].
Barker, Hoare, and Finney [21] (BHF) relaxed a one-
component 999 hard-sphere cluster under a Lennard-
Jones potential and found that the relative heights of the
two subpeaks in the split second peak of the RDF re-
versed during the relaxation. This brought the calculated
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RDF into closer agreement with measured RDF’s for
metal and metal-metalloid glasses [18,19]. The rms dis-
placement of the atoms during relaxation amounted to
about 20% of the average nearest-neighbor distance.
Voronoi cell analysis showed that this was accompanied
by an increase in the number of five-edged faces, suggest-
ing increased icosahedral order [21].

We did relaxation at zero pressure. Choosing
e=0 =1, we scaled the initial volume in such a way as to
bring the pressure to zero. We expected that relaxation
of our hard-sphere samples would produce smaller rms
displacements than those of BHF because our samples
are subject to cubic periodic boundary conditions, allow-
ing the atoms less freedom than at the cluster surface.
We also expected that the packing-fraction differences in
the hard-sphere configurations would result in density
differences in the relaxed Lennard-Jones configurations.
In fact, neither of these expectations was realized. We
obtained rms displacements approximately twice as large
as those of BHF and the relaxation destroyed the
structural differences between packings at different densi-
ties. The average volume after relaxing ten hard-sphere
configurations with a packing fraction of 0.60 was found
to be 1965.5 with a standard deviation of 1.0. Repeating
this with ten configurations with a packing fraction of
0.64, the average final volume was 1965.0 with a standard
deviation of 1.7. The difference between the final densi-
ties for the two groups is insignificant although the initial
density was significantly different.

Despite these rather drastic changes during relaxation,
the numbers of bonded 555 and 544 and 333 pairs
remained remarkably constant as the DRP configurations
were relaxed. (The relative number of a few CN pair
types before and after relaxation is given in Table IV.)
Similarly, the number of 333 pairs corresponding to the
second RDF peak decreased only slightly, by less than
1%. However, the numbers of bonded 421 and 422 pairs
increased dramatically. It is tempting to interpret this in
terms of a fairly rigid network of bonded 555 and 544
pairs that form in the DRP and is stable under the relax-
ation.

The lower-density packings underwent much larger
changes in the structure. In fact, the relaxed
configurations have nearly the same numbers of CN pairs
as the relaxed DRP (sec Table IV). The number of com-
plete icosahedra roughly doubles, but the average number
of fcc+hcp atoms increased much more dramatically,
from 0.5 to 16.5. We conclude that relaxation of the
one-component hard-sphere packings mainly enhances
local crystalline order.

For comparison, we used two other schemes for the
steepest-descent relaxation: (1) constant-volume relaxa-
tion and (2) high-pressure relaxation. In all cases the rms
displacements during relaxation were very large, of the
order of 0.40. The constant-volume relaxations neces-
sarily preserved density differences, but did not preserve
structural differences. The high-pressure relaxations
preserved neither density nor structural differences.

In agreement with BHF, we found that relaxation of
the DRP at zero pressure reverses the relative heights of
the two subpeaks in the split second peak of the RDF.
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TABLE 1V. Comparison of local structure before and after
relaxation under LJ interaction at zero pressure. The number
of selected pair types corresponding to the first peak in the RDF
is given (normalized by total number of bonded pairs N,). All
data are averages over ten one-component configurations with
2000 spheres. The normalized pair counts for the two packing
fractions 0.60 and 0.64 differ significantly in the hard-sphere
model (HS) before relaxation, but are approximately the same
after relaxation. For the dense random packing (0.64), the
abundance of pairs characteristic of crystalline order, 421 and
422, increases during relaxation, while the abundance of pairs
characteristic of icosahedral order, 555 and 544, is nearly un-
changed.

Pair type
422 421 544 555
HS (p=0.60) 0.134 0.067 0.140 0.077
Relaxed HS 0.162 0.094 0.203 0.157
HS (p=0.64) 0.122 0.066 0.212 0.144
Relaxed HS 0.169 0.103 0.201 0.146

However, this is not due to a change in the overall num-
ber of the pairs but rather because of a change in the
shape of the distribution of distances within the different
pair types. The CN components of the RDF after relaxa-
tion are shown in Fig. 6 and should be compared with
Fig. 4(b). The distribution of distances in 333 pairs and
211 pairs becomes narrower and taller as spheres are
pulled and pushed into local potential-energy minima.

