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In a previous publication [Z. Y. Chen, A. Abbaci, S. Tang, and J.V. Sengers, Phys. Rev. A 42, 4470
i1990)] a renormalized Landau expansion was constructed for the thermodynamic free energy of one-
component fluids that incorporates the crossover from singular thermodynamic behavior at the critical
point to regular behavior far away from the critical point. In the present paper the approach is extended
to obtain a crossover free energy for binary fluid mixtures in the region around the vapor-liquid critical
line. The thermodynamic equations thus obtained are compared with experimental equation-of-state
and specific-heat data for mixtures of carbon dioxide and ethane.
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I. INTRODUCTION

The theoretical issues associated with the thermo-
dynamic behavior of Auids near the vapor-liquid critical
point have been developed in considerable detail.
Asymptotically close to the critical point the thermo-
dynamic properties satisfy scaling laws with universal
critical exponents and universal scaling functions that are
the same as those for the three-dimensional Ising model
[1]. In recent years several attempts have been made to
extend the asymptotic scaling laws by also including the
effects from nonasymptotic critical fiuctuations [2—5].
These efforts have led to the construction of a Helmholtz
free energy that recovers the theoretically predicted
scaling-law behavior asymptotically close to the critical
point and incorporates the crossover to classical behavior
far away from the critical point. It has been demonstrat-
ed that such a crossover Helmholtz free energy is capable
of representing experimental thermodynamic-property
data in a substantial range of temperatures and densities
around the critical point [6—8].

The theoretical description of the thermodynamic
properties of Quid mixtures in the vicinity of the vapor-
liquid critical line is less well developed. In the case of
binary Quid mixtures we have an additional degree of
freedom. Since the molecules of nonionic Quid mixtures
have short-range interactions, Quid mixtures still belong
to the universality class of three-dimensional Ising-like
systems. The asymptotic scaling laws for this universali-
ty class depend on only two relevant scaling fields, name-
ly, a strong ordering field h conjugate to the order param-
eter and a weak temperaturelike field t. As a conse-
quence it is concluded that the critical thermodynamic
behavior of binary mixtures should be isomorphic to that
of one-component Quids provided that an additional field

g associated with the extra degree of freedom is kept con-
stant. Some effects resulting from an additional degree of
freedom were first pointed out by Fisher [9]. The appli-

cation of the principle of critical-point universality to
mixtures was elucidated in a systematic fashion by
Griffiths and Wheeler [10]. Alternative approaches based
on the same physical ideas were proposed by Saam [11]
and Anisimov, Voronel, and Gorodetskii [12].

A specific model for the asymptotic thermodynamic
behavior of Quid mixtures in the near-vicinity of the
vapor-liquid critical line was first proposed by Leung and
Griffiths [13]. Attempts have been made to use this mod-
el as a basis for representing thermodynamic-property
data of mixtures of He and He [13],carbon dioxide and
ethylene [14], and carbon dioxide and ethane [15], but
only with modest success. Moldover and co-workers
[16,17] have modified the Leung-Griffiths model to obtain
a successful representation of pressures, densities, and
surface tensions of many mixtures at vapor-liquid coex-
istence, as recently reviewed by Rainwater [18]. Howev-
er, these results have not been extended to the one-phase
region. Moreover, with a single exception [19],the appli-
cations of the Leung-Griffiths model have been in terms
of so-called effective critical exponents [20] that differ
from the true universal asymptotic exponent values. If
one were to use the Leung-Griffiths model with the true
universal critical exponents without introducing
correction-to-scaling terms, the range of applicability of
the model would become unrealistically small [21].

An alternative scaled equation of state for Quid mix-
tures in the vicinity of the critical line has been proposed
by Anisimov and co-workers [22—24]. Their model does
contain the true universal critical exponents and does in-
clude estimates for leading correction-to-scaling contri-
butions. This model has recently been extended in an at-
tempt to deal with the crossover to classical behavior
[25]. However, this alternative approach has thus far
been used to analyze specific-heat data of Quid mixtures
only and a consistent representation of both equation-of-
state and specific-heat data has not yet been demonstrat-
ed.

47 388 1993 The American Physical Society



47 GLOBAL THERMODYNAMIC BEHAVIOR OF FLUID MIXTURES. . . 389

It is the purpose of the present paper to derive a ther-
modynamic free energy for Quid mixtures that not only
incorporates the singular scaling-law behavior asymptoti-
cally close to the critical point, but also accounts for the
crossover to classical behavior far away from the critical
point. The goal is accomplished by extending to mixtures
a crossover Helmholtz free-energy density previously ob-
tained by Chen et al. for one-component fluids on the
basis of a renormalized Landau expansion [6]. It will be
shown that the resulting thermodynamic free-energy den-
sity obtained for mixtures is capable of representing both
the pressure and the specific heat as a function of temper-
ature, density, and concentration in a substantial region
around the vapor-liquid critical line.

We shall proceed as follows. In Sec. II we describe the
specific procedure adopted for mapping the thermo-
dynamic surface of mixtures to that of one-component
fluids following the ideas of Griffiths and Wheeler [10]
and Leung and Griffiths [13]. In Sec. III we reformulate
the crossover free-energy density previously obtained for
one-component fluids in the critical region, and in Sec. IV
we show how it can be applied to fluid mixtures. For
mixtures the critical parameters are no longer constant,
but they depend on the concentration. In Sec. IV we also
discuss how the concentration dependence of the critical
parameters is taken into account. The theoretical
description developed in the present paper is restricted to
fluid mixtures for which the critical points of the pure-
fluid components are smoothly connected by a single crit-
ical line. In Sec. V a comparison is made with experi-
mental equation-of-state and specific-heat data for mix-
tures of carbon dixoide and ethane. In Sec. VI we ad-
dress some issues related to the choice of zero points of
energy and entropy which are relevant for the representa-
tion of excess-enthalpy data. Some remaining problems
are discussed in Sec. VII.

ii. THERMODYNAMiC TRANSFORMATIONS

In formulating a thermodynamic surface for fluid rnix-
tures we need to choose an appropriate set of thermo-
dynarnic variables. In accordance with the general con-
siderations of Griffiths and Wheeler, one must make a
distinction between "density variables, " such as molar
density and energy density, which are extensive thermo-
dynamic properties taken per unit of volume V, and "field
variables, "which are intensive variables such as tempera-
ture T, pressure P, and chemical potential p. The reason
is that fields have identical values in the two coexisting
phases, while densities have in general different values in
coexisting phases. In the case of one-component fluids,
appropriate independent field variables are 1/T and p/T
with P/T as a dependent field variable [1]. Hence, for
mixtures near the vapor-liquid critical line it is natural to
treat 1/T, p, , /T, and p2/T, where p, and pz are the
chemical potentials of the two components, as indepen-
dent field variables, while keeping P/T as a dependent
field variable. In the case of one-component Quids the
thermodynamic properties are made dimensionless with
the aid of the critical parameters [1,6]. However, in the
case of mixtures near the vapor-liquid critical line this

procedure is no longer advantageous, since the critical
parameters themselves are now functions of the concen-
tration. Instead we follow Griffiths and Wheeler [10] by
reducing p&, /T and p2/T with the aid of the molar gas
constant R:

P] P2
RT ' RT (2.1)

The corresponding temperature and pressure variables
then become

T=, P=RT' RT (2.2)

The variation of the dependent potential P as a function
of the independent fields T, p„andp2 is given by

dP = —u dT+p&dpi+p2dp2 (2.3)

h =ln(e '+e '),) 2

&+ ~P&
—P2]

so that

P&=h+in(1 —g), P2=h+Ing .

(2.4)

(2.5)

where u = U/V is the energy density, while pi and p2 are
the molar densities of the two components. Furthermore,
the concentration x is defined as x =p2/p, where
p=p, +p2 is the total density.

Before proceeding let us digress briefly on the
difference between a weak temperaturelike field and a
strong ordering field. The specific heat measures the
response to a temperature change and the susceptibility
measures the response to a change of the chemical poten-
tial. For one-component fluids the specific heat c&
diverges weakly and the susceptibility y diverges strong-
ly. Hence, from the fluctuation-dissipation theorem it
follows that the energy Quctuations will be much weaker
than the density Quctuations, which become long range.
Hence, the mass density is identified as the (asymptotic)
order parameter and the chemical potential as the order-
ing field. In the case of a binary mixture there is still only
one ordering field. In principle it could be either p& or
p2, while the other chemical potential would then act as a
hidden field to be kept constant in mapping the binary
mixture onto the one-component Quid. In general, any
two analytic functions h(P„P2) and g(P„Pz) can be
treated as ordering field and hidden field, but not all
choices will be equally effective in practice. In the case of
binary mixtures one commonly defines the hidden field
g(p„P2)in such a way that 0 ~ g( 1, so that it efFectively
serves as a concentrationlike variable interpolating be-
tween the two pure-fiuid limits [13]. The ordering field
h (p„Pz) is taken to be the field conjugate to the total
density p, while the critical temperature T, (g), density
p, (g), and pressure P, (g) are now treated as functions of
the hidden field g.

With these general guidelines in mind and noticing the
presence of logarithmic singularities in p& and pz in the
dilute mixture limits, we define the new field variables
h (P„P2)and g(p„p2)by
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In addition we define

& —&,(g) p —p, (g)
Ap=

p, (g)

Substitution of (2.4) —(2.6) into (2.3) yields

dP= Udr+pdh+ Wdg,

with

(2.6)

(2.7)

Q

RT, (g)
(2.8)

1 —x ~l dT,
1 —g T dg

(2.9)

The density W in (2.7), conjugate to the hidden field g,
will not be of further interest here.

In order to apply the results previously obtained for
the Helmholtz free-energy density of one-component
fiuids in the critical region [6], we need a thermodynamic
free-energy density which contains the order parameter p
as an independent variable. Such a thermodynamic po-
tential is readily obtained by a Legendre transformation

variables r, p, g in terms of which the thermodynamic sur-
face will be specified.

The transformation (2.4) from the original chemical
potentials P, and Pz to the new field variables h and g is
similar to the transformation adopted by Leung and
Griffiths [13] and by Moldover and Gallagher [16] and
Rainwater [18,27], but there are some minor differences.
First, the previous investigators defined the ordering field
as h H(g—, r), where the function H(g, r) is chosen in
such a way that the ordering field becomes zero on the
vapor-liquid coexistence surface. However, the require-
ment that the ordering field become zero on the coex-
istence surface is only correct asymptotically [28] and is
therefore no longer appropriate when one wants to in-
clude the fu11 nonasymptotic critical behavior, as is done
in the present paper. Furthermore, the implementation
of this condition appears to be cumbersome in practice
[27]. Another minor difference is that Rainwater advo-
cates the use of T as the temperature variable rather than
I /RT as done in Refs. [2,3,6], as well as in the asymptot-
ic equation of state originally proposed by Leung and
Griffiths [13]. Arguments that 1/T is the more appropri-
ate temperature variable have been presented in the
literature [28—30].

A,~=hp —P,
so that

(2.10) III. CROSSOVER FREE ENERGY
FOR ONE-COMPONENT FLUIDS

d A,s.= —0 dr+ h dp —W dg . (2.11)

(2.12)

and one obtains

a A"„

dT, (g)
T dg 87 gp

(2.13)

We have thus a transformation from the physical vari-
ables T,p, x associated with experiments to the theoretical

The thermodynamic free-energy density A,ir(r, p, g) is
closely related to, but not identical with, what is conven-
tionally called the Helmholtz free-energy density. How-
ever, the advantage of introducing A,s(r, p, g) is that, at
fixed g, A,s has a critical point characterized by the pa-
rameters T, (g), p, (g), and P, (g), and near this critical
point A,z should be isomorphic with the Helmholtz
free-energy density of a one-component Quid near the
critical point. That is, at constant g, A,s. will be the same
(singular) function of r and p as the Helmholtz free-
energy density of a one-component Quid, with all system-
dependent constants now depending parametrically on
the hidden field g.

The actual experimental data are in practice obtained
at constant concentration x and not at constant field g.
The relationship between the concentration x and the
hidden field g can be derived from [26]

P2 BP

p Bp2 p, f'

For one-component Quids Chen et ah. have construct-
ed a Helmholtz free-energy density that incorporates the
crossover from singular behavior asymptotically close to
the critical point to regular behavior far away from the
critical point [6]. In terms of the quantities introduced in
the preceding section, the pure components correspond
to the limits g—&0 and g~ l. In these limits the
Helrnholtz free-energy density A is decomposed as

A(r, p)= [b A(r, p)+ Ao(r)+pho(r)],RT,
(3.1)

where Ao(r) and ho(r) represent analytic background
contributions, which in practice are represented by trun-
cated Taylor series expansions

4
Ao(r)= g A r~,

j=o
5

ho(r, g) = g Prj, ,

Pe j=p

(3.2)

(3.3)

with system-dependent coefficients A and p, . Since
A —p(BA /Bp), = P in accordance—with (2.10), it fol-
lows that

(3.4)

The term b A in (3.1) incorporates the effects of the
long-range critical Quctuations. As shown by Chen et al.
[6], it can be related to a renormalized Helmholtz free-
energy density 5A „deduced from the Landau-
Ginzburg-Wilson theory of critical phenomena by a
transformation of the form
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b A(r, p)=b, A„(t,M) —c

with

aaA„
aM

BAA„
Bt

(3.5)
and one recovers from (3.8) the asymptotic power laws
with leading Wegner corrections [36]. The classical limit
corresponds to

(3.13)

aaA„
t =c(7 + (3.6)

M=c (b, —d, ~)+c
BAA„

Bt M
(3.7)

In this transformation c, and c are system-dependent
coefficients that relate the Landau variables t and M to
the physical variables ~ and Ap, while c and d& are
system-dependent constants related to vapor-liquid asym-
metry. The term 5 A „canbe expressed in terms of a
Landau expansion renormalized by a procedure original-
ly developed by Nicoll and co-workers [31—33].
Specifically, Chen et al. obtained [6]

b, 3 ( t M ) = ' tM 72)—+—u *u AM 2) '9

(3.8)

Y 1 /co (3.10)

where u, A, ao5, ao6, a,4, and a22 are system-dependent
coefficients. The coefficient of the M term in this expan-
sion is written as u *u A, where A is a maximum cutoff
wave number for the critical fluctuations [5,6] and u* a
fixed-point coupling constant [34]. The functions V', 2),
O', V, and%' are rescaling functions defined by

Y(2—i)/v)/co ~ Y qlra cy Yl/co

(3.9)
V=Y

o.u A

where v, g, and a=2 —3v are the usual asymptotic criti-
cal exponents, while ~ and co, are the critical exponents
associated with the leading symmetric and asymmetric
correction term [1,35]. The function Y is a crossover
function to be determined from the set of coupled alge-
braic equations

so that (3.7) reduces to a classical Landau expansion.
The critical exponents and the fixed-point coupling

constant u * are universal. We continue to use the values
earlier adopted by Chen et al. [6] and they are presented
in Table I. The critical exponents v, g, o., and co are
known with high accuracy [1,37]. The exponent co, of
the asymmetric correction term is not well known
[31,35,38]. The value co, =2. 1 is the one recommended
by Zhang [39].

In addition to the critical parameters P„1;,and p„
the crossover free-energy density contains the following
system-dependent constants: the crossover parameters u
and A; the coefficients a05, a06, a&4, and a22 in the renor-
malized Landau expansion (3.8); the coefficients c„c,c,
and d i in the relations (3.6) and (3.7) between the Landau
variables; and the physical variables and the coefficients
J~ and P in the expansions (3.2) and (3.3) for the back-
ground contributions. The critical parameters are either
measured directly or deduced from an asymptotic
analysis of available experimental data. With the excep-
tion of p, , the system-dependent constants can be deter-
mined from a fit to experimental P- T-p data. The
coefficients p J for j ~ 2 determine the background contri-
butions to the caloric properties such as the specific heat
or the sound velocity. The coefficients p,o and p& fix the
zero points of energy and entropy, and therefore do not
enter into the calculation of thermodynamic properties
such as the pressure and the specific heat.

In this paper we shall try to apply this crossover
Helmholtz free-energy density to represent experimental
equation-of-state and specific-heat data for mixtures of
carbon dioxide and ethane. For the pure components the
system-dependent coefficients have been previously deter-
mined by Chen et al. [6]. For carbon dioxide these
coefficients were obtained from a comparison with P-p-T
data of Michels and co-workers [40—42] and with ci, data
of Edwards [43] supplemented with c), values reported by
Michels and de Groot [44]. For ethane these coefficients
were obtained from a comparison with P-p-T of Douslin
and Harrison [45] and with c), data of Roder [46]. How-
ever, it was noted by Luettmer-Strathmann, Tang, and
Sengers [47] that the caloric background thus obtained
does not match well with the ez values implied by a
wide-range analytical equation for ethane recently pro-

ir = t 7 + ,' u *u AM 2)'M . — (3.1 1)
TABLE I. Universal critical-region constants.

hm Y=
A/x~ oo uA

(3.12)

The parameter ~ is closely related to the inverse correla-
tion length [3] and serves as a measure of the distance
from the critical point [8]. In the asymptotic critical lim-
it

Constant

Yl

0!=2 3v
co= 6/v

Value

0.630
0.033 3
0.110
0.809 52
2.1

0.472
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posed by Friend, Ingham, and Ely [48]. Hence, following
Luettmer-Strathmann, Tang, and Sengers [47] we
redetermined the caloric background parameters p. of
ethane for j ~ 2 by making a comparison with the accu-
rate c~ data of Shmakov close to the critical point [49]
and supplementing them with c~ values calculated from
the classical equation of Friend, Ingham, and Ely further
away from the critical point. The c~ data obtained by
Roder [46] are still represented with a standard deviation
of 1.5%%uo.

The values of the system-dependent constants for car-
bon dioxide and ethane are given in Table II. The values
of the critical-point parameters T„p„andP, of the two
Auids are given in Table III. In this paper all tempera-
tures refer to the International Practical Temperature
Scale of 1968 (IPTS-68), since the previous analysis of
Chen et al. for the two pure Auids used this temperature
scale, while the new experimental data of Weber [50] for
the mixture are also on IPTS-68.

The crossover model represents the experimental P-p-T
in a range approximately determined by

0.8—

0.4—

—04—

—0.8—0.1
f

0.0
I I I

0.1 0.2 0.3 0.4

temperature variable 6T' = ( T —T, ) /T, and the re-
duced density variable bp=(p —p, )/p, . It corresponds
to

FIG. 1. Range of validity of the crossover free-energy density
as a function of 6T*= ( T —T, ) /T, and Ap = (p —p, ) /p, .

(3.14)

This range is shown in Fig. 1 as a function of the reduced
and

—0 05 hT* + +0 29 at p=p,

—0.60~p + +0.70 at T= T

(3.15)

(3.16)

Parameter

c,
Cp

C

dl

k( )

(Carbon dioxide')
k(2)

(Ethane' )

Crossover parameters
0.398 03 0.369 10
1.421 4 1.121 6

Scaling-field
1.955 1

2.414 5
—0.025 90
—0.332 31

parameters
1.555 8
2.499 5

—0.028 92
—0.363 55

TABLE II. System-dependent constants.

0
0

—0.520
—0.174

0
0

A crucial test of any equation of state in the critical re-
gion is how well the equation represents caloric proper-
ties, such as the isochoric specific heat c~, which is relat-
ed to a second-order derivative of the Helmholtz free en-
ergy. Figure 2 shows a comparison with isochoric
specific-hest data at p =p, obtained by Edwards for car-
bon dioxide [43] and Fig. 3 shows a comparison with iso-
choric specific-heat data at p=p, obtained by Shmakov
for ethane [49]. The experimental cv data of Edwards for
CO2, after the application of a correction for the heat
capacity of the empty calorimeter as described by Al-

~05

ao6

a(4
a 22

A~
A3
A4

Classical parameters
—0.270 63 —0.055 078

1.142 28 0.977 78
0.398 39 0.517 89
0.301 16 0.702 73

Equation-of-state background parameters
—6.007 9 —5.448 0

4.513 9 3.365 7—1.950 9 —1.402 2
5.137 1 10.49 9

0
0
0
0

2.40
—1.63

1.35
0

10

0
10

CO

P2
P3
p4
p5

Molar mass

'Reference [6].

Caloric background
—13.730
—7.919 1

32.249
—93.274

44.010

parameters
—15.221
—9.025 2
—3.209 2

—50.644

30.073

3.60
31.1

—165.0
0

10 I

to ' to-'
I l I

tO-4 SO-' (0 ' to-'

FIG. 2. Double-logarithmic plot of the isochoric specific heat
cq of carbon dioxide at p=p, as a function of
6T*= ( T —T, )/T, . The circles indicate the experimental
values obtained by Edwards [43] and the solid curves represent
the values calculated from the crossover free-energy density.
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TABLE III. Critical-line coeScients for CO2+ C2H6.

Temperature (K) (Std. dev. 0.17 K)

T,"'=304.127, T' '=305 330
TI = —54.6413, T2 = —52.6117, T3 = + 150.0669, T5 = —88.0684

Density (mol/1) (Std. dev. 1.8%%uo)

P',"=10.63, P', '=6.870, U& =0.006621, U2 =0.048 67

Pressure (MPa mol/kJ) (Std. dev. 0,34%)

p(l)/g T(I)=2.9167, p(2)/g T(2) = 1.9191, pl = —0.39Q 1Q, p2 = +0.239 61

bright et al. [51], are reproduced with a standard devia-
tion of 1.6%. The experimental c~ data of Shmakov for
C2H6 are reproduced with a standard deviation of 1.5%.

We note that in accordance with (3.4)

Ao(g)= —1 . (4.4)

IV. CROSSOVER FREE ENERGY FOR MIXTURES
The transformation (3.5) for the critical part b, A now be-
comes

According to the principle of critical-point universali-
ty, the behavior of the free-energy density A,z, defined by
(2.10) for mixtures, should be isomorphic with the free-
energy density A of one-component Auids provided that
the hidden field variable g is kept constant. Thus, in
analogy to (3.1), we decompose A, ff as

b, A (r,p, g) =b, A„(t,M, g)

with

M, g

(4.5)

with

&,(g)A„(~,p, g)= [AA(r, p, g)+Ao(~, g)RT,

+pho(r~g)

4

Ao(~, g)= g A, (g)r',
j=0

(4.1)

(4.2)

t =c,(g)r+c(g)
am

M=c (g)[hp —dl(g)r]+c(g)
M, g

(4 6)

(4.7)

5

ho(~, g) = g P, (g)~' .
pc q=o

(4.3) Finally, EA„is again represented by a truncated Landau
expansion (3.8):

b, A„(t,M, ()= ,'tM 723+ —,u—'u(g)A(g)M 2) Vl+ —ao5(g)M 2) V'M+ —ao6(g)M 2) S'1

+—a (g)tM '72) 6' + a (g)t M 7 X)Vl ' 't %'——1

4) 14 2 (4.8)

where the rescaling functions 7; 2), Vl, V, and A are still
related to the crossover function Y by (3.9). This cross-
over function Y is now determined by the equations

1/2

1 —[1—u(g)]Y=u(g) 1+ F'~A (g) (4.9)

x =tV+ ,'u*u(g)A(g) M2)R . — (4.10)

Thus, at constant g, the expressions for A,ff(r, p, g) are
identical to the expressions presented in the preceding
section for the Helmholtz free-energy density A(r, p) of
one-component Auids. The only difference is that all the
system-dependent coefBcients are now to be treated as
(analytic) functions of the hidden field g.

A general Landau-Ginzburg-Wilson theory of critical
phenomena cannot predict the values of system-
dependent constants such as the critical parameters; they
are to be obtained from experimental data that yield
these critical parameters as a function of the concentra-
tion x. In this paper we restrict ourselves to binary mix-
tures for which the critical points of the two pure com-
ponents are smoothly connected by a single critical line.
The critical parameters can then be represented by simple
polynomials as a function of x and 1 —x. However, we
need the critical parameters as a function of the variable

As noted by many previous investigators
[4,16,18,23,27,52,53], it is therefore convenient to adjust
the hidden field g in such a way that x =g on the critical
line, so that T, (g), p, (g), and I', (g) can be identified with
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10

210

T&Tc

c, (g), cz(g), di($), ao&(g), ao6(g), ai4(g), a22(g), A i(g),
A2(0) A 3(0) A4(0) P'2(0) p3(~) P'4(0) and Ps(k)
convenience we denote these system-dependent parame-
ters by k, (g), i =1, . . . , 18, and we need to interpolate
them between the value k;(0)=k,"' and k, (1)=k ' of
the two pure components. For this purpose we adopt a
simple interpolating equation of the form

k, (g) =k,"'( I —g)+ k '(+k™g(1—g), (4.16)

10 I I I i

10 10 10 10 10 10
l(~ —~ ~)/~~I

FIC'r. 3. Double-logarithmic plot of the isochoric specific heat
ez of ethane at p =p, as a function of AT* =(T —T, ))/T, . The
circles indicate the experimental values obtained by Shmakov
[49] and the solid curves represent the values calculated from
the crossover free-energy density.

Bp
(4.17)

The reduced pressure P =P /R T and the energy density
u = U/Vare obtained as

and

P =Ph —A,ff, (4.18)

where k ' are mixture coeKcients.
Having specified the free-energy density A, ff we obtain

the ordering field h from

T, (x), p, (x), and P, (x). On the critical line the x(g)
transformation (2.13) reduces to

u = —RT, (g)
Bi pg

(4.19)

(4.11)

with

d (P, /T, )
G (g) = [ Ao(g)+p, P&(g)]

P, dPc(g) P, dT,
+p d (A i(0)+pi(0)]T T

(4.12)

Obviously x =g on the critical line if we impose the con-
dition

G(g)=0 . (4.13)

We refer to (4.13) as the critical-line condition. In prac-
tice this condition is imposed by assigning specific func-
tional forms to po(g) and p, ,(g) so as to satisfy (4.13). In
the pure-Iluid limits (~0 and (~ 1 one can indeed as-
sign arbitrary values to po and p&, but one does not have
the thermodynamic freedom to impose arbitrary values
for pc and pi at intermediate values of g. However, with
prudence, this condition can be implemented approxi-
mately. Mathematically, there are an infinite number of
solutions for (4.13). We choose the following solution:

One can deduce all other thermodynamic properties from

ff as well. The detailed expressions for the derivatives
of A, ff with respect to the density p and the reduced tem-
perature ~ are presented in the Appendix. For given
T,p, x, the actual computation of the free-energy density
A, ff proceeds as follows:

(i) Take gc=x as the initial estimate for g, and use
(4. 16) to calculate all the system-dependent coefficients of
the mixture at g=gc.

(ii) Use to=c, (go)r and Mo=c (go)[bp d, (gc)] as —the
zeroth-order estimates for t and M, respectively, and cal-
culate the corresponding values Yo = Y( tc, Mc ) and
Ko =K( tc, MO ) from (4.9) and (4.10) by iteration.

(iii) Use the Yo from (ii) to calculate b, A, from (4.8),
and then calculate the first-order estimates t, and M

&
for

t and M from (4.6) and (4.7).
(iv) Repeat (ii) and (iii) until convergence is obtained

for t and M.
(v) Use the resulting t and M and the initial gc to calcu-

late x' from (2.13). If x'Wx, adjust the value of g until
convergence is obtained.

(vi) The resulting g of the above procedures is thus the
correct hidden variable that corresponds to the given
T,p, x. Use this g to calculate b, A„(r,p, g) and then the
total free-energy density A,s(~,p, g) from (4.1)—(4.7).

p(g)T(g) c 1 d P(x)
P, (g) Jo p, (x) dx T, (x)

(4.14)
V. APPLICATION TO MIXTURES OF CARBON

DIOXIDE AND ETHANE

Pi(0) = —A i(0) . (4.15)

The consequence of our procedure for implementing the
critical-line condition (4.13) will be discussed in Sec. VI.

To determine the free-energy density A, ff of the mix-
ture completely, we also need to specify the g dependence
of the system-dependent parameters u(g), A(g), c(g),

%'e have applied the crossover free-energy density de-
rived in the preceding section to represent experimental
equation-of-state data and specific-heat data of mixtures
of carbon dioxide and ethane in the critical region. At-
tempts to represent thermodynamic-property data for
this system in terms of a scaled equation of state have
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+(T, + T2x+ T3x + T4x )x (1—x), (5.1)

1 1 1

p (x) (i) (2)(1—x)+ x +(v, +vox )x (1—x), (5.2)
C C C

„,(1—x)+, ,
x +(P, +P2x )x (1—x),ZT"

(5.3)

where x is the molar concentration of ethane and where
T,", p,", and P," are the critical parameters of carbon
dioxide (i =1) and of ethane (i =2). The values of the
coefficients T., U, and P in these equations are given in
Table III. We prefer to consider Eqs. (5.2) and (5.3) for
p,

' and P, (x)/RT, (x), rather than equations for p, (x)
and P, (x), so as to facilitate the implementation of condi-
tion (4.14). The critical temperature T, (x), the critical
density p, (x) and the critical pressure P, (x) are shown in
Fig. 4 as a function of x. The critical temperature T, (x)
goes through a minimum at x =0.436. Furthermore, the
system has a critical azeotrope at x =0.281. It should be

been made by some previous investigators [15,16,23].
Moldo ver and Cxallagher have analyzed vapor-liquid
equilibrium data for mixtures of carbon dixoide and
ethane [16]. Chang and Doiron have formulated an
asymptotic scaled equation of state for the one-phase re-
gion near the critical line but in terms of empirical criti-
cal exponents [15]. The analysis of Anisimov, Kiselev,
and Kostukova is restricted to specific-heat data only
[23]. In the meantime an extensive set of experimental
P-T-p-x data for mixtures of carbon dioxide and ethane
has become available [50]. In addition, there exists a de-
tailed set of isochoric specific-heat data measured by
Shmakov [49].

In order to apply our theoretical free-energy density we
need equations for the critical temperature T„the criti-
cal density p„and the critical pressure P, as a function
of the concentration x. The available experimental data
for the critical parameters of mixtures of carbon dioxide
and ethane have recently been evaluated by Abbaci et al.
[54]. They are represented by polynomials of the form

T, (x) = T,'"(1—x)+ T,' 'x

noted that the critical parameters of the mixtures are
known with considerably less accuracy than those of the
pure fiuids. Equations (5.1) and (5.2) represent the values
of T,(x), p, '(x), and P, (x)/RT, (x) with standard devia-
tions of 0.18 K, 1.8%, and 0.35%, respectively. Howev-
er, in evaluating the experimental data, Abbaci et al. had
to make a number of adjustments to resolve discrepancies
between values reported by various authors [54]. Even
for a mixture as extensively investigated as CO2+C2H6,
there are inconsistencies of as much as 0.35 K for T,(x)
and as much as 1.9% for P, (x) [54]. As a consequence of
these uncertainties it will not be possible to represent ex-
perimental equation-of-state data of the mixtures with
the same accuracy as previously obtained for pure carbon
dioxide and ethane [6].

The crossover model for mixtures is now completely
specified. The only adjustable parameters are the quadra-
tic coefficients k ' in Eq. (4.16). They are obtained from
a fit to the P p T xd-a-ta -obtained by Weber [50] and the
cv„data obtained by Shmakov [49]. Since the ci, „data
reported by Shmakov cover a limited temperature range,
we use, in addition, cv„values far away from the critical
line calculated from an analytic global equation of state
recently developed by Ely and co-workers [55,56]. The
coefficients k ' represent deviations from a simple linear

g dependence of the system-dependent coefficients k (g).
We only incorporated these corrections when they would
lead to a substantial improvement in the standard devia-
tions of the fit. As a consequence we only retained eight
adjustable coefficients k,.' ' for the mixture, namely, in
the equations for c (g), c, (g), Ai(g), A2(g), A3(g),
P2(g), )Lt3(g), and )tt4(g). The values of the eight
coefficients k ' are included in Table II.

When the pressure is calculated as a function of p, T,
and x our crossover free-energy density reproduces the
experimental pressure data of Weber [50] with a standard
deviation of 0.6%. Experimental and calculated pres-
sures as a function of temperature for a number of iso-
chores are shown in Figs. 5—7. As mentioned above, the
accuracy of the fit to the experimental P-p-T-x data is
limited by the uncertainties in the critical-point parame-
ters as a function of concentration. Specifically, at
x =0.748 there exist some substantial discrepancies be-
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FIG. 4. The critical parameters T, (x), p, (~), and P, (x) of carbon dioxide and ethane mixtures as a function of the mole function x
of ethane [54].
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FIG. 5. Pressures of CO2+C2H6 as a function of temperature
for various densities at x =0.2602. The symbols indicate exper-
imental pressures measured by Weber [50] and the curves
represent pressures calculated from the crossover model ( ~,
p=7. 3 mol/1; A, p=8. 3 mol/1; V, p=9. 1 mol/1; 0, p=10.0
mol/1; , p= 11.9 mol/1).
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FIG. 6. Pressures of CO~+ C2H6 as a function of temperature
for various densities at x =0.5076. The symbols indicate exper-
imