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Calculating Lyapunov exponents for short and/or noisy data sets
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We present a technique for calculating the Lyapunov spectrum from a scalar time series. The tech-
nique is particularly useful when the data set is short and/or noisy. The method is based on an orthogo-
nal polynomial expansion of the dynamics. For comparison purposes we test the new technique to two
previous methods. We find that the global method performs as well as, or better than, either of the pre-
vious techniques.

PACS number(s): 05.45.+b

I. INTRODUCTION

Over the past few years there has been a great deal of
research effort devoted to determining Lyapunov ex-
ponents from a scalar time series [1—7]. The spectrum of
global Lyapunov exponents is important for a variety of
reasons. Lyapunov exponents provide average limits on
one's ability to predict the future evolution of phase-
space locations. They are invariant under coordinate
transformations. When coupled to the Kaplan-Yorke
conjecture they provide a good estimate of the informa-
tion dimension of the attractor, and when combined with
the Pcsin identity they provide a value for the
Kolmogorov-Sinai entropy of the dynamics [8,9]. The
Lyapunov exponents determine the average rate of con-
vergence or divergence for nearby trajectories. If one or
more of them is positive then trajectories that are initially
nearby will diverge over time, and the system will have
positive entropy. Finally, at least one positive Lyapunov
exponent is the definition of a chaotic dynamical system.

A persistent problem facing many researchers occurs
when one wants the Lyapunov exponents but the data set
at hand is short and/or contains noise. This problem is
constantly faced by experimental researchers. To the
best of our knowledge, only one of the previous tech-
niques specifically addressed this problem [7]. In this pa-
per we address the problem of short and/or noisy data
using a technique that is quite different from the ones
previously used.

The technique we have developed for determining the
global Lyapunov exponents involves globally fitting the
dynamics as an expansion involving orthogonal poly-
nomials. Assume that the scalar data set
x(n), n =I, . . . , N has been embedded into a dE-
dimensional phase space (time delay works well but is by
no means required). The embedded vectors are given by
y(n), n =1,2, . . . , N, where

y(n)=(x(n), x(n +T), . . . , x([n +(dE —1)T]))

and T as well as dz are easily found [14,15]. Time evolu-
tion in the reconstructed phase space is given by
y(n)~y(n + 1). We assume that the dynamics originates
from or is best modeled by a mapping y( n + 1)=F(y( n ) ).

F—y C(I) (I)

I
(2)

The expansion coeKcients C' ' are determined by using
the orthonormality of the m' 's. Thus the C's are given
by

1 N
C' '={~' '~F) =—g y(n+1)m'"{y(n)) .

N „
(3)

The details of the exact functional form of the n' 's and
how to explicitly calculate the C's are quite complicated.
In order to preserve the continuity of this short paper we
have chosen not to include these results here. For these
details we direct the reader to the paper by Giona, Len-
tini, and Cimagalli as well as our larger paper [10,11].

It is worthwhile to note that the mapping that results
from our procedure is a global map and will be used as
such. Previous techniques for determining the spectrum
of Lyapunov exponents from time series generated local
mapping of "small" neighborhoods in order to model the
dynamics (cf. Refs. [2—7]). Thus our use of a global map
is quite different from the previous approaches. Further-
more, using orthonormal polynomials as a basis for ex-
panding functions is numerically more stable than using
the standard basis of ( l, x,x, . . . , etc.) [12].

Having found F from Eqs. (2) and (3) it is straightfor-

The mapping F is determined as an expansion in terms of
orthogonal polynomials m' ' [10,11]. These polynomials
are constructed, via Gram-Schmidt, to be orthonormal
on the attractor

(m'"~m' ') = Jdzp(z)m' '(z)vr'J'(z)=5,

where the superscripts I and J are dE-dimensional vec-
tors that indicate the order of the polynomial. The densi-
ty function p(z) is the natural density on the attractor

N

p(z)= —g 5(z —y(n)),
N „

dE
and z is any point in R . The presence of p(z) in Eq. (1)
insures that the ~' ' 's are orthogonal on the portion of
phase space occupied by the attractor.

