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Synchronization of chaotic orbits: The effect of a finite time step
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Two chaotic orbits can be synchronized by driving one of them by the other. Some of the variables of
the driven orbit are set continuously to the corresponding variables of the drive orbit. It has been seen
that synchronization can be achieved if the subsystem Lyapunov exponents corresponding to the remain-

ing or response variables are all negative. We find that a procedure where the drive variable is set at
discrete times can also achieve synchronization. However, the synchronization criterion is altered by
the effect of the drive being set at finite time steps. An important consequence of this is found in the
Lorenz system where synchronization can be achieved with z as the drive variable despite the existence
of a marginal subsystem Lyapunov exponent. We also find that synchronization can be achieved for the
Rossler attractor with z as the drive, even though the largest subsystem Lyapunov exponent is positive.
In addition, we find that there is an optimal time step corresponding to the fastest rate of convergence
for both cases above. Our synchronization criterion reduces to the usual subsystem-Lyapunov-exponent
criterion in the limit of the time step tending to zero.

PACS number(s): 05.45.+b

I. INTRODUCTION

The problem of the control of nonlinear dynamical sys-
tems is a topic of much current interest [1—6]. This prob-
lem is particularly interesting when the desired trajectory
is in the chaotic regime. In the case of chaotic systems, a
freely evolving trajectory cannot be reproduced due to
the sensitive dependence on initial conditions and our
inability to set the initial conditions precisely. Pecora
and Carroll [1,4] have devised an ingenious method for
forcing a desired chaotic trajectory onto a system by the
use of appropriate drive variables. Some of the variables
of the desired trajectory chosen to be the drive variables
and the corresponding variables of the evolving system
are continuously set to match this drive. The remaining
variables, called the response variables, are allowed to
evolve freely, under the equations of motion of the sys-
tem. Pecora and Carroll [1] have shown that if the drive
variables are such that the subsystem Lyapunov ex-
ponents (SLE's) corresponding to the remaining or
response variables are all negative, then the response
variables are controlled by the drive variables and all
variables of the system settle down onto the desired
chaotic trajectory.

As mentioned above, the Pecora-Carroll method in-
volves the setting of the drive variables in a continuous
fashion. However, in some cases, it may be impossible to
set the drive variable continuously. In others, the setting
of the drive variable at discrete time intervals may prove
to be more cost effective than a continuous setting. It is
thus useful to have a variant of the Pecora and Carroll
method wherein the drive variable is set at discrete time
intervals. We propose such a variant. A significant point
of difference between this method and that of Pecora and
Carroll is that when the drive is set at discrete time steps,
the drive variables evolve freely between two settings.
Thus even the drive variables tend to drift away from the

desired orbit in the finite time interval during two set-
tings. This difference has an important consequence.
Synchronization can be achieved for some cases where
the subsystem Lyapunov exponents of the response sys-
tem do not satisfy the criterion of negativity. This is due
to the fact that the criterion for synchronization is itself
modified by the finite time procedure.

We study the synchronization procedure using the
method of finite time step in this paper. We obtain the
solution to the driven evolution with the finite time step
within the local linear approximation and use this to ob-
tain the finite-time-step criterion for synchronization.
We show that our criterion reduces to that of Pecora and
Carroll in the limit of continuous evolution. The advan-
tages of the finite-time-step method are seen in the case of
the Lorenz and Rossler systems. We find that synchroni-
zation can be obtained with z as the drive variable despite
the fact that the largest subsystem Lyapunov exponent is
marginal. A similar result is found for the Rossler attrac-
tor with a z drive where synchronization can be achieved
in spite of the presence of a positive subsystem Lyapunov
exponent. In addition, we find that there is an optimal
value of the time step ~ for which the length of the tran-
sient is the minimum.

II. EVOLUTION FOR FINITE TIME STEP

Consider an autonomous n-dimensional dynamical sys-
tem evolving via the evolution equation

u =f(u, p),
where

u =(u])u2, . . . iu„)

f(u, p)=(f)(u, p), . . . , f„(u,p))
are n-dimensional vectors and the function f depends on
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the set of parameters p. The parameters p are such that
the trajectories of the system lie on a chaotic attractor.

We wish to force the system onto a desired chaotic or-
bit. We start the procedure of synchronization [1,4] by
dividing the variables of the system into two subsystems,
a drive subsystem uz and a response subsystem
u„, such that u =(ud, u„) and ud=(u„. . . . , u ),
u„=(u +„.. . , u„). The dynamics of each subsystem is
governed by

ud fd(ud, u„,p), (2)

u„ f„(ud, u„,p) (3)

The desired chaotic orbit [u (0),u (1),. . . ] may be ob-
tained via a coevolving system sampled stroboscopically
at equally spaced time intervals ~. In terms of the two
subsystems the desired orbit is represented by
[ ud (0),ud (1),. . . ] and [ u„(0),u„(1),. . . j. In order to
lock the system onto the desired orbit, start the evolution
of the system at t =0 with an initial condition
u '(0) = (ud (0),u„'(0) ), which is slightly deviated from the
desired orbit such that ud(0)=ud(0), but
u„'(0)=u„(0)+5u„(0). The drive and the response vari-
ables now evolve according to the equations

ud fd (ud, u„,p —)
u„'=f„(ud, u„', p, ') .

(4)

(5)

At t =r, u'(1)=(ud(1), u„'(1)). Set externally the drive
part of the variable u'(1) to the drive variable of the
desired orbit so that ud(1)=ud(1) and u„' is untouched.
Further evolution takes place in a similar fashion with
the drive variable being set to the drive variable of the
desired orbit after each time step ~ and the response vari-
able is allowed to evolve freely.

In the limit of ~~0 the above procedure reduces to the
procedure for synchronization with the desired orbit pro-
posed by Pecora and Carroll [1,4]. They have demon-
strated that the system will settle down onto the desired
orbit provided the subsystem Lyapunov exponents corre-
sponding to the response variables are all negative. The
SLE's of the response system are given by the eigenvalues
(time averaged) of the [(n —m ) X ( n —m ) ]-dimensional
response subsystem Jacobian matrix J„whose elements
are given by

'
~

I

FIG. 1. A schematic diagram of the evolution of the drive
variable as a function of time. The drive variable is set to the
values of the desired trajectory after each time step ~. The evo-
lution of the drive variable in the desired trajectory is shown by
a dashed line.

III. SYNCHRONIZATION CRITERION
FOR FINITE TIME STEP

In this section we obtain the criterion for synchroniza-
tion for the finite-time-step method.

A. One-dimensional drive and one-dimensional response

fdd fdr ~ud fdp

fd f„~u, f,„+ "bp (9)

Let us first consider the simple case of a one-
dimensional drive and a one-di. mensional response. Sub-
tracting Eq. (2) from Eq. (4) and expanding to linear or-
der we get

bud =f„(ud, u„',p') f„(ud, u„,p)—
=fddb ud+ fd„bu„+fd„bp,

where fdd =BfdlBud, fd„=BfdlBu„, fd„=Bfd IBp,
4u& =uz —u&, Au„= u„' —u„and Ap =p' —p. Similarly,
from Eqs. (3) and (5), we get

bu„=f„(ud, u„',p') —f„(u„,u„,p)
=f d bud+ f„„hu„+f„„hp,

where f„d =Of„lBud, f„„=Of„lou„,and f„&=Of„leap. It
is convenient to express the above equations in matrix
form,

Bf;(ud, u„',p)
(J„);,=

Buj.
i,j =m+1, . . . , n

When hp=0 and assuming that the partial derivatives of
fd and f„are time independent, Eq. (9) has the general
solution

where u& are the values of the drive variables of the
desired trajectory. The length of the transient after
which the system settles down onto the desired orbit de-
pends on the value of the largest SLE of the response sys-
tem.

The Pecora-Carroll criterion for synchronization does
not work for our finite-time-step procedure because dur-
ing the time interval ~ between two settings even the
drive variables evolve freely and tend to drift away from
the desired trajectory (see Fig. 1). Hence the SLE cri-
terion for synchronization discussed above gets modified
due to the finite size of the time step.

Au,
=X)

g
e +X2 g e (10)

where

fdd+ f„„+D

fdd+f„„D-
A2=

2

and D =Q(fdd f„„)+4fd„f„d, X( and Xz —are con-
stants, and a, b, c,d satisfy the equations
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a fdr c fdr

~1—
fdd d ~2+fdd

(&1—22)r ~1~2 ~2frr
A, ,A2

—
A, ,f„„

(20)

e —1 e —1+ Ap.
1 2

When b,pXO the general solution is given by

~ d a &, c
X1 be'+X2de

fd„
+ (12)

In the case when b,1u&0, perfect synchronization is not
possible. However, if

~
A~ & 1 [Eq. (19)], the variables u'

will settle onto an orbit which has some correlation with
the desired orbit. The degree of correlation depends on
the magnitude of b,p [1,4,7].

