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We study the nonlinear relaxation in the presence of multiplicative noise by means of a simple approx-
imation scheme valid outside the critical region and exact asymptotic expansion at the critical point.
The theory is developed in the Malthus-Verhulst stochastic model case. We find nonmonotonic growth
of fluctuations during the transient. At the critical point we study the statistical properties of the finite
time average of the original process. We obtain an exact result for the generating function exhibiting
scaling asymptotic behavior at the critical point. We deduce also an asymptotic sum rule for the n-times
correlation function of the original process and the asymptotic expression of the two-times correlation
function. Our theoretical results are compared with numerical simulations and steady-state known
properties.

PACS number(s): 05.40.+j, 42.60.Mi

I. INTRODUCTION

The effect of multiplicative noise has been investigated
recently from both an experimental and a theoretical
point of view. Relevant experiments have been per-
formed on laser radiation fluctuations [1,2]. Stochastic
models with state-dependent noise have been introduced
to explain a wide class of physical process such as none-
quilibrium transitions in liquid crystals [3], vacuum Auc-
tuations in quantum optics [4], the statistics of multifrac-
tal objects [5], and the previously quoted light statistics in
dye lasers. A general reference reporting both theoretical
and experimental results may be found in Ref. [6].
Theoretical analysis of the steady-state statistical proper-
ties of the laser radiation in the presence of the multipli-
cative noise has been performed in connection with ex-
periments in Ref. [7].

Nonmonotonic growth of fluctuations in a nonlinear
relaxation from a definite initial state has been discussed
in Ref. [8] in the case in which the initial state is far away
from both the absorbing barrier and the equilibrium
state. This phenomenon can be understood considering
that the system relaxes from a definite initial state under
the influence of noise which decreases in amplitude as
long as the equilibrium state is approached.

The new feature of the transient behavior which is dis-
cussed in the present paper, is the occurrence of the
anomalous fluctuations even in the case of an initial state
close to the absorbing barrier. This phenomenon is simi-
lar to that observed in the decay of an unstable state un-
der the action of an additive noise [9]. The appearance of
the anomalous fluctuations in the decay from an initial
state close to the absorbing barrier is due to the
amplification of an initially small fluctuation during the

transient. An important difference in the relaxation pro-
cess in the presence of additive or multiplicative noise is
the amplitude of the anomalous fluctuations which is
smaller in the latter case than in the former. The usual
approach to anomalous fluctuations in the presence of ad-
ditive noise [9] is, however, ineffective in the present case.
This is because the additive noise is relevant only during
the early stages of relaxation, while the multiplicative
noise is vanishingly small near the absorbing barrier and
increases as the equilibrium state is approached.

A simple approximation scheme can be introduced in
two steps. First a mapping of the original process into an
additive noise process is introduced and then the new
process is approximated by a Gaussian process. This ap-
proximation is valid far from the critical point. The
mapping has been already introduced in the case of the
decay from an initial state which is far away both from
equilibrium and the absorbing state [8].

In the region of parameters where the decay occurs to-
wards the absorbing barrier the Gaussian approximation
does not work because the additive noise process (and its
fluctuations) diverges as the original process approaches
the absorbing barrier. In order to overcome this

difhculty we found it convenient to study the finite time
integral of the original process. This process attains a
finite value once the original process reaches the absorb-
ing barrier. Thus a small fluctuation regime for the
time-average process is expected and the Gaussian ap-
proximation works.

All our considerations will be developed in a simple
case: the Malthus-Verhulst stochastic model (MVSM) al-
ready considered in the literature [8,10,11].

It is worth noting that the solution of the associated
stochastic differential equations is known in this case and
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exact expressions for the moments have been developed
by several authors [10,12). These expressions are, howev-
er, quite complicated and even difficult to evaluate by nu-
merical methods [13]. An approach that improves con-
vergence of a series expressing the moments of the exact
analytic solution has been introduced in Ref. [11]. More
recently the first-passage-time statistics has been studied
in a more general model which includes the presence of
additive noise using the small noise expansion [14]. The
results of the latter work are strongly dependent of the
noise strength in the region of the parameter space in
which we expect the anomalous Auctuations to the
relevant feature of the transient.

A separate analysis is devoted to the critical slowing
down at the critical point. We show that the time in-
tegral process asymptotically exhibits a scaling behavior
at the critical point. This asymptotic behavior is derived
first rigorously and then from a heuristic argument. We
want to emphasize that this heuristic procedure give us
an alternative derivation of the noise-induced long-time
tail of the moments of the original process derived by
Suzuki and co-workers [10]. Moreover, the knowledge of
the dynamical behavior of the moments of the time-
averaged process can give us information about the prop-
erties of the n-times correlation functions of the original
process.

The paper is organized as follows. In Sec. II we intro-
duce the model and discuss the difhculties of the usual
self-consistent approximation. This approximation is un-
able to control large (even if rare) fluctuations, which are
characteristic of state-dependent noise.

In Sec. III the growth of anomalous fluctuations for an
initial state close to the absorbing barrier is studied by
means of linearization of the model equations with
respect to deterministic evolution.

In Sec. IV the mapping is introduced. We see that a
simple linearization around the deterministic evolution of
the additive noise process provides an accurate approxi-
mation outside the critical region. Fluctuation behavior
in the case of the decay from an initial state far away
from equilibrium and the absorbing states is easily ob-
tained in the framework of this approximation.

The additive noise process does not help, as we discuss
in Sec. V, in the case of decay towards the absorbing bar-
rier. In this section we discuss the properties of the time
integral process. The main advantage of this process is
that when a realization of the original process ends on the
absorbing state, the associated time integral becomes a
constant. We can evaluate this constant by again consid-
ering small fluctuations around the deterministic motion.
Again this approximation works outside the critical re-
gion. At the end of Sec. V results obtained in both ap-
proximation schemes are compared with the numerical
solution of the original stochastic differential equation
and the analytic results available at the steady state.

Section VI is devoted to the time integral process prop-
erties at the critical point. We show that for this process,
as for the original one, scaling behavior appears in the
asymptotic regime. A heuristic argument to explain the
long-time behavior is presented and, as a consequence, a
sum rule for the n-time correlation function and an

asymptotic expression for the two-times correlation func-
tion are given.

Appendix A gives an alternative derivation of the mo-
ments of the integral of a log-normal process. Appendix
8 gives details of calculations of the generating function
of the time-averaged process, and Appendix C shows de-
tails of its asymptotic expansion.

II. MODEL

We consider the so-called Malthus-Verhulst stochastic
model previously introduced and studied by severa1 au-
thors [8,10,12]. The model is given in terms of a stochas-
tic difFerential equation (SDE) describing the process evo-
lution:

6+ —x —x dt+&ex dw .
2

(2.1)

In Eq. (2.1) w is a Wiener process whose increment dw
satisfies the properties

(dw(t)) =0, (dw(t)dw(t')) =5(t —t')dt . (2.2)

We adopt in Eq. (2.1) the Ito prescriptions [15]. In the
absence of noise Eq. (2.1) describes the overdamped
motion of a particle in the potential shown in Fig. 1(a).
By varying the control parameter 5, the particle ap-
proaches an equilibrium state (x0=5) for 5)0 or the ab-
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FICx. 1. (a) Schematic view of the potential of the determinis-
tic equation of motion for different value of the parameter 5. (b)
Potential V (solid line) and 'N (dotted line) of Eqs. (4.2) and
(5.3), respectively, for 5)0 and 6 &0.
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(r) —f drt 5( ++Ew(t )

0
(2.4)

We note that the process x is given in terms of two pro-
cesses: the log-normal process e xp[ 5t +&ew(t)] and its
time integral z.

During the decay toward the absorbing barrier we will
study the time integral process Z, which is related simply
to the linear process z via the mapping

Z(t)=l [n1+ x(0)z(t)] . (2.5)

The time integral process reduces to z in the early stages
of evolution.

Failure of naive self-consistent approximation

As a preliminary remark let us show the failure, in the
case of a multiplicative noise process, of a widely used
linearization scheme: the self-consistent approximation.

We consider instead of the original process of Eq. (2.1)
a new process obeying the following SDE:

sorbing barrier x =0 for 5 ~ 0.
In the presence of noise steady-state properties have

been discussed extensively by several authors and an ex-
haustive analysis can be found in [12]. A steady-state
probability distribution function (PDF) is 5(x) for 5 0
and changes in a regular function as 5)0. There is
another transition marked by a shift in the most probable
value of the process from a vanishing value, for 5~ e/2,
to a novanishing value (x =5), for 5)e/2. This effect is
known as the noise-induced phase transition (NIPT) [10].

Relaxation properties have been also considered in
[12], where rather involved formulas for the process mo-
ments are derived and discussed. The main result is the
scaling behavior derived by Suzuki and co-workers [10]
at the critical point.

The solution of Eq. (2.1) is

x(t)= x(0)e px[5t+&e w(t)][1+ x(0)z(t)] ', (2.3)

where

but large fluctuations

(x'n ) =([x'(0)]")exp n[5t —M(t)]+n t—
2

(2.10)

Even if the average of the process moves towards a finite
equilibrium value m(t~ oo )=5+@/2 for 5)0 or to the
absorbing barrier m (t ~ co ) =0 for 5+e/2 ~ 0, the
linearization prevents the elimination of the rare, large
Auctuations which give rise to the explosion of large-
order moments. In other words, the self-consistent
linearization procedure gives results which are qualita-
tively wrong. This seems to be a peculiar difhculty of the
decay in the presence of multiplicative noise.

III. FLUCTUATIONS AMPLIFICATION
IN THE SMALL-NOISE APPROXIMATION

xd =6xd —xd
2 (3.1)

Anomalous fluctuations, i.e., nonmonotonic growth of
fluctuations during the decay towards the equilibrium
state of the process, have been predicted to occur in the
presence of the multiplicative noise if the initial state is
sufficiently far from the equilibrium state [8].