The mapping F is given as an expansion in terms of the
~' 's via

1063-651X/93/47(6)/3962(8)/$06. 00 3962 1993 The American Physical Society



47 CALCULATING LYAPUNOV EXPONENTS FOR SHORT AND/OR. . . 3963

ward to differentiate F to find its Jacobian. In fact, since
F is a polynomial the Jacobian is just the linear part of
the map. (An explicit expression for DF can be found in
our larger paper [11].) Let DF(z) denote the Jacobian of
the mapping F evaluated at the phase-space location z.
To determine the Lyapunov exponents one forms the
product of Jacobians

L —1

DF (y(n))= g DF(y(n+i))

our numerical experiments are mappings of the plane
into itself. The examples are the Henon map, the Ikeda
map, and a polynomial map we call the McDonald, Gre-
bogi, Ott, and Yorke (MGOY) map [16—18). The Henon

map is well known and given by

x (n +1)=1.0—1.4x (n)+y(n),
y(n +1)=0.3x (n) .

It has an exact time delay representation as a second-
order polynomial. The Ikeda map is given by

and from this product the Oseledec matrix [13]

O[L,z]=[[DF (z)] .DF (z)]' (4)

z(n +1)=1.0+0.76z(n)

X exp(i[0. 4 —6.0/[1.0+ ~z(n)~ ]] ) .

The Lyapunov exponents are determined from the eigen-
values of the Oseledec matrix in the limit L ~ DO [5,13].
The usual QR decomposition technique is used to deter-
mine the Lyapunov exponents from Eq. (4) in the large L
limit [5].

Equation (4) implies evaluating the Jacobians along an
orbit of the dynamics. In our work we have evaluated
the Jacobians along the dirty orbit given by the data.
Since we don't have a clean orbit in our possession this is
unavoidable. However, this does not seem to limit our
ability to determine the Lyapunov exponents. (In our
larger paper we investigated the calculation of Lyapunov
exponents from true orbits of the fitted map F [11].) We
have performed numerical experiments on a variety of
dynamical systems in order to determine the usefulness of
our method.

In each case the results from our technique are com-
pared to the results one obtains from the techniques of
Zeng, Eykholt, and Pielke [7] (ZEP) and Brown, Bryant,
and Abarbanel [4] (BBA). The ZEP and BBA techniques
are two of the standard methods for calculating
Lyapunov exponents from time series data. Therefore,
they represent reasonable choices for the purposes of
comparisons. We are interested in time series data that
has been contaminated by additive noise. The ZEP and
BBA techniques differ in the manner used to form the
neighborhoods employed by the local maps. The implica-
tions of these differences in the presence of noise will be
discussed in Sec. II. (In passing, we remark that the BBA
method was designed to work in the noise-free arena.
Therefore, it should not be surprising that it does not per-
form well when noise exists in the signal. )

For the numerically generated test cases a clean scalar
data set x (n) was formed and then contaminated with
additive noise g. Thus the data used in the embedding
was x(n)+g(n). The noise ri was generated as
g= AN(0, 1), where A is an amplitude, which we vary.
N(0, 1) are random numbers whose distributions are ei-
ther normal with mean 0 and standard deviation 1, or
uniform between +1. The dirty scalar data was then em-
bedded, via time delays, into dE =2 or dE =3 dimensional
phase spaces. (The correct value of the embedding di-
mension and time delay was found previously by the
average-mutual-information and false-near-neighbor
methods [14,15].) A prediction function F is then deter-
mined and the Lyapunov exponents are calculated.

All of the dynamical systems that were investigated in

It contains an exponential term and cannot be represent-
ed as a finite order polynomial. The MGOY map is given
by

x(n+1)=x (n) —y (n)+x(n) —0.295y(n)+0. 048,

y (n +1)=2.0x (n)y (n)+x (n)+0. 6y (n) .

This map differs from the previous cases in that it is not
invertible, and, like the Ikeda map, cannot be represented
as a finite order polynomial when embedded in dE = 3 di-
mensions. The behaviors of these maps are very different.
Thus they, in some sense, are representative of the types
of behaviors that occur in dynamical systems which are
inherently maps. For the Henon and MGOY maps the x
coordinate was used as the scalar data set, while the
imaginary part of z was used for the Ikeda data set.

In the next section we present the results of our numer-
ical experiments on these systems. The final section of
this paper contains our conclusions and a discussion of
our future work in this area.

II. RESULTS AND NUMERICAL EXPERIMENTS

In Fig. 1 we present a dz =3 dimensional embedding of
data from the Ikeda map. In Fig. 2 we present the same
data with an additive noise level of A =0. 1 (20% noise).
At this noise level all of the detailed structure that is evi-

~ A

-1
-0.

FIG. 1. X= 1000 clean data vectors from the Ikeda map em-
bedded into dE =3 dimensions.



GIE BROWN

% ), the eked

47

7%) and
p when +=

the MGOY
ll00 and g

.0056 (

ma
=0.032

ting the calcul t
obvious th

= 000 and

n order to obt
'

values fpr g
the npise is

e &gures we h
gle values of g

z each case.

ders of the f,t
often avera ed

ch are plotted

pf g
t. Avera in

ge d pver spme

tea
were prpd uced fpi-

g occurred h
of the or-

w ensi

eau was not
a range pf N

similar value

fklandA „o present w e observed th
When a plaalues.

ues

2 were the mo
t attheN =

xceptions
' se values we Pre, thes

a e or the
Ther f

ost accur t
p 1 values

eZFP te h

pccuri. ed o
e used in

gh enough th
nly when th

the figures.

rp
at all of

e noise

' ly incorr
the calcu] t

evels wer

rrect. The
u ate value

ere

wide range f
e BBA result

ues pf ~ we

"'««(cf. T,q
' "«he Xs „~disa»yed,

value
s ty ica

re

in the
. bles I and II, none of wh'

values.
eraSed over a

e values plott d
any cpnsjsten

e

An exam 1

t asetofN

wh
Pe of a ion

p

plotted va]ues o
ged over N =2

'n Table I

ues p«duced b
yapunov expo

obtain the

ight two-plate
echnjque for g

e range o

inating th'
tructure. B

2 this case has

y pro cedure o
understand th t

are elim-

may use d'g
our part a d

this is an

i erent a
an that oth

ar j

lyusev 1a ues for N
Pproaches. (~ne could

er research ers

of knowled,
p+5orN ~5

' «xam le

ge as to the tru
u ) But in t

er ours tp b
ue value of ih

e absence

ZEP result
reaspnab]e

swedpn
cpuise tp

e con-e exponent we

sh
ve p jotted h

o observe a 1

ue. For t

t e N =1
pateau. Th

e

ort plateau f
data. In Tab

erefore, we

val ues for g d

= and 2 in th E
observe a

au or N =1
a leIIwep

e

the values f
i an 2 when N &2

e ZEP data.

es ound fpr N
p — are ver dj

e

values for o
p 2. We h

&erent from

curred jn M&
p ateau for the Z

icates the cpm

often for small
a a for all v l

od. (This oc

er values pf g
ues of g &0

«esults of
)

~ 01 and

nd MGOY
o ~ calculations f

maps are re
or the Henp

In a]l of p &

presented in F
enon, Ike

es obtained b
'

the solid sy b
—,respective-

lculati
y either the ZE

ols indicate

~

ing I ya
ls ind'

p nov exppn
BBA method f

ethod. The

; ~

IG. 2.
edded into d 3

o y data vector
imensions. T

the Ikeda m
s. he noise l

a map em-
evel i$20%

dent in the clean
'

is os g
hat ar

m 1 systems. F
e available fr

gure we used

t d F too wer
merical e

'
n s on

not possible to
=10 was u

to a maximu o

generate o th
it was

e maxim

t ' ''d "h 'b
SS

e P and BBA
o elin th

th hb h .
P

methods

(Although th is used

method its valuau de oted

xamples of the t e out

a global

P BBAZE, , and our ne
output obtain

a
ined from th

e 'n Tables I—II
'

ey, theyre

e 1

e enon ma
an noise add-

=750 d A='=0.056 bo

BBA method
A2

ZEP method
A2

0 oOur meth d

1

TABLE . va

icate h
ents

I. Raw val

ges of our c

fth L

es current m

h accepted valu
exponents for H'

uesarek =
r enon dat

P

= —1.62.
, and Gaus

'

l

ssian noises

1

2
3
4
5
6
7
8
9

10

0.310 17
0.48440
0.730 63
0.817 12
1.062 3

—0.732 67
—0.623 07
—0.387 01
—0.234 82
—0.164 52

0.823 64
0.573 71
0.696 36
0.657 68
0.674 85

—0.318 11
—0.474 90
—0.411 89
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TABLE II. Raw values of the Lyapunov exponents for Ikeda data for N = 1100, and Gaussian noises

with 3 =0.032. The accepted values are A, &=0.355 and A, = —0.904.

Np

ZEP method BBA method Our method

1

2
3
4
5
6
7
8
9

10

0.343 32
0.344 64
0.472 96
0.567 81
0.620 32

—0.800 65
—0.841 55
—0.747 07
—0.671 77
—0.598 74

0.435 62
0.366 70
0.409 58
0.473 58
0.477 34

—0.697 47
—0.788 65
—0.730 21
—0.746 48
—0.684 42

—0.441 55
0.234 95
0.443 67
0.388 08
0.392 77
0.368 58
0.364 13
0.348 75
0.364 30
0.367 53

—0.760 52
—0.779 89
—1.185 8
—1.078 7
—0.949 59
—1.070 8
—0.987 27
—0.929 57
—0.906 26
—0.771 70

solid line indicates the accepted values for the Lyapunov
exponent k& and A.2.

In Figs. 3 we used a dE=2 dimensional embedding
with N =750 and/or N =4000 points. For this case the
noise size A ranged between 0.001 and 0.1. As an exam-
ple of the type of problems that occur with the BBA con-
sider Fig. 3(c), where N =750 and Gaussian noise is used.
In this figure A, , +A,2&0 for A )0.03. This is incorrect
since it implies the absence of an attractor. The same
thing happens for all other cases when the BBA tech-
nique is used. The only difference is the exact value of A

where this failure occurs. The divergence of the calculat-
ed values of k& and A, 2 gets worse when the amount of
data N increases. This behavior is an easily explained
property of the BBA method and will be discussed below.

The Figs. 3(a) and 3(b) indicate that the ZEP technique
performs well when determining A, &. This improvement
over BBA will be observed in all of our test cases. How-
ever, the same figures show that ZEP, like BBA, is unable
to determine the correct value of X2. In general we will

find that ZEP often performs poorly when attempting to
determine X2.

Figures 3 clearly indicate that our technique is more
robust to noise than either the BBA or the ZEP method.
Our method performs better than BBA for all cases, and
performs as well as ZEP when determining the value of

The figures also show that our technique is capable of

determining the correct value of A.2. Neither of the other
methods was able to accomplish this task. We also find
that this method works with as few as 750 data vectors
and noise levels as high as A =0. 1 ( —10—15% noise).

For the last two systems we used dE=3 dimensional
embeddings for the data. The true dynamical systems
have only two Lyapunov exponents. The technique of
Abarbanel and Sushchik [19]provides a way of determin-
ing which of the three exponents is spurious. Thus in a
blind test one can identify which exponents are "true"
and which are "artifacts" of the embedding. We direct
the interested reader to Ref. [19], and references therein,
for a complete discussion of this technique.

In Figs. 4 we show only the two calculated exponents
that correspond to the true Ikeda map exponents. We
have chosen not to show the spurious third exponent. In
these figures we used either N =1100 or N =20000 data
points while A ranged from 0.001 to 0.1. We see that
once again BBA is unable to correctly estimate the value
of I, Although we will not show the data, we find that
for BBA increasing N increases the divergence of A

&
just

as it did in the Henon example. The ZEP method and
our method are comparable in their performance on this
data. Both methods are capable of determining accurate
values for the positive Lyapunov exponents even for large
noise levels. For N=1100 our method is marginally
better than ZEP when determining A,2, while for

TABLE III. Raw values of the Lyapunov exponents for MGOY data for N =2000, and Gaussian
noises with A =0.0056. The accepted values are A, =0.141 and A, = —0.405.

0.128 48
0.204 23
0.299 89
0.465 59
0.667 05

ZEP method

—0.248 52
—0.154 23
—0.020 80

0.061 57
0.173 11

A3

—0.679 03
—0.677 29
—0.679 60
—0.571 07
—0.505 59

—0.290 90
0.306 84
0.335 89
0.184 91
0.168 08
0.164 42
0.153 73
0.144 92

Our method

—0.290 90
0.187 70
0.169 86

—0.014 33
—0.373 47
—0.386 53
—0.417 09
—0.453 05

—0.463 23
—0.364 21
—0.798 35
—0.623 47
—0.881 11
—0.809 90
—0.804 03
—0.929 68
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%=20000 ZEP is marginally better than our method.
We conclude that for Ikeda data the two techniques ob-
tain the correct answers and are equal in their perfor-
mance.

In Figs. 5 we show all three calculated exponents for
data from the MGOY map. Once again N=1100 and
1V =20000 for the figures, and the noise size ranged from
A =0.001 to A =0.1. Figures 5(a) and 5(b) indicate that
the ZEP method and our method are comparable in their
abilities to determine the positive Lyapunov exponent.
The figures also show that for all case the ZEP method is
unable to determine the correct value for A, 2, whereas our
method obtains the correct value. We found that the
BBA method was unable to determine the correct value
for either Lyapunov exponent for this map, and experi-
enced the same type of divergence with increasing
and/or X as found for our test on the Henon and Ikeda
maps (cf. Figs. 3 and 4).

The figures show that for all of our test cases, the BBA
method produces poorer results when larger data sets are

used. The BBA method uses intimate details about the
evolution of "small neighborhoods" to construct Jacobi-
ans. As X increases the size of the neighborhood used for
the fit decreases [4].When noise levels are high the evolu-
tion dynamics of points in small neighborhoods becomes
dominated by noise. Thus it is natural that the BBA
technique produces poorer results as N increases. The
ZEP method circumvents this problem by using small
shells instead of balls for its neighborhoods [7]. If the
size of the shell is large compared to the noise then the
dynamics of points within the shell will not be dominated
by noise. For our numerical experiments we used
minimum shell radii of 2A, where A is the level of the
noise. Consider Figs. 1 and 2. If the shell size is large
compared to the noise then these figures indicate that the
shell size could cover as much as 10—20% of the attrac-
tor.

The original ZEP method used linear maps to evolve
the data in the shells forward in time. The BBA method
(and independently the method of Briggs [6]) demonstrat-

1.0
Gaussian Noise (N=750}

1.0
(b)

Gaussian Noise (N=4000}

~ saa

0.0 0.0

-1.0 i- -1.0

-2.0
10 10

Noise (A)

10
-2.0

10 10
Noise (A)

10

1.0
(c)

Gaussian Noise (N=750)
1.0

(cI)

Gaussian Noise (N=4000)

~ E
8 ~

0.0 0.0
I

—k

-1.0 -1.0 +

-2.0 310 10
Noise (A)

10
~ 0
10

~~!. .

10
Noise (A)

10

FIG. 3. Lyapunov exponents calculated from noisy Henon map data. The solid lines indicate the accepted values of I,
&

and A,2. (a)
The solid symbols come from the ZEP method while the empty symbols come from our method. In this figure N =750 and the noise
is Gaussian. (b) The solid symbols come from the ZEP method while the empty symbols come from our method. In this figure
N =4000 and the noise is Gaussian. (c) The solid symbols come from the BBA method while the empty symbols come from our
method. In this figure N =750 and the noise is Gaussian. (d) The solid symbols come from the BBA method while the empty sym-
bols come from our method. In this figure N =4000 and the noise is Gaussian.
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0.8—

0.2

-0.2 I-

-0.8

10

0.8
(b)

0.2

Guassian Noise (N=1100)

10
Noise (A)

Gaussian Noise (N=20, 000)

—~—

10

0..5 T

Guassian Noise {N=2000)

ed that if clean data was used, then employing higher-
order fits can increase the accuracy of the calculated
values of the negative Lyapunov exponents. In this paper
we have included this adaptation to the original ZEP
method. We see from the tables that in some instances
the higher-order fits increase one's ability to accurately
calculate the Lyapunov exponents. (For example the re-
peated values of A, , -O. 344 for X~ ~ 2 lends confidence to
these values. ) But this is not always the case, as is clear
from Table III. For this case it is only our foreknowledge
of the correct values of A, (or inconclusive arguments
about the size of N versus the size of A ) that allows us to
know that N =1 is the most correct answer. Our new
method always has a clear plateau structure (cf. Table I
for N )2, Table II for N ) 5, and Table III for N )4).

We have repeated all of our calculations for data sets
contaminated with uniform noise. We find that the quali-
tative behavior of the methods remains unchanged. Our
method is better than ZEP since it is able to correctly
determine the values of all of the Lyapunov exponents

-0.2 [

-0.8

C3
I~—

0.0

~ ——-- —-II

-1.2
10 10

Noise (A)

10
-0.5;—

0.8
(c)

Gaussian Nose (N=1100) -1.0 ~;—
10

J

10 10
Noise (A)

0.2

-0.2

0.5
(b)

Gaussian Noise (M=20, 000)

— —~——— — —-II

-0.8

0.0

-1.2
10 10

Noise (A)

J

10
-0.5

FIG. 4. Lyapunov exponents calculated from noisy Ikeda
map data. Only the two Lyapunov exponents corresponding to
the true values are shown. The solid lines indicate the accepted
values of Al and A2. (a) The solid symbols come from the ZEP
method while the empty symbols come from our method. In
this figure N=1100 and the noise is Gaussian. (b) The solid
symbols come from the ZEP method while the empty symbols
come from our method. In this figure N =20000 and the noise
is Gaussian. (c) The solid symbols come from the BBA method
while the empty symbols come from our method. In this figure
N = 1100and the noise is Gaussian.

-1.0
10 10

Noise (A)
10

FIG. 5. Lyapunov exponents calculated from noisy MGOY
map data. The solid lines indicate the accepted values of A,

&
and

(a) The solid symbols come from the ZEP method while the
empty symbols come from our method. In this figure N =2000
and the noise is Gaussian. (b) The solid symbols come from the
ZEP method while the empty symbols come from our method.
In this figure N =20000 and the noise is Gaussian.



3968 EQGIE BRQ~N

o 5
Un~tOI1ll Noise (N

t

O.p—

-05

-1.O
$O

3 10
Noise (A)

FIG,
the

MCCOY

ponents calculated f~ »punov ex Qn

form Th
.

&s &gure &=2O O

Y ata from
map. In t

a e rom nois

~ e solid lines indict, and the noise i
eso '

icate t' e acce ted v

'
e is uni-

e values of A,
&

and X2 ~

while the ZEP m
of

method is unable
h

' L
fh Th

ep e and the calculate
i erences between

cu ated values of th L v
ex r xed A de

e ya unov

di dof

s t t dtot}1o t e range [ —A, A . Th
our tests exceeded th'

than
aussian noise

oo t ctime.
PP

1se.
e o e larger

III. CONCLUSION

In conclusion we hav
minin

'
g a global map th

e ave presented aa technique for det

spectrum of

d f h 0
e claims m

'x, q. (4). T

techni u
s. e ZEP meth

p

e numerical exe xpenments show that th o
fd"" '"'" 'h

test cases Th
d bl d

negative L
o etermine the corr

e ZEP

cases. In co
onent in two o

e

1 bl

BBA metho
or all of the

t e positive and

of
was always inca

e test cases. The

th o t Th on we hnac 1s that t

trained b th h 1a polynomial techn'
-h-,-. foor extractin Lg yapunov ex-

p -0.

FICx. 7.. 7. Results of trainin
th

7

Ponents from sea ar data se
demonstrated that t

ts. Furthermore

req
'

the training of th
o, we have

y all number pf
p y omjals

uires a relativ
e global

e ex1stence pf a 1

er of data vectors.

values c
a ''ar plateau f

s cf. Tables I III)
for a range of N

eterminin g the correct val f
y sspc1ated with

values pf ~
va ues for the g's

calculatjo
' 1s art"-»ke cz are used. Th; ~

s when differen

plied that o
omponent of the

on~dence in the v 1

o often has ver 1

method
'

lat1vely unambi u
ulat1ons.

1StenCe Pf re
y the calc

o indicates that
g ous plateaus in

Lauy p nov exponents
ated values oft e calcu

1n Our

elin .
s are consistent

' . o the

g. Therefore, th
n w1th improved

than
ey warrant mu

e

Prev1ous methods
h more con~d

always, when
Lyapunov s

attempting to
spectrum from d

determine th

t e s stem
a atasetone

e

under investjgatip
must be sure that

'pn» attract pr If h
' "a u»ly has ow d1men-

s npt come from
at 1s used jn pur

mens1

e
eo little j

e
spectrum wjll b f

ttractpr then th

ck-market d
' »y, value. For

wj]1 get d L
ata is fed into our t

o ex-

yaPunov exppne t .
o technjque one

p ow that t
en s. However

cal s
t e market m t b

er, 1t does not

ystem 11vjng p
us ~-djmensjona] d

n F1
a c apt1c attractor

ynamj-

g F w1th N =20go
PP g that resulted fr

Th
' cpntam'

rom

using the
ata ~«tor ( Ihe first noisy da

amlnated wit} 20~0

e trained map As
& ) was then iterated

»gs. ] and 7 the
'

one can see b

ncosea ro
'

f1ttjng proced
y comparjng

P imat1on to the t
P oduces a mapure we use r

1milar f,
aeteLa

accounts for

gures arise wh
y punov exponent

used
en Pther initial

n

Th

con dit1ons

theorems of
the true

ane and T~ken
and embedded d

s imply that jf
dynami„l ems are



47 CALCULATING LYAPUNOV EXPONENTS FOR SHORT AND/OR. . . 3969

z(n+1)=Cx(z(n)) and y(n+1)=F(y(n)), respectively,
then a diffeomorphism exists between the coordinates z
and y, y=y(z). This result leads to F=yo &op '. Fig-
ure 7 and the results of our Lyapunov exponent calcula-
tions suggest that the mapping determined by our train-
ing procedure is a close approximation to the map in the
embedded phase space. For example, the F determined
by our procedure is a close approximation to yo Go y
Since polynomials form a complete basis set we can, in
principle, obtain an arbitrarily close approximation to the
true F. We will take up these speculations in more detail
in our larger paper [11].

Further applications of this technique for finding F
may involve noise reduction and the calculation of local
Lyapunov exponents. We are currently investigating the
possibility of using an F constructed by this Inethod to

determine the vector field when the scalar data set is from
a differential equation instead of a map. It is our belief
that this will allow one to calculate Lyapunov exponents
for these systems in the presence of noise.
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