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Small-angle Krein collisions in a family of four-dimensional reversible maps
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The small-angle Krein collision (SAKC) in four-dimensional reversible maps refers to the
codimension-2 bifurcation, where the eigenvalues of the Jacobian of the map at a symmetric fixed point
collide close to + 1 as some relevant parameters are varied. SAKC is always associated with the bifurca-
tion of nearby fixed points. We investigate the existence and stability of invariant curves around these
fixed points for a particular family of reversible maps, and find a rich structure of the phase space.

PACS number(s): 05.45.+b, 03.20.+ i

I. INTRODUCTION A = AG G=G.GA .

In four-dimensional (4D) reversible maps, one of the
various possible bifurcations at a symmetric fixed point is
the so-called reversible Hopf bifurcation [1], in which
two pairs of multipliers (eigenvalues of the Jacobian ma-
trix) on the unit circle undergo a Krein collision [2] and
move off along a pair of conjugate rays making angles
+$0 (say) with the positive real axis as a control parame-
ter (say, e) is varied. This situation was studied in Ref.
[1], when the collision angle $0 was subjected to a set of
nonresonance conditions that included, in particular,
go%0, although it is quite possible that such instabilities
can also occur when the multipliers move off very close
to (1,0). In this case, not studied before, we find several
new features, corresponding to what may be termed a
"small-angle Krein collision" (SAKC). SAKC can occur
in various contexts pertaining to reversible maps. In
SAKC, the presence of two or more nearby fixed points,
depending on the symmetry of the map, gives rise to a
rich structure of the phase space close to the bifurcation.

In this paper we study the bifurcation of invariant
curves (IC's, see below) around the fixed points for a par-
ticular two-parameter family of maps undergoing SAKC
(Sec. II). Section III deals with their linear stability, sug-
gesting a representative local structure of the overall
phase space. Illustrations with numerical support are
given in Sec. IV. Section V is devoted to concluding re-
marks.

A well-known example is the 2m-dimensional volume-
preserving De Vogelaere map [4,5], which can be ex-
pressed as a second-order difference equation of the form

R„+,—2R„+R„,=F(R„),
where R„ is an m-dimensional vector and F is a vector-
valued function.

We define an invariant set I of A as that which is
mapped onto itself by the action of 3: AI =I . Exam-
ples of invariant sets are fixed points, periodic orbits, in-
variant curves, invariant tori, etc. Invariant sets that are
also invariant with respect to the reversing involution G
(and therefore belonging to the symmetry set given by
fixed points of G) are called symmetric invariant sets.
For a symmetric fixed point, the multipliers, which are
the eigenvalues of the Jacobian at that point, always
occur in reciprocal pairs [6] (A, „A,&

', Az, Az ', etc.). In
the vicinity of symmetric fixed points, a reversible map
behaves locally like a symplectic one [7—9]. We describe
SAKC at these symmetric fixed points.

Consider the two-parameter family of 4D De
Vogelaere maps given by Eq. (1) with a particularly sim-
ple form of F such that Eq. (1) reduces to a pair of cou-
pled 2D maps,

2x„+x„ i =px„+g„
Ag.

y„+ i
—2y„+y„ i

= —Ex„+py„+g(x„),

II. BIFURCATION OF INVARIANT CURVES
AROUND FIXED POINTS IN SAKC

A map A is said to be reversible [3] if there exists an
involution G (G G =I) which reverses the action of A,
1.e.)

so that AG and GA are also involutions. In other words,
a reversible map can be expressed as a product of two in-
volutions,

with the linear part described by parameters e,p, both of
which will be taken to be sufficiently small so as to give
rise to multipliers at the origin close to +1. The non-
linear part is so chosen that A, can be expressed as a sin-
gle fourth-order difference equation,

x„+z+x„z—2(p+2)(x„+i+x„
+[(p+2) +2+@~x„=g(x„). (3)