2
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£ 151
S
£
3
=
=
2
3
2 17
&
£
[=]
=
=}
§ 0.5

0 , S

= ; e —
14 1.8 2.2
Distance (hard sphere radii)

FIG. 6. CN components of the second RDF peak in one-
component LJ packings obtained by relaxing dense random
packings of hard spheres (packing fraction 0.64) at zero pressure
(averaged over five configurations). The various curves have the
same meaning as in Fig. 4. While the total number of each type
of pair remains nearly constant (decreases by 2% or less), the
distribution of distances in 211 and 333 pairs sharpens and the
100 distribution broadens as compared with the original hard-
sphere packings [Fig. 4(b)]. The net result is the reversal of the
relative height of the first and second subpeaks.
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TABLE V. This table illustrates the sensitivity of common-
neighbor analysis to the choice of cutoff distance. The logarith-
mic derivative r, /N, j;(dN, j; /dr.) of the number of various
bonded pairs with respect to cutoff distance is given for one-
component DRP and Lennard-Jones packings. The numbers of
421 and 422 pairs increase with increasing cutoff, whereas the
numbers of 544 and 555 pairs decrease. The change is larger in
the hard-sphere packing than in the Lennard-Jones packings.

Pair type
421 422 544 555
Hard spheres —13.5 —13.3 9.05 17.4
Lennard-Jones —8.08 —17.93 7.10 12.2

At the same time, the sharp edge of the linear trimer
peak is smoothed out as the contacts become less well
defined because of the softness of the repulsive interac-
tion. This leads to the reversal of the relative peak
heights.

The sensitivity of the numbers of various CN pairs to
changes in cutoff distance provides another measure of
the local order. Table V shows the effect of varying the
cutoff distance on the CN pair counts both for the DRP
and LJ packings. The numbers of bonded 421 and 422
pairs increase with increasing cutoff, whereas the num-
bers of bonded 544 and 555 pairs decrease. The numbers
change more for the hard sphere than the Lennard-Jones
packings, illustrating how the definition of bonded pairs
is less clear cut in the hard-sphere system.

VIII. DISCUSSION AND CONCLUSIONS

It has long been proposed that local icosahedral order
may be an essential feature of the structure of simple
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glasses [19,34,35]. Clear evidence of the importance of
icosahedral order was obtained by Jonsson and Andersen
[33], who simulated with molecular dynamics the rapid
cooling of one- and two-component Lennard-Jones
liquids and found a significant increase in local
icosahedral order in the supercooled liquid near the glass
transition temperature. The normalized numbers of
bonded 555 pairs and second-peak 333 pairs increased
upon cooling as well as the number of complete icosahe-
dra. For one-component Lennard-Jones packings, they
also found that the degree of local icosahedral order is
anticorrelated with the degree of local crystalline order.

The structural changes accompanying densification of
hard-sphere packings are qualitatively similar to the
structural relaxation observed in the supercooled
Lennard-Jones liquids. Quantitative differences are in the
number of icosahedral fragments, which is larger in the
hard-sphere systems, and the number of complete
icosahedra, which is only about 20% of that found in the
Lennard-Jones glasses.

In the context of metallic glasses, it is frequently assert-
ed that “the reason for the ubiquity of . . . icosahedra is,
of course, that these structures are the lowest-energy
configurations for small clusters” [19]. The results
presented here on hard-sphere systems demonstrate clear-
ly that icosahedral order can arise from packing con-
straints alone and can be important in systems where at-
tractive interactions are negligible, for example in col-
loidal suspensions.
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FIG. 5. The three configurations giving the dominant contri-
butions to the second peak in the RDF. The pair is shown with
open circles with the distance given below. The shaded circles
represent their common neighbors which define the local envi-
ronment of the pair. The three indices used in the common-

neighbor analysis to specify each of the configurations are given
to the right.