Consider the limit r~0. Using the relations (11) we
get

The constants X1 and X2 are determined by the initial
condition b,ud(0) =0 at t =0 and are given by

aalu„(0)

X1=——X2, X2=
a ' ad —bc

adA2 bCA1:1+ ~+
r~O ad —bc

=1+f r+

(21)

fdicb, ud(r)= [e ' —e ' ]+ "B,
ad —bc

(13)

hu„(r) =b,u„(0)3 +B, (14)

After the first time step, b,ud(r) and b, u„(r) are given by
The finite-time-step criterion [Eq. (19)] implies that f„„,
which is the subsystem Lyapunov exponent, must be neg-
ative for observing synchronization. Thus the criterion
for synchronization [Eq. (19)] reduces to the criterion
proposed by Pecora and Carroll (see Sec. II) in the limit
w —+0.

where

A2T A l7ade —bce
ad —bc

B. Higher-dimensional systems

We now extend our analysis to an n-dimensional sys-
tem subdivided into m drive variables and n —m
response variables. The linearized evolution equation (9)
can now be written as

acAu (r) 2, 2, fd„
b, ud(2r) = [e ' —e ' ]+ "B,

ad bc — f„„ (15)

At time t =r we set b, ud (r) =0. With the initial condition
u = [0,bu„(r)] and the evolution equation (12) we get the
solution at time t =2~ to be

bu =Jbu+ f„bp .

Here Au is an n-dimensional column vector given by

dud
Au=

Au„

(22)

hu„(2r) =Au„(r) A +B
=du„(0)A +B(A +1) .

It is easy to see that at t =n ~, the solution is given by

ach u[(n —1)r] 2,, 2,, fd„bud(nr)= [e ' —e ' ]+ "B,
ad bc — f„„

b,u„(nr) =hu„[(n —1)r]A +B
=Du„(0) A "+B(A" '+ . + 2 +1)

1 —A"= b,u„(0)A "+B
1 —A

(16)

(17)

(18)

where bud and hu„are m- and (n —m)-dimensional
column vectors, respectively. Similarly, f„ is an n

dimensional column vector consisting of m- and
(n —m)-dimensional column vectors fd and f„„. The
matrix J is an n X n matrix given by

fdd fdr

fd f„ (24)

where Jdd, Jd„, J„d, and J„„are m Xm, m X(n —m),
(n —m) Xm, and (n —m) X(n m) matrices—, respective-
ly.

For the sake of simplicity we specialize to the case
hp=O. Equation (22) has the general solution

Let us first consider the case Ap =0. In this case
bud(nw) and bu„(nr) [Eqs. (17) and (18)] tend to zero
provided

~
A~ & 1, i.e.,

~ade ' bce '
~

& 1 . — (19)

Hence asymptotically the driven variables u ' perfectly
synchronize with the desired orbit. The minimum value
of 2 is obtained by BA /8~=0. This gives the condition
for fastest convergence or the optimum value of ~. The
condition simplifies to

(25)

U(0) =gX;U", (26)

where

where k; and U" are the eigenvalues and the eigenvectors
of the matrix J and the X s are constants to be evaluated
using the initial condition at time t =0
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(27)
b.ud =0. Thus the new initial condition is U(r). Using
the evolution equation it is easy to see that at the next
time step t =2~ we have

Let V be an n X n matrix whose columns are the eigen-
vectors v ', bu(2r)=WV 'U-(r)=WV 'W, V 'U-(O) . (38)

U( ) V( )
U1 V1 U(n)

After n time steps we have

b, u(nr)=WV '(W V ')" 'U(0) . (39)

V=
(1) (2)

V2 U2

(1) (2)
Vn Vn

(n)
V2

( )
Vn

(28) From Eq. (39) it is clear that the criterion for conver-
gence of Au, i.e., synchronization of u and u', is that the
modulus of the eigenvalues of 8' V ' should be less than
one. The matrix O' V ' has the form

Let V ' be the inverse of
X(t) by the relation

1e

V. We define a column matrix

O' V
0 0

Wrd Udd +Wrr Urd Wrd Vdr +W„r U„r
(40)

2e
(29)

We note that m eigenvalues of 8 V ' are zero. The
remaining (n —m) eigenvalues are determined by the
solutions of the equation

A.„t
ne ItU„dUd„+w„„u„„—Xrl —O . (41)

hu (t) = VX(t) . (30)

It is easy to see that Eq. (25) can be expressed in the form In the small-w limit the matrices 8'and 8' can be ex-
panded in the forms

Thus the initial condition [Eq. (26)] at t =0 becomes

U(0)= VX(0) .

Hence

x(o) = v 'U(o) .
-

It is useful to define a matrix 8'given by

(1) 2 (2) n (n)

(1) 2 (2) . . . n (n)

(31)
where

(32)

:V+Az+ .

~1vn ~2un
(n)

nun

+rd +rr

X V"' X V") X u'n'
1V 1 2U1

XV'" A, V' '
A, u'n'

lV2 2U2 nU2

(42)

(43)

&~ (1) 2~ (2)
Vn Vn

n (n)T

n

Vdr

(34)

We now rewrite the matrices V ' and 8'in the following
block matrix form:

with the block partitioning
trix J [Eq. (24)] and

r~0 0 0
= V+ — — w+

rd rr
(44)

being the same as for the ma-

Vrd Vrr Thus
Wdr

Wrd Wrr
(35) Wrdudr + rr rr

x—+0

0 0
Wrd Wrr

(36)

After the first time step the solution is given by

bu(r)= VX(r)= WX(0)= WV 'U(0), (37)

where we have used Eqs. (30), (28), and (33). We now set

where the dimensions of the blocks are the same as the
dimensions of the corresponding blocks of the matrix J
[Eq. (24)]. We also define a projection matrix W which
is obtained from 8'by setting the blocks wdd and wd, to
zero:

- U„d Ud„+ U„„U„„+( A„d Ud„+ A„„U„„)7+
=I+J„„r+—,'(J„„+J„„Jd„)r+ .

where we have used the relations VV ' =I and
AV '=J. The term proportional to r is obtained in a
similar fashion. Thus, in the small-~ limit the eigenvalues
of J„„i.e., the subsystem Lyapunov exponents, decide the
synchronization criterion. As the time step ~ increases
we get corrections due to the finite value of ~.

We have thus derived a criterion for synchronization
which takes into account the fact that the system is set to
the drive at finite intervals. This criterion reduces
correctly to the usual criterion of negativity of the sub-
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system Lyapunov exponents in the ~ tending to zero lim-
it. The fact that the criterion is modified due to setting at
finite intervals has interesting consequences which we will
explore in the next section.

Fixed point Chaotic orbit

TABLE II. Eigenvalues A and transient times T and T for
the same case as Table I, but with a y drive.

IV. EXAMPLES

We now illustrate the above analysis for the Lorentz
equations [g]:

x =o (y —x), y =rx —xz —y, z =xy bz —. (46)

~( T) =A"e(0), (47)

where T =n ~ is the transient time. We now fix the ratio
e(T)/E(0)=R and obtain the number of iterates and
hence the total time T required for synchronization by a
factor of R. These values of T are listed in the Tables
I—III for di6'erent drive variables and R =10 . We also
obtain the observed transient time T required for the sep-
aration between the trajectories to go down by the same
factor R from actual numerical simulation of the pro-
cedure described in Sec. I and these transient times are
again listed in the tables. It can be clearly seen that the
set of values T and T agree very we11.

We plot the transient time as a function of ~ in Fig. 2
for x and y as the drive variables for synchronization
with the fixed point. For small-~ values the transient time
is almost a constant showing that the linear approxima-

TABLE I. The ~ variation of the larger eigenvalue A of the
matrix W~ V, the transient times T from the eigenvalues, and
the observed transient times T are listed. The values listed are
those relevant for synchronization with the fixed point
x*=y*=—&b(r —1),z*=(r —1), and with the chaotic orbits
of the Lorenz attractor. The drive variable is x and the parame-
ter values are o.= 10.0, b =8/3, r =60.0.

These equations show chaotic behavior for
r )o(o+b +3)/(o. b ——I). We have studied the
synchronization with both the fixed point and the chaotic
orbit. For a given value of ~ and a given drive variable
we obtain the largest eigenvalue A, of the matrix 8 V

[Eq. (4l)]. These eigenvalues are listed in Tables I, II,
and III for the drive variables x, y, and z, respectively.
They give us a measure of the rate at which the response
trajectory approaches (or recedes from) the desired tra-
jectory. If e(0) is the distance between the two trajec-
tories at the beginning of the iterations, then the separa-
tion between the two trajectories after n iterates is given
by

0.05
0.02
0.01
0.005
0.002
0.001
0.0005
0.0002
0.0001

0.673 45
0.868 89
0.95003
0.981 71
0.993 92
0.997 15
0.998 62
0.999 46
0.999 73

1.15
1.30
1.79
2.49
3.02
3.23
3.34
3.41
3.43

1.15
1.30
1.81
2.50
3.02
3.23
3.34
3.41
3.43

0.718 17
0.91896
0.966 23
0.984 82
0.994 38
0.997 28
0.998 66
0.999 47
0.99973

1.40
2.18
2.68
3.01
3.27
3.39
3.46
3.48
3.49

1.45
1.90
2.340
2.90
3.19
3.31
3.38
3.42
3.43

TABLE III. Eigenvalues A and transient times T and T for
the same case as Table I, but with a z drive and for the fixed

point case alone.

tion in Eq. (45) is adequate and the synchronization cri-
terion can be determined by the eigenvalues of J„„orthe
subsystem Lyapunov exponents. As ~ increases the e6'ect
of higher-order terms in Eq. (45) is felt and we start ob-
serving deviations from the linear behavior. The lowest-
order departure from linear behavior is decided by the
term J„dJd„r /2. We see that for x as the drive variable
the transient time increases as ~ increases, while for y as
the drive variable it decreases as ~ increases. From
Tables I and II we see that similar behavior is observed
for both the fixed point and the chaotic orbit.

We observe an interesting phenomena for z as the drive
variable. For this case the largest SLE is marginal and
hence synchronization is not expected according to the
SLE criterion. However, we find that synchronization
becomes possible due to the finite nature of the time step
and the nonlinear correction discussed above. Table III
gives the values of the transient times as a function of ~
for synchronization with the fixed point and the same are
plotted in Fig. 3. As ~ increases, initially the transient
time decreases almost exponentially, reaches a rninirnum,
and then rises sharply. In no part of the graph is the
behavior linear, as in Fig. 2, since the contribution of the
linear term in Eq. (45) is zero and only the higher-order
corrections contribute. The minimum of the transient
time corresponds to an optimum choice of r. (We have
analyzed this situation before the one-dimensional case

Fixed point Chaotic orbit Fixed point

0.05
0.02
0.01
0.005
0.002
0.001
0.0005
0.0002
0.0001

0.929 13
0.965 83
0.982 19
0.990 95
0.996 35
0.998 17
0.99908
0.999 63
0.999 82

6.25
5.28
5.12
5.07
5.04
5.03
5.03
5.03
5.03

6.20
5.32
5.14
5.07
5.03
5.03
5.03
5.03
5.03

0.933 70
0.968 85
0.983 46
0.99104
0.996 23
0.998 13
0.999 07
0.999 63
0.999 81

6.70
5.82
5.22
5.11
4.87
4.93
4.96
4.96
4.96

10.75
5.86
5.35
5.62
5.12
5.03
5.12
5.11
5.02

0.05
0.02
0.01
0.005
0.002
0.001
0.0005
0.0002
0.0001

0.699 97
0.932 89
0.984 83
0.996 33
0.99942
0.999 86
0.999 96
0.999994
0.999 998

1.25
2.64
6.02

12.52
31.86
64.07

128.47
321.65
643.62

1.25
2.65
6.03

12.52
31.86
64.06

128.46
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8.0

6.0— x drive

4.0—

2.0—

0
0.0001

I

0.001
I

0.01 0.1

FIG. 2. The observed transient time T as a function of ~ for
synchronization with the fixed point x*=y*=—&b(r —1),
z*=(r —1) for the Lorenz system at the parameter values
o.=10.0, b =8/3, and r =60.0, with x and y as the drive vari-
ables.

T

I
I
I

I
I

&.00-
I
I

I

I

I

I

I

I
I
I
I
I
I
I
I

I

0.95—
I
I
I

I

I

I

I

I

I
I
I

I

I

I

I

I

I

0.90 l

0.1

240

0
0.2

[see Eq. (20)].) We have also observed that synchroniza-
tion with chaotic orbits is possible for z as the drive vari-
able and ~ values around 0.01. However, we have not
been able to compare the observed transient time with
the transient time obtained from the eigenvalues since the
eigenvalues could not be determined to a sufFicient accu-
racy in this case.

The second system for which we study the effect of
finite time step is the Rossler system [9] given by

FIG. 4. The larger eigenvalue A of the matrix 8'~ V ' as a
function of ~ for synchronization with the fixed point z*=—y*,
x*=—ay*, y"=( —c+V c' 4ab )/2a —of the Rossler system
at the parameter values a =0.2, b =0.2, and c =6.0 with z as
the drive variable. We also plot the observed transient time T
as a function of ~ on the same graph. The vertical dashed line
represents the asymptote of the transient time where the eigen-
value A=1.0. The eigenvalues are plotted on the scale to the
left while the transient times are plotted on the scale to the
right.

x = —y —z, y=ay+x, z=b+xz —cz . (48)

Consider the case of synchronization with the fixed
point z ' = —y *, x ' = —ay *, and y

' = (
—c ++c 4ab )—

/2a. According to the SLE criterion the only case for

100

10

1
0.0001 0 001 0.01 0.1

FIG. 3. The observed transient time T as a function of w for
synchronization with the fixed point x*=y*=—&b(r —1),
z*=(r —1) for the Lorenz system at the parameter values
o.=10.0, b =8/3, and r =60.0, with z as the drive.

which synchronization is possible is for the case where
the drive variable is y. However, for a finite value of ~,
we find that the solution synchronizes for y and z as the
drive variables. For y as the drive variable, the values of
the transient time show a behavior similar to the Lorenz
system with y drive, i.e., the transient time decreases as ~
increases. There is good agreement between the observed
transient times and the transient times obtained from the
eigenvalues.

We see an interesting phenomenon for the case where
the drive variable is z. We plot the behavior of the larg-
est eigenvalue A of the matrix O' V ' as a function of ~
in Fig. 4. The behavior of the observed transient time T
is a function of ~ is plotted on the same graph. the tran-
sient times T estimated from the eigenvalues agree very
well with the observed transient times T. The largest ei-
genvalue A starts off with the value 1.0 at ~=0.0, rises
above 1.0 with increasing ~, then again decreases and
crosses 1.0 at the value ~=0.0133. . . to reach a
minimum around r=0. 11, and rises again. The transient
time T appears to diverge in the neighborhood of
~=0.0133. . . , where the eigenvalue A crosses 1.0, de-
creases with increasing ~, reaches a minimum around
~=0.11, and rises again. This minimum should corre-
spond to the optimum choice of v. as in the Lorenz case.
It is easy to see that although the minima of the eigenval-
ue and the transient time are not the same, they will be
close to each other.
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V. DISCUSSION AND CONCLUSION

We have shown that synchronization of chaotic orbits
is possible using a finite-time-step method. We have ob-
tained a criterion of synchronization for this method.
This criterion reduces to the SLE criterion of Pecora and
Carroll in the limit ~—+0. Using the finite-time-step pro-
cedure it is possible to observe synchronization even in
cases where the possibility of synchronization is ruled out
by the SLE criterion. We have demonstrated this by the
examples of the Lorenz and Rossler systems where
synchronization is observed with z as the drive variable.
In the case of the Lorenz system we have a marginal SLE
or the eigenvalue A = 1.0, which is pulled down below 1.0
because of the finite time step. In the case of the Rossler
system the largest SLE is positive (i.e., A) 1.0) and the
finite time step not only compensates for this positive
SLE but leads to synchronization for large values of ~.
We have also seen that it is possible to obtain an op-
timum choice of ~ which gives minimum transient time
and hence fastest convergence.

Thus the finite-time-step method has proved to be suc-
cessful in achieving synchronization in at least two cases
where the method of continuous setting fails. The reason
for this success is apparent from Eq. (45). The lowest-
order correction to the SLE criterion is given by the
term ,' J„dJd„r . —This term includes the e8'ect of the drive

variables as well as the response variables as the drive
variables also evolve freely between two settings of the
drive in this method. A rough rule of thumb for the rate
of convergence can be obtained as follows. This rate de-
pends on the angle, say 0, made by the drive direction
with the direction along which the Lyapunov exponent is
the largest (i.e., the direction corresponding to the max-
imum stretching). If this Lyapunov exponent has a value
A. „,the length of the transient is controlled by the fac-
tor sin 8 exp(k, ,„r). The length of the transient de-
creases with decrease in 0. Thus we expect that the
finite-time-step method will give better convergence
where the drive variable makes a small angle with the
direction of maximum stretching on an average. Such a
situation might occur in several systems.

We thus see that the finite-time-step method for synch-
ronization can be advantageous for systems of the type
described above. An optimum choice of ~ may also be
possible in such cases. Since experimental realizations of
such systems should be possible, our analysis may prove
to be usefu1 in a variety of practical contexts.
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