The form of the nonlinear function g(x„) will be de-
scribed below. First consider the case p & 0. For
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—p &a&0, both pairs of multipliers at the origin 0
(x„=O, y„=O: a symmetric fixed point) lie on the unit
circle. Outside this range of e the multipliers do not all
lie on the unit circle, with either a pair on the real axis
(when E & —p, the other pair being on the unit circle) or
both outside the unit circle [see Figs. 1(a)—1(e)]. The
Krein collision occurs at angle Po=cos '(1+p/2). The
multipliers in the former case (i.e., for one of the pairs on
the unit circle) correspond to a 2D local stable manifold
coexisting with a 2D unstable one (described by the other
pair on the real axis). We shall refer to this as "cylindri-
cal instability" because the orbits starting near 0 in such
cases appear to lie on the surface of a cylinder when two
dimensional projections are plotted (see Sec. IV). The
problem can also be addressed when p )0 (p small), for
which the dispositions of the multipliers are given in
Figs. 2(a) —2(e). Here the multipliers are all on the real
line for —p & e & 0. For e & —p, one of the pairs enters
the unit circle and for e& 0, both pairs move off the real
line.

The map 3, is reversible with respect to the involution
G:

(a) (b) (e)

FIG. 2. Same as in Fig. 1 but for p & 0.

x= [a+[a +4@(p +e)]'~ ]213. (4)

symmetric fixed point near 0. To describe the picture
around 0, we start with the fourth-order difference equa-
tion (3). As before we find that, although the number of
fixed points depends on g(x„), the nature of the phase
space around these fixed points depends on terms up to
cubic order; we take g(x„)=ax„+Px„,where we choose
~P~

= 1 through an appropriate scaling.
We investigate the phase-space structure around @=0,

p =0, concentrating on the fixed points and IC's. The
fixed points besides 0 are given by x„=x (all n) with

where

Xn

Jn
and S=

8'=S, S'=R,

Xn Xn

~n Jn-i

The IC's will be obtained below in an order-by-order
perturbation scheme for parameter values close to the
SAKC. An IC with rotation number P/2n may be
represented by the Fourier series

x„=[a +b

exp(in/�)+c

exp(2in P)+. . . J +cc.
are two-dimensional vectors. The origin 0 is a sym-
metric fixed point of A, . It is to be noted that the other
fixed points near the origin given by real solutions to
(p +e')x =g(x ) are also symmetric. A discussion on the
fixed points and their bifurcations follows later in this
section.

As shown earlier in the case of the large-angle Krein
collision (LAKC) [1,2], the bifurcation in question is
sufficiently described by terms up to degree 3, so that we
can take g(x„)=ax„+Px„. Depending on a parameter
y=y(a, P) of the problem, two types of bifurcations were
observed, normal (for y )0) and inverted (y &0) [1,2]. In
the former case, two families of stable IC s exist arbitrari-
ly close to the origin 0 for e &0, merge at @=0,and then
move away from the origin as e becomes positive. In the
inverted bifurcation, families of IC s, elliptic and hyper-
bolic, shrink to the fixed point as @~0 from below and
there occur no invariant curves for e & 0.

For p small, all the above features are observed in
SAKC as well, with some additional modifications of the
phase-space structure due to the presence of at least one

2ab02
Qp=

p +E'
(6a)

e+ [p +4 sin ( P/2]
0 (6b)

and

bo
Cp e+[p+4sin P]

(6c)

where

where the coefficients a, b, c, . . . are expected to decrease
with increasing n. Expressing the coefficients as
a =gkak, b =gkbk, etc. (with ak, bk, . . . depending on
e,p, P and k denoting the order of smallness) perturbation
expansion yields, for leading contributions, to the series

y =3P+2a 2 1

p +e e+(p+4sin Q)

(a) (b) (d) (e)

FIG. 1. Dispositions of the multipliers at origin for p (0 cor-
responding to (a) e & —p, (b) e= —p, (c) e )—p, (d) a=0, and
(e) e&0.

The bifurcation picture depends on the signature of y
and can be obtained from the requirement of a positive
bp. For y) 0, we have a "normal" bifurcation and for
y & 0 an "inverted" bifurcation (described below). The
higher-order terms O(bo ) that will be required to test the
accuracy of the estimated curves (see Sec. IV) are given
by
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e0=

2 2
b3 P+

e+(p+4sin P)
do e+[p+4sin (3P/2) ]

3Pb oco+2abodo+ ac o

e+(p+4sin P)
1

ai = [4abob, +a(ao+2co)+3P(co+2ao)bo],
p +E
2ac odo+P( 3bo do+3 obo+6cobo+6aoboco)

b

(6d)

(6e)

C(—

2abo a(ao+2co)+3P(co+2ao)bo 2a(a o+bodo)+3P(2co+ao)bo+
p +6 e+(p+4sin P)

1
2ixbob i +2iz( bodo +a oco ) + 3Pb o (a o +2co )

2

e+(p +4si nP)

(6g)

(6h)

where

q=e+[p+4sin (P/2)] —[9Pbo+6a(ao+co)] .

With P/2~ irrational [so that the problem of zero
denominators in the expressions (6a) —(6h) for the
coefficients of the series (5) does not arise] these
coefficients diminish for b0 &p, the rate of convergence
of the series (5) increasing with the smallness of bo For.

~
a

~

—1 and e & —p, y is always positive (due to the small
denominator in the second term in the expression of y) so
that there is only normal bifurcation. The two families of
IC's for —p &e(0 exist for P )P2 and P &P„where
Pi and Pz ( & P, ) are solutions to

bo ~;„=3/e/y and are stable.
(2) Inverted bifurcation (y (0): For —p &E(0 the

IC's exist for Pi &P &Pz with Pz
—Pi decreasing with ~e

as @~0. That is, the IC's shrink to the origin at @=0,
and for e) 0 there are no IC's. As in LAKC [1,2, 10], the
phenomenon of intermittency is likely to occur in this
case. Section IV shows an interesting feature observed
for e & —p, namely, there are two transition regions so
that there exists an annular region of stability. The IC's
close to the origin are cylindrically unstable and those
outside the annular region are also unstable (hyperbolic).
The multipliers of the orbits are similar to the multipliers
in Figs. 1(a)—1(e) as we move off from the origin.

These merge at @=0 into a single family which then re-
cedes away from O. A special case of bifurcation occurs
as e crosses —p from above. Here y becomes negative
and the IC's exist in one family only for p & p3.

For a small [O(p)], on the other hand, inverted bifur-
cation occurs. Here new features distinct from that of
LAKC appear, which we describe below for a=0 (so that
y = 3p) and for both p & 0 and p )0.

Case 1: p &0

(1) Normal bifurcation (y&0): For e& —p, all the
IC's (existing in one family for P )Pz) are cylindrically
unstable. As we shall see in a later section, from the
two-dimensional projections of the IC s, the orbits appear
to lie on the surface of a cylinder so that locally they are
stable in one plane but unstable in the other. For—p & e &0, the IC's close to the origin are stable. There
is a transition region where the orbits become cylindrical-
ly unstable. The next section shows that this instability
occurs when a pair of multipliers of the IC's (see below)
leave the unit circle along the real axis [as in Fig. 1(a)].
For e)0, the two families merge and all the IC's
move from the origin through a minimum distance

Case 2: p &0

(1) y )0. A family of cylindrically unstable IC's exists
with P~ & ~P, ~

for e & —p, the members of which pass
arbitrarily close to 0, and as e) —p, they recede away
from the origin with the same nature. For e)0, these
IC's do not exist [as evident from the failure of the con-
vergence of the series (5)].

(2) y &0. A family of IC's arbitrarily close to 0 and
cylindrically unstable for e& —p exists with a limit in
phase space corresponding to ~P~ & ~P, ~. These shrink to
0 as e —+ —p ultimately being annihilated at e= —p .

Next we study what happens to the phase space in the
vicinity of the fixed points given by

x =+[(p +e) /P]'~ (a =0) .

For p) 0 these fixed points do not exist when e( —p,
and for p & 0 they disappear when e & —p . The phase
space around x is described by

x„+3+x„3—2(p+2)(x„+,+x„,)

+ [(p+2) +2+@']x„=a'x„+P'x„, (9)

with p'=p, a'=3[p(p +e)]'~, and e'= —3p —2e, so
that the stability of the Axed points will be exactly identi-
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TABLE I. Nature of fixed points (FP's) and invariant curves (IC's) around them for p & 0 (a =0).

e& —p

FP (E =0)

unstable

IC's around FP

unstable

Fig. 1(a) Fig. 1(a)

Nature and multipliers Nature and multipliers

FP's [x =+(p'+E)' ] IC's around FP's

FP's do not exist

—p (g&0

0& e(&p

stable
Fig. 1(c)

unstable
Fig. 1(e)

stable near FP
Fig. 1(c)
unstable away
Fig. 1(a)

stable
Fig. 1(c)

unstable
Fig. 1(a)

unstable
Fig. 1(a)

unstable
Fig. 1(a)

unstable
Fig. 1(a)

e& ——p unstable

Fig. 1(a)

annular region unstable

of stability Fig. 1(a)
Fig. 1(a)~1(c)~1(e)

unstable

Fig. 1(a}

——p & e & —p unstable

Fig. 1(a)

annular region
of stability

stable

Fig. 1(c)

stable

Fig. 1(c)

—p &a&0

0&m «p

stable
Fig. 1(c)

unstable
Fig. 1(e)

stable near FP
Fig. 1(c)
unstable away
Fig. 1(e)

IC's do not exist

FP's do not exist

FP's do not exist

cal to those in Figs. 1(a)—1(d) with e replaced by e'. The
IC's around the fixed point are determined as before but
now the nature of bifurcation depends on the new y
value, which is

y'= —15P, (10)

which shows that if for 0 there is normal (inverted) bifur-
cation then for the fixed points the bifurcation will be in-
verted (normal). But, as we shall see in the next section,
the stability characteristics are different in details. The

overall structure of the phase space is schematically
presented in Tables I and II, which show how the
features are interrelated.

An important point to note is that in all the cases
above there seems to be a limit in the extent of the IC's in
the phase space given by bo &p, beyond which they
cease to exist due to the divergence of the series (5). Fur-
ther, as also stated in Refs. [1,2] the convergence of the
series is assumed for those P's for which the problem of
small denominators in the expression for terms higher in
the series can be avoided. This requires P not only to be

TABLE II. Nature of fixed points FP's and invariant curves (IC's) around them for p & 0 (a =0).

Nature and multipliers

e& —p unstable
Fig. 1 (a)

unstable
Fig. 1(a)

FP (x =0) IC's around FP FP's [x =+(p2+E)'~2] IC's around FP's

FP's do not exist

—p &e(0

0(e&(p

unstable
Fig. 1(c)

unstable
Fig. 1(e)

unstable
Fig. 1(c)

IC does not exist

unstable
Fig. 1(a)

unstable
Fig. 1(a)

unstable
Fig. 1(a)

unstable
Fig. 1(a)

e& —p

—p &a&0

Oe «p

unstable
Fig. 1(a)

unstable
Fig. 1(c)

unstable
Fig. 1(e)

unstable
Fig. 1(a)

IC does not exist

IC does not exist

unstable
Fig. 1(c)

unstable
Fig. 1(c)

FP's do not exist

FP's do not exist
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nonresonant, i.e., $%2~p/q (p, q are integers and prime
to each other) but strongly irrational so that the
coefficients of terms approach zero faster than the
denominators. Even then the convergence of the estimat-
ed series for n ~~ remains a conjecture.

III. STABILITY QF IC's ARQUND FIXED PAINTS

+8'e '"~+ . ]+c.c. , (12)

where the possible values of I,, the "quasimultipliers, "
determine the stability of the orbit. But since e —3Px„ is

The stability of an IC around 0 can be studied from
the tangent map at the orbit (x„=x„, say). Thus if
g„=x„—x„,then (for a =0)

k. +z —k. -2+2(p+2)(k. +(—k. —()

+[(p+2) +2+e 3'„]$„—=0 .

As in Ref. 10, g„can be expressed as

gn[1+ geon/+ g 'e —(nP+ge2(ng

quasiperiodic due to irrational P, A,e' ~ (where N is an ar-
bitrary integer) is also a solution for the quasimultiplier.
A consequence of this is that for A=, exp(ig), with g real
for elliptically stable orbits, the quasimultipliers fill up
the entire unit circle indicating the stability of the IC's.
For A, lying o8' the unit circle the quasimultipliers fill up
two circles with reciprocal radii (in addition, a trivial set
of quasimultipliers fill up the unit circle; see Ref. [10]).
The cylindrical instability corresponds to a nontrivial set
of quasimultipliers lying on the unit circle. We therefore
define the multipliers of an IC as the quartet of quasimul-
tipliers (containing two reciprocal pairs), from which the
entire set of quasimultipliers can be obtained by irrational
rotations NP An . IC will become unstable when these
multipliers move off the unit circle corresponding to g
changing from real to complex. For bo small compared
to e the solutions to f are expected to be very near to P,
the rotation angle for the IC.

Representing the IC about 0 by its leading-order
terms, namely, x„=2bo cosnP (a=O), we equate
coefficients of k"e '"~, A,"e '"~, etc. , and eliminate B, B',
etc., to arrive at (for a=O, either odd or even harmonics
are present)

e 6Pbo+4(—cosg —1 —p/2) =(3Pbo) ( /It e 6Pbo—+4[cos(g —2$)—1 —p/2] ]

+ I/I e 6pb —+o4[c s(o1(+2(t ) —1 —p/2] ] ) . (13)

Note that p= k(() is always a solution to (13) provided we
neglect one of the terms on the right-hand side (rhs) with
respect to the other. Thus for an IC there will always be
a trivial set of quasimultipliers filling up the unit circle
corresponding to deviations g„ lying on the IC itself.

For the transition to elliptic stability (cylindrical insta-
bility) from cylindrical instability (elliptic stability) when
e= —p +5 (5 small), bo «e, the rhs of (13) can be

e 6pb o+4(—c so1—( 1 —p/2) =0 . (14)

This leads to (p and lt being small)

P = —p+[e+2((t +p) ]'~ (15)

neglected with respect to the lhs. As a result, (13) is
simplified to

TABLE III. Observed values of P (for transition to cylindrical instability) and 5$ (for transition to
hyperbolic instability).

p e (()' (calc.) p' (obs. ) 5(() (calo. ) 5$ (obs. )

P (units of 10 ') (units of 10 ') (units of 10 ) (units of 1Q 2) (units of 1() ~) (units of 1Q 2)

2.2

3.55

10.9

—3.0
—1.0
—4.5
—2.0
—7.0
—3.0
—2.0
—0.8

0.985

1.23

1.58

2.29

0.988

1.24

1.58

2.31

2.30
1.33
2.51
1.67
2.75
1.80
3.99
2.53

2.37
1.40
2.60
1.77
2.85
1.91
4.10
2.67

2.23
3.55
6.00

10.9

—1.5
—2.5
—5.0
—5.0

0.905
1.15
1.52

1.94

0.904
1.15
1.52

1.95
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For this transition one of the pairs of multipliers either
enter or leave the real line (the other being on the unit
circle) corresponding to g crossing zero. The transition
occurs at P given by

y2 +[(p2 &)/2]1/2

One or both solutions may not exist either due to poor
convergence (here p +e is small} of the series (5) when P
is small or for P real. The other transition, from elliptic
stability to hyperbolic instability, especially for P(0 and
e & 0, has been studied before in connection with similar
problems in LAKC [11]. This time bo -O(e) so that the
rhs of Eq. (13) cannot be neglected as in the previous
case. But because it is expected that g =P =go+ 5P the
second term in the square brackets of the rhs can be
neglected with respect to the first and a solution (with
6P « Po} to (13) is given by

-7-5x10
(a}

un—

jection of the curves on the plane (x„,u„=x„—x„,) for
a= 1 and @=1[p= —(2.23X10 )'~ ]. Normal bifurca-
tion was observed for e) —p . The IC's initially close to
0 for —p &@&0 are pushed away from 0 as e&0.
There is a special bifurcation of the IC s to cylindrical in-
stability when e & —p [Fig. 3(c)].

The two types of bifurcation, normal and inverted, de-
pending on the signature of y, are observed when we

/=+If+[2(e+12sin po5$ )]'~ 2singo] . (17)

Therefore the multipliers of the IC are off the unit circle
when

5$ &5P, =!e!/12sin Po .

The experimental values are expected to be a bit away
from the estimate due to the approximation 5$«go.
This type of instability occurs only when P & 0 and p (0.

The IC's around the other fixed points, however, have
different stability characteristics. Since the condition
bo «!(p +e')!=!2(p +eo)! is required for convergence,
the stability of the IC's are dependent on e'= —3p —2e
alone, in the same way as that of the fixed point. To sum-
marize, we list in Tables I and II the nature of the fixed
points (including the origin 0) and the stability of the
IC's around these points exhibiting the bifurcation
features as F. (and hence e') is varied.

In the next section we illustrate through numerical re-
sult and graphical presentation the principal features of
the bifurcations discussed above.

-7
-5 x10

5 x10

un

-7
-5x10

I

-5xl0

-6—'5x10

xn

xn

-6—5 x10

-6
5 x)0

(bl

IV. NUMERICAL SUPPORT

All calculations were performed with double precision
accuracy (to 14 significant digits) with the collision angle
(for p & 0) Po- 10 . Typically, most of the experiments
were done with (r)0=2m. /91. 357973 [p= —(to= —(2.23
X10 )'~ ] in order to approximate an irrational rota-
tion. For positive p, we chose Po= —p for comparison.
To construct the IC's, initial values of xj, j =1—4, were
chosen according to Eq. (5) and the map was iterated and
then numerically tested against the perturbative solution.
The iterates were found to lie on the estimated curve, the
duration of which depended on the initial accuracy. As
more terms in the series (5) were included, the number of
iterates for persistence on the curve increased. A devia-
tion or poor accuracy in the initia1 conditions resulted in
the iterates ending up on a torus in the case of a stable
curve, and escaping to infinity in the case of an unstable
one.

Figures 3(a)—3(b) correspond to a two-dimensional pro-

-7
5 x10

-7
-5x10

—5 x10 6 xn 5 x10

FICx. 3. Two-dimensional projection (u„—=x„—x„ l vs x„)of
IC's around origin for a= 1, P= l, p = —(2.23 X 10 5)'~2,

$0=2m. /91. 357973 for (a) e= —2X10 ~ (0&e& —p ), (b)
@=10 (e)0), and (c) e= —3X10 (g& —p ). A11 6gures are
plotted in the same scale for comparison.
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switch off a. Figures 4(a) —4(d) illustrate normal bifurca-
tion for P= I, with e increasing from —p —5 (5 &0) to
E & 0. Initially, all the curves (for e & —p ) are cylindri-
cally unstable, a number of which become stable when e
crosses —p from below. At this stage the transition
values for which the curves become cylindrically unstable
was also checked and found to agree well with that es-
timated by Eq. (16) (see Table III). The stability region
increases as @~0. When e crosses 0 from below, the IC's
are repelled away from the origin.

Around the fixed points, the extent of the phase space
accomodating the IC's being small, the stability, as we
have seen in the preceding section, depends on the value
of e'= —3p —2e. That is, as the curves around 0 be-
come stable, those around the fixed points become cylin-
drically unstable (and vice versa).

The next set [Figs. 5(a) —5(c)] describe the interesting
case for P &0 (p &0). For e= —p —5 (5&0), as expect-
ed, the curves close to 0 are cylindrically unstable,
becoming stable for a larger value of bo. For bo larger
still, again the curves become unstable (hyperbolic}, but
this time they escape to infinity with rotation in both the

planes. The transition values in both regions were tested
and were found to agree well with the estimated values
(Table III). For e&0 [Fig. 5(e)], the phenomenon of in-
termittency is found to occur as in Ref. [10].

Numerical experiments were performed with other
values of p & 0 (Po real} as well as for both P & 0 and P & 0.
The transitions to (from) elliptic stability from (to) cylin-
drical instability at the observed values for all of them
were in excellent agreement with the theoretical values
from Eq. (16) (Table III, columns 4 and 5). For the other
transition, namely, from elliptic stability to hyperbolic in-
stability, the observed values agreed with that of Eq. (18)
to within 5% (Table III, columns 6 and 7).

The experiments with p & 0 proved to be rather unsuc-
cessful. The IC's in this case were dificult to construct,
because of the high degree of cylindrical instability in
most of the cases. The IC's were so unstable that even
one full rotation of the points was hardly seen in any
case. The best agreement is demonstrated in Fig. 6 for
the case P= 1, e & —p, for the IC's around 0 only, where
it is seen how the degree of instability increases as we
move away from the origin.
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FIG. 4. Two-dimensional projection (u„:—x„—x„, vs x„) of IC's around origin and other two fixed points for a=0, P=1,
p = —(2.23X10 ')'~2, (()0=2m/91. 357973 for (a) e= —2.5X10 ' (e& —p ), (b) e= —2X10 ' (0&e& —p'), (c) e= —2X10
(0& e& —p ), and (d) @=10 (e&0). All figures are plotted in the same scale for comparison. Notice how the stability region
around the origin increases as @~0.
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V. CONCLUSION

In this paper we have demonstrated the peculiarities of
small-angle Krein collision (SAKC) [2] in a family of 4D

reversible maps distinct from the features observed in the
large-angle collision [1]. Since SAKC in reversible sys-
tems is always associated with the bifurcation of nearby
fixed points, the regions of phase space around these fixed
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FICx. 5. Two-dimensional projection (u„—=x„—x„, vs x„) of IC's around origin and other two fixed points for a=0, P= —I,
p= —(2.23X10 ')'/, $0=2m/91. 357973 for (a) e= —3.5X10 ' (e& ——'p'), (b) e= —2.5X10 ' (e& —p ), (c) e= —2X10
(0&e& —p ), (d) e= —2X10 (0&e& —p ), and (e) @=10 (e&0). All figures are plotted in the same scale for comparison. The
cylindrical instability around the origin disappears for e & —p . The phase space accommodating the IC's shrinks as e~O. Intermit-
tency occurs for e & 0 (initial conditions are taken at random).
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FIG. 6. Two-dimensional projection (u„=—x„—x„,vs x„)of
IC's around origin for p =+(2.23 X 10 )', with other param-
eters same as in Fig. 4, for e= —2.5 X 10 ' (e ( —p ) only.

points are always correlated, leading to a rich variety of
its structure. It is to be noted that because all the
features in SAKC were observed around the symmetric
fixed points, all of them can also be observed in symplec-

tic maps as well.
We have discussed two classes of SAKC, correspond-

ing to p &0 and p)0, a parameter characterizing the
family of maps. While the former could be illustrated by
numerical support and figures, the latter posed difficulties
due to high degree of instabilities in the system.

We have considered SAKC for fixed points and IC's
around them close to the bifurcation of the fixed points.
This can also be applied in principle to describe invariant
two-tori around bifurcating IC s in a reversible system
with the points replaced by curves and curves by two-tori
or, in general, to similar problems involving higher-
dimensional tori. A simple variant is the case of invari-
ant curves around bifurcating p-periodic orbits of a rever-
sible map, where the angle of rotation per iteration is
commensurate with 2m. . The IC's around these orbits will
be determined by a deviation 5$ of the rotation angle
from 2' jp with 5P an irrational multiple of 2rr. For the
orbits having multipliers near +1, these IC s will be de-
scribed by SAKC. A future communication will illus-
trate an application to the case of invariant period-4 or-
bits bifurcating through collisions of multipliers at i on
the unit circle. The latter has been studied recently in
Ref. [12].
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