It is interesting to note that numerical studies of the
probability density in the transient evidentiate a bimodal
behavior analogous to that observed in the decay of an
unstable state in the presence of additive noise [9,16]. To
understand the anomalous Auctuations in the context of
MVSM we found it convenient to develop a linear
analysis of the model.

This is a naive approximation procedure which leads to
quantitatively incorrect results, but allows us to intro-
duce the concept of anomalous Auctuations. Direct
linearization around @=0, the deterministic evolution xd
of Eq. (2.1), introduces Gaussian fluctuations process
x:x =xd+&cx Here .the evolution of the deterministic
part xd is

dx'= 5+——m(t) x'dt+&ex'dw .
2

(2.6)
with initial conditions xd(0) =x(0))0. The fluctuating
part evolves according a linear equation

The variable m must be calculated self-consistently
dx =y(t)xdt+xd(t)dw (3.2)

m(t)=(x(t)) . (2.7) with vanishing initial conditions. In Eq. (3.2) y is given
by

E'm= 5+ ——m m .
2

(2.8)

In Eq. (2.7) the average is taken with respect to the pro-
cess realization ensemble. From Eqs. (2.6) and (2.7) we
obtain a differential equation for the average of the pro-
cess m:

y(t) =5—2xd (r ) . (3.3)

We see that, due to fluctuations of Gaussian character,
the approximated linear process x is no longer always
positive. This is an expected drawback of the direct
linearization approximation. The solution of Eq. (3.1)
reads

Equation (2.6) can be solved readily in terms of the time
integral M (t) of the function m

xd =5x(0)I [5—x(0)]exp( 5t)+x(0)I—(3.4)

x'(t) =x'(0)exp[5t M(t)+ &ew (t) ]—. (2.9)

The distribution of x is a typical log-normal distribution
whose moments are dominated, for long times, by rare

From the condition y )0 using Eq. (3.4) we easily see
that for 6)0 fluctuations are amplified if the initial state
is on the left of the equilibrium state x =5. This happens
for times lower than a time t, given by
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5 —1 for 6)0 .
x (0)

(3.5)

During this time regime [which can be very large if the
initial data x (0) are sufficiently small] the failure of the
linearization procedure is expected.

The drawback of the approximation scheme previously
introduced can be overcome introducing first a mapping
of the original process in a new process given by an addi-
tive noise Langevin equation with a single stationary
state and then small noise expansion. The approximation
will be shown to be successful at least far from the critical
region.

IV. DECAY TOWARDS THE EQUILIBRIUM STATE

The small noise expansion is expected to be successful
if applied to the normal behavior, i.e., to a relaxation re-
gime in which fluctuations are small compared to a suit-
ably chosen deterministic evolution. The new processes
are obtained respectively considering the logarithm of the
process x for 5)0 and the finite time average of the pro-
cess x when 6&0.

In the first case we consider the process u (t) =ln[x(t) ].
From Eq. (2.1) and using Ito's rules of calculus we obtain

obtain

2 e f(t) ef(t) f (t) et
25 f(0)~ 5 f (0)

(4.8)

P(x, t) = Ix [2vro. „(t)]'~ ] 'exp
[In(x) —ud(t)]

2o „(t)

(4.9)

The associated moments are easily given in terms of the
same quantities:

where we have used the shorter notation f(t) = f(ud(t)).
Since the asymptotic fluctuations variance is
o.„(oo ) =e/25, we have that linear fiuctuations expansion
is valid asymptotically if e«25. From the dynamical
point of view we see that the restoring force of the linear
fluctuations evolution vanishes as 5 becomes of the order
of the noise variance e.

The time evolution of the variance o.„ together with
the knowledge of the deterministic evolution ud com-
pletely determine the single time properties of the origi-
nal process x. In particular we notice that the distribu-
tion function of the process is log-normal.

du = — +&edw .aV(u)
Bu

(4.1)

Where the potential V, depicted in Fig. 1(b), is given by

n o„(t)
(x "(t) ) =exp nud(t)+

2
(4.10)

v(u)= —5u+e" . (4.2)

ud =f(ud),
where the deterministic drift is

(4.3)

f(u)=5 —e",
while the equation for the fluctuating part reads

du = eudt+&ed—w

(4.4)

(4.5)

with a vanishing initial condition.
The equation for ud can be easily solved giving

5x(0)u„(t) =ln
[5—x (0)]exp( 5t ) +x(0)—(4.6)

From Eq. (4.5) we easily obtain the variance o „(t)= ( u )
of the process u

ud(t)o„=ef (ud) J f '(x) (4.7)

Using the solution of Eq. (4.6) and the definition (4.4) we

It is worth noting that the potential v is a single-well po-
tential for 5)0 with a minimum located at uo=ln(5),
which disappears as 6~0. The normal behavior of this
process is due to the appearance of the single-well poten-
tial and of an additive noise.

We separate the process u into a deterministic part ud
and a small fluctuating part u the equation for the deter-
ministic part reads

From Eq. (4.10) it is possible to evaluate the fiuctuations
of the process ( Ax ) = ( x ) —( x ) in the transient.
Analytical results obtained in the present approximation
scheme are compared with numerical solution of the
Langevin equation (2.1) in Fig. 2.

We have anomalous behavior of Auctuations in the
transient in two cases. In case 3 of Fig. 2, in which the
initial condition is close the absorbing barrier, the
enhancement of Auctuations is related to the random
departure of the process from a nearly unstable state un-
der the action of a very small noise. This case is similar
to the decay from an initial unstable state triggered by an
additive noise [9,16]. An important difference is that in
this case the amplitude of the fluctuations' peak increases
with the noise strength while in the additive noise case it
is almost constant. This is due to the relative importance
of the noise in the whole transient and not only in the
early stage of growth.

In case B of Fig. 2 the initial state is far away from the
absorbing barrier. Fluctuations initially grow due to the
large noise and then they decrease as the process relaxes
towards states affected by a smaller noise.

This difference is even more evident in the normalized
fiuctuations ( b,x ) /( x ) (see Fig. 3). This quantity
shows an anomalous behavior only in case A. From Eq.
(4.10) we see that if o, ((1, then o'„approximates the
normalized fluctuations of the process x. The behavior of
the normalized fiuctuations is depicted in Fig. 3(a) for
two different choices of initial data: close and far away
from the absorbing barrier. We note a substantially
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FIG. 3. (a) Normalized fluctuations of the process x. (b)
Normalized fluctuations of the time-averaged process P.

FIG. 2. (a) Fluctuation of the process starting with two
different initial conditions A and B. (b) Fluctuations of the time
average of the process starting with initial conditions C. The
solid line is the result of the theory. Squares are the results of
numerical integration of the Langevin equation (2.1). As in

Figs. 3, 4, and 6, data are obtained starting with the following
parameter settings: A, 5 = 5 )0 and x (0)= 10 « xp' B,
5= 5 )0 and x(0)=20))xp, C, 5= —5 & 0 and x(0)=5. In all
conditions @=0.1.

phenomenon by comparing our prediction with the nu-
merical simulation of Eq. (2.1). For example, in the tran-
sient behavior of the process fluctuations [Fig. 2(a)] we
observe discrepancies only for the initial states close to
the absorbing barrier. For the same choice of initial
value of the process it can be noted from Fig. 4(a) that
our approximation overestimates realizations far from
the absorbing barrier during the transient.

From Eq. (4.9) and from the asymptotic value of the
variance it is possible to compare our log-normal PDF,
evaluated asymptotically with the known steady-state
analytical results [12] [see Fig. 5(a)]. The NIPT associat-
ed with the disappearance of the peak in the steady-state
PDF as 5(e/2 is not observed in our approximation
scheme in which PDF is always log-normal and conse-
quently has always a nonvanishing peak. However, our
approximation outside the critical region is in reasonable
agreement with known steady-state properties.

Finally it is important to realize that our approxima-
tions is a process approximation which gives information
about single trajectories (or process realizations) and not
only about the averaged properties of PDF. In Fig. 6(a)
the approximate process obtained by numerically solving
the Langevin equation (4.5) and using Eqs. (4.6) and (4.7)
compared with numerical solution of the model equations
for a given realization is shown.

different behavior and consequently we expect that the
variance evolution largely depends on the initial state
x (0). We observe a nonmonotonic behavior of the nor-
malized Auctuations if the process is initially close to the
absorbing barrier. If the process starts on the left of the
equilibrium point of the potential V(u) [see from Fig.
1(b)] is driven away from the absorbing barrier by a con-
stant drift 5. Thus initially fluctuations increase linearly
in time as et. This increase stops once the process meets
the sharp exponential branch of the potential. This hap-
pens roughly in a time scale t, given by
t, = [u,q

—u(0)]/5. At the same time fluctuations are of
the order

5
x(0)cr = —ln

Q
(4.11)

which can be much larger than the asymptotic value if
the initial position is su%ciently close the absorbing bar-
rier at x =0.

This fact may affect the accuracy of our approximation
in the time regime in which the variance reaches the
maximum value predicted in Eq. (4.11). We can see this

V. DECAY TOWARDS THE ABSORBING BARRIER

We consider now the 6(0 case, i.e., the parameter's
space region where the system decays towards the ab-

NONLINEAR RELAXATION IN THE PRESENCE OF AN. . .
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sorbing barrier. The mapping used in the previous case is
now useless because the restoring force acting on the pro-
cess fluctuations u vanishes asymptotically as the deter-
ministic motion approaches the absorbing barrier. In or-
der to overcome this difficulty we propose to study the
time integral of the original process x introduced in Eq.
(2.5). There is a simple consideration which justifies the
choice of the time integrated process in order to intro-
duce simple approximation schemes. The time integral of
the process approaches a constant value as the process it-
self approaches the absorbing barrier. We can distin-
guish the deterministic time integral process and the fluc-
tuations time integral process. Since the former is a non-
vanishing process, the latter can be expected to be a small
perturbation.

Using the translation in variance properties of the
Wiener process it is easy to show that the process z
satisfies the following SDE:

d%'
du = — dt +&edw

dv
(5.2)

where the potential 'N, depicted in Fig. 1(b), is given by

'V= —5u+ e (5.3)

The potential 'N is a single-well potential for negative 5
with a minimum located at vo = —ln( ~5~ ). The proba-
bilistic evolution in the presence of the potential 'N can
be studied by means of the Fokker-Planck equation gen-
eral methods of Ref. [17]. The particular case 5=e/2 —1

corresponds to the well-known case of Morse potential
[18]. The general case has been discussed in [19]. An al-
ternative approach, with results more effective in the
study of the transient behavior, is the following.

We introduce again a linear approximation scheme for
the process v separating it into a deterministic part vd

and a small fluctuating part v. The deterministic evolu-
tion is given by

dz— 5+ —z + 1 dt +&ezdw .
2

(5.1)
v (t)=ln —(e ' —1)5t (5.4)

It is again convenient to study the normally behaved
process V=ln(z) which obeys an additive noise stochastic
equation easily derived from Eq. (5.1):

The initial condition vd(0) = —~ is a consequence of the
vanishing initial value of the time integral process z.
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FIG. 5. (a) Exact asymptotic PDF [12] (solid lines) compared
with that obtained by our approximation (dotted lines) with
several values of the parameter 6. (b) Exact asymptotic PDF of
the time integral process Z given by Eq. (5.12) (solid lines) com-
pared with our predictions (dotted lines).

FIG. 6. Several realizations of the process starting from con-
ditions (a) 3 and (b) B (triangles) compared with our approxi-
mated process (squares). (c) The same for the time-averaged
process P with initial conditions C. Simulations of the original
and approximated processes are obtained numerically, taking
the same series of pseudo-random numbers to generate the
Wiener processes involved in their definitions.

The fluctuation process U obeys the following SDE:
Ud (t)du= —e ' udt+&edw . (5.5) PDF of the process Z at any time as

o', (t)= — —,f(t)+, f(t)' .
g2 g2

(5.6)

As in Sec. V, f is the drift of the deterministic evolution
evaluated in uz(t)

We see from Eq. (5.5) that for ud varying from —ac to
vo the restoring force is always negative and no Auctua-
tion amplifications occur. As expected, the restoring
force decreases as 5~0. In this limit we enter a critical
region of the parameters space.

The explicit calculation of the variance of the Auctuat-
ing part U gives

P(Z, t) =
t (1—e ) [2n o, (t) ]'

Iln[(e —1)/x(0)] —ud(t) J
X exp

2o, (t)
(5.8)

To compare our analytical results with numerical simula-
tion we introduce the time average of the process x:
P(t)=Z(t)/t. This quantity goes to zero like the mo-
ments of the original process as time increases. By using
the definition of P and the PDF of Eq. (5.8) it is easy to
obtain the expression for the moments of the time-
averaged process P,

f(t)=
l —e

(5.7)
(P(t)")=—I e " ln"[1+x(0)e "

] .
&2x

We see that, for negative 5,o, approaches monotonically
the asymptotic value o, ( ~ ) =e/2~5~. Again the validity
of the previous calculations is restricted by the require-
ment o, ((1,which gives e ((2~5~.

As far as the moments of the time-averaged process are
concerned, they are given in terms of averages over a
Gaussian variable v with mean Ud and variance o, By
using the mapping given in Eq. (2.5) we can write the

(5.9)

We checked the approximation for the moments of
time average, comparing results obtained for fluctuations
(hP ) =(P ) —(P) [see Fig. 2(b)] and for the normal-
ized fiuctuations (hp )/(It ) [see Fig. 3(b)] with numer-
ical solution of the model equation (2.1). Unlike the 5)0
case, normalized fluctuations do not exhibit anomalous
behavior. This is simply due to the fact that the process
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z P — 6+—zP —P =0.8 E

2a 0 0 (5.10)

The solution of this equation is

Po(2) =A' 'z ' 'exp( —2/ez), (5.11)

x experiences monotonically decreasing noise. Transient
and steady-state PDF are shown in Figs. 4(c) and 5(b), re-
spectively. The steady-state PDF is compared with exact
result obtained by analyzing the steady-state solution Po
of Fokker-Planck equation associated with the Langevin
equation [Eq. (5.1)] for the process z. The equation for Po
reads

ment of the time average involves an n-times correlation
function of the original process. On the other hand, the
independent knowledge of the properties of the time-
averaged process helps us to determine some feature of
the correlation functions of the original process.

Analyzing the expression (2.5), which relates the time-
averaged process to the linear process z, it is possible to
derive the long-time behavior by means of an exact
asymptotic expansion of the time averaged process gen-
erating function. The result will be derived independent-
ly with a heuristic argument.

The generating function for the time-averaged mo-
ments is defined as

P (Z) =W ""'
SS Z

2x (0)
exp

e(e —1)
(5.12)

where the normalization constant is JV= I ( —25/
e)(2/e) '. We note that the distribution is normaliz-
able, i.e., the process approaches a steady state, only if
5(0. Using Eqs. (2.5) and (5.11) it is easy to write the
asymptotic PDF for the time integral process Z:

1 —25/e

G~(A, , t) = (exp( —AP) ) .

From Eq. (2.5) we have

g&(A, , t ) = ( [1+x(0)z(t)] ~),
where q = A, /t. Using the identity

—(a +1)p —b —ld
)b — 0f"e &p' 'dp

0

(6.1)

(6.2)

(6.3)

VI. ASYMPTOTIC BEHAVIOR
AT THE CRITICAL POINT

One of the most fundamental features of critical dy-
namics is the phenomenon of critical slowing down,
which means that the relaxation of the moments of the
stochastic process becomes very slow near the critical
point. Suzuki and co-workers in fact have shown that all
the moments of the original process of Eq. (2.1) have the
same asymptotic behavior as t ' at the critical point.
Consequently the same long-time law for the time aver-
age is expected.

It is also interesting to determine whether higher mo-
ments of the time average have the same long-time tails.
It is dificult to deduce the long-time behavior of the time
average moments from the properties known from the
original process because the expression of the nth mo-

which holds for any value of a, we have, after averaging,

G, (p, t )e "pq 'dp
G~(A, , t)=

e "pq 'dp
0

(6.4)

k!I (q)
(6.5)

The moments of the process z can be derived as an appli-
cation of the general method of Ref. [20] and then
summed up to obtain the following expression of the gen-
erating function at the critical point (details are given in

Appendixes A and B):

If we consider t as a complex variable in the left half of
the complex plane, we can use the expression of the gen-
erating function given in Eq. (6.4). We then obtain

Gy(~, &)=2 —f dx e f du eP"(1—u ) ~u i '
&F&(1, 1 q, y ) iF&(q; i,—f3) .

0
(6.6)

The expression Eq. (6.6) has a form that is easy to handle
to get the asymptotic expansion of the generating func-
tion and consequently of the PDF and the moments of
the time-averaged process. By means of a rather lengthy
calculation summarized in Appendix C we obtain asymp-
totically

where w, „(t)=supo«. «w(t') and Z is a function which
diverges les than a linear function of time. As a conse-
quence the time-averaged process will be proportional to
the process w, . The distribution of this process is
known [15]. We can write

G&(A, , t ) =2e' ~ 'erfc(k&e/2t ) . (6.7)
(6.9)

The final result of Eq. (6.7) can also be obtained with the
following heuristic argument.

Let us suppose that x (0)z(t) )) 1 in Eq. (2.5). It is easy
to observe that the integral that defines the linear process
z [Eq. (2.4)] can be approximated by

z(t) =Z(t)exp[&ew, „(t)], (6.8)

2(2m e) ' exp( —m /2e) for m ~ 0
0 for m (0. (6.10)

The moments of the time average are readily evaluated

where m is a random variable distributed according a
semi-Gaussian distribution
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(6.1 1)
C(t „t2)= ( (x (t I ) ) ~, i, )x(t2) ) (6.15)

where p„ is the nth moments of the distribution of Eq.
(6.10)

(6.12)

These moments coincide with the moments associated
with the generating function of Eq. (6.7). The long-time
behavior of the time-averaged moments is in agreement
with numerical simulation of Eq. (2.1) (see Fig. 7).

It is important to notice that this result implies an
asymptotic sum rule for the n-times correlation function
of the original process

lim f dtI f dt~ . f dt„(x(tI)x(t2) . . x(t„))/2 0

=Pn (6.13)

This sum rule is consistent with the hypotesis that corre-
lations have power-law tails. For example, let us consider
the usual two-times correlation function

where ( ) ~ I, I
means a constrained average on realiza-'2

tions of x which starting from x(0)=xo pass by x(t2)
when t =tz. The solution of Eq. (2.1) with the constraint
x(t2) =x2 is readily obtained from Eq. (2.3) once t =0 is
replaced with t =t2. For times t, ))t2 the process is in-
dependent of the "initial data" x2, but still depends on
both times t& and t2

(6.16)

We note therefore that the original process is not station-
ary. Integrating this formula for n =2 using Eq. (6.13)
we obtain

p2 —2a ) 7T, (6.18)

Using Eq. (6.16) together with Suzuki and co-workers'
asymptotic result (x")=a„lt' we get

(6.17)

We can rewrite the correlation function as

(6.14)
where the factor 2 is due to time ordering. The
coefficient a& can be obtained directly by differentiating
Eq. (6.1 1),

0 I I I I I I I
I

I I I I
I

I I I I

I
I 1 I I

2
(6.19)

It is easy to check that this formula is consistent with ex-
pression p„obtained using Eq. (6.10).

We want to emphasize that this heuristic procedure is
an alternative derivation of the results of Suzuki and co-
workers for the moments of the original process. Finally
we recall that the long-time tails in the original process
are associated with the persistence on a large but finite
time scale of a macroscopic number of realizations which
did not collapse yet onto the absorbing barrier.

A

v —4—
CO

bO
0

—8
1.5 2

I I I I I I I I I I I I I I I I I I

2.5 3 3.5 4
1og10(t)

FICx. 7. Long-time behavior of the moments P" (squares) of
the time-averaged process at the critical point 6=0 compared
with asymptotic expansion of Eqs. (6.11) and (6.12) (solid line).
The average is performed on 1536 runs.

VII. CONCLUSIONS

The main purpose of the present study was to show
how the transient statistical properties of a process in the
presence of a multiplicative noise can be approximated
within a standard small-noise expansion technique. In
the case of the decay away from the absorbing barrier it
is necessary to find a suitable mapping which introduces
to the original process a process moving in a single-well
potential under the action of additive noise. In the case
of decay towards the absorbing barrier we propose to de-
velop the approximation scheme to the finite tirne-
averaged process. The latter process is also suitable for
the study of the critical point Auctuations.

This work naturally leads to the consideration of possi-
ble experiments designed to detect statistical properties of
the time-averaged process in the transient regime. The
possible e'xtension to a multidimensional process can be
of interest in the study of transient behavior of mul-
timode laser as well as the ecological model of interacting
populations.
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APPENDIX A: MOMENTS OF THE PROCESS Z

A (n)
0

n

+ (5+@k/2)
k=1

A (n)
( )n

—k 5+Ek
k

g [5+@(k+1)/2]
E=0

(Al 1)

Z~+, =b t +zzex p(56 t +v eb w~ ),

where Aw& is the increment of a discretized Wiener pro-
cess, i.e., a zero mean Gaussian uncorrelated variable

(awk ) =0, (bwkhw&) =5k &1) t . (A2)

From Eq. (Al) we get

To derive a differential equation for the moments of
the process z defined in Eq. (2.4), we follow the method of
Ref. [20]. We discretize the time interval [O, t] into N
steps of width b, t. The process z at the (N+1)th step is
given by the recursion

We notice that at the critical point 5=0 in Eq. (Al 1) the
limit k~0 does not give A0"'.

(z "(t)) = A '"'+ g A,'"'exp(a, t ),
)| =1

(B1)

where the coefficients of Eqs. (All) at the critical point
read

'k

APPENDIX 8: THE GENERATING FUNCTION
OF PROCESS P

By the inverse transformation from Eq. (A10) we ob-
tain

( (z)v + 1 b.t )") = (z—)v )exp( a „b.t ), (A3) A (k)—k 2
0

where

n =n5+n—2 E'

n 2
(A4)

k

A(k) ( 1)k —(
E'

2k!
(k —1)!(k+1)!

In Eq. (A3) we have taken into account the statistical in-
dependence, in the Ito scheme, of z& from the increment
of the Wiener process Aw&. Taking the limit of small bt
we get a set of differential equations for the moments m„,
of the process z,

6 G(a)+ 6(b) (B3)

where

and a&=ok /2. Substituting Eq. (Bl) into Eq. (6.5) we

get

dmn
=a„m„+nm„

dt

Equation (A5) must be solved with initial conditions

m„(0)=1 for n ~0

(A5)

(A6)

r(k+q) P"
k!I (q) k!

(b) ~ I (k+q) pk ~ (
( 2k!

k!r(q), 0 (k —1)!(k+1)!

(B4)

(B5)

and

m0(t)=1 for any time . (A7)

m„(s) = nm„)(s)
for n &0,

s —a„ (A8)

By means of Laplace transform Eq. (%5) becomes the re-
cursion relations

G "(A,t)=,F, (q. ;1,P) . (B6)

and P=2x(0)/e.
To obtain a meaningful analytic continuation of the

generating function in right half-plane we must perform a
resummation of the series appearing in Eqs. (B4) and
(B5). The first term appearing in Eq. (B3) can be ex-
pressed as a confiuent hypergoemetric function [21]

with

1
m (s)=-

s

The solution reads

A (n) „A(n)

m„(s)= + gS k=1 S ak

where

(A9)

(A10)

The second term can be arranged in a more convenient
form by the substitution gk, g&,~gk, g)" 0 (see,
for example, Suzuki and co-workers [10]). Then we can
express the sum over k as an hypergeometric function

G' '=2+ (
—P) ' q,F, (1+;21+1,2P) .

(21)!r(q) '

(B7)

Introducing the integral representation of the hyper-
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geometric function

,F, (a;c,z) = r()
du e'"u' '(1 —u)'

I (a)I (c —a) 0

and of the exponential appearing in Eq. (B7)

(B8)

and

1 sin(qrq )

1 (q)I'(1 —q)

(F((1;1 —q, y )=y, F& (1;2—q, y ),1(1—q)
I 2 —

q

(B1 1)

(B12)

dx 2exp(cttt)= exp( —x /2+iV'etx),
277

(B9)

G (b)— 2P
1 (q)I (2—q)

X f dxe " f du ep"(1 —u) u
(X) 0

X,F, (1, 1 —q,y), (B10)

where y = —Pu(1 —u)exp(x&et ). By using the relations

it is possible to rearrange Eq. (B7) as a double integral
[22]

we finally get

(b) sin(n. q ) ~ dx
e

1

X f du e~"(1—u ) quq
0

X[,F((1,1 —q,y) —1] .

(B13)

The second term of Eq. (B13) and G" can be collected
together to obtain the complete expression of the generat-
ing function of the time-averaged process

G&(A, , t)=2 f dx e " i f du e~"(1—u) uq ')F((1, 1 q,y) —(—F((q;1,p) .
0

(B14)

APPENDIX C: ASYMPTOTIC EXPANSION
OF THE GENERATING FUNCTION

J"=f '
e "f du g(u), F',

V'2 0
(C7)

,F', ' = g f„' 'y" for yi (1,
k=1

(C 1)

(F) = g fk+'y " for iy ) 1 .
jc =1

(C2)

The explicit form of the coefficients f ' ' ' can be
found in Ref. [23), in the following we will use only the
fact that fk '=I (q+k)/(1 (q)k!). To use the different
expansions of Eqs. (C2) we split the integration domains
in Eq. (B14) by introducing the cutoff a =in(4/P)/&et
and the solutions of the equation iy = 1

u, 2
=

—,
' [1+(1—4e" "/P)' ] (C3)

Let us call the first and the second terms of Eq. (B14)
2( and J2, respectively. We will now concentrate our at-
tention on the asymptotic expansion of J). We use
different expansions for the hypergeometric function with
respect to its third variable y

J', '= f e f du g(u), F',+',
Ql

(C8)

+k
g(a) ( —) dx —x /2+ kx&at k

u

&2' q+k (C9)

(1 )k
—q+1

g(b) —y f (
—) f x

et313k
a V 2m' k q+1 (C10)

Now we consider e " as a small quantity. This is
correct for large times only if a )0, i.e., if 2e) x(0). In
the following we shall prove that within the limitations,
the results do not depend on the cutoff a. For large times
we get

and g(u)=e~"(1 —u ) u

Let us consider JI' and 2', '. Performing the integra-
tion in u we get

In terms of these quantities it is possible to rearrange J,
as a sum of four contributions

m(a) ~ r ( —
) ~ d+ —x /2 —q'(/ et

q+k a v'2m-
(C 1 1)

2»n(~q) (g( )+g(b)+g( )+g(d)) (C4)

where

&'('= f e ' f du g(u), F',
0

S' '= f e i f dug(u) F'(
V2 El 2

(C5)

(C6)

g(b) y f ( —) P t) f dx —x /2 —(1 q)v'Et-
k —q+ 1 a v'2~

(C12)

Now let us consider J'&'. %'e can perform the integration
in u by the series
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f 1 „q+k 1

du et'"
0 (1— )q+k

m, n =0
(C13)(I +n +q +k)m!

As q —+0 the term with m =n =k =0 diverges. Using
the fact that f o'

' =1 we get
G&(A, t ).=2e' ~ 'erfc(a /&2+ l&e/2t ), (C16)

The second term of Eq. (B14) can be evaluated using
Eq. (C2) with y =P retaining only the zeroth-order term
for vanishing q.

We are now able to collect the partial results of Eqs.
(Cl 1), (C12), (C14), and (C15) taking into account the
prefactor of Eq. (C4).

In the limit of small q we obtain

g(c) — f x /2+g( 1 )
q —- &2~

The last term of J, reads explicitly

(C14) where

8x
erfc(z) = f —e

~tr
(C17)

g(g) g f(+) dx P
a V'2~ (k —q+1)(q —k)

—X /2+P X 1/ EfXe (C15)

We notice that each term of the above series can be in-
tegrated with Gaussian measure for vanishing q.

and a is a cutoff parameter. In Eq. (C16) we have written
the results of the asymptotic expansion of the three
relevant terms J", , 2'(' and J2, respectively. We have re-
tained terms which can be resummed as a function of
A, /&t and neglected as a function of A, /t. We can check
the influence of the cutoff a in Eq. (C16) by using

OO k

erfc(a/&2+A+a/2t )=erfc(A+a/2t )+ g, [(k+e/t +a/&2) "+' (A&a/t —) "+'] . (C18)v'2~ „,(2k+1)2k!!

We note that the second term of Eq. (C18) is I/&t times a function of A, /&t and consequently must be neglected in the
spirit of our approximation. We now have a cutoff-independent result

G&(A, , t)=2e' erfc(A, & 2e /t ) . (C19)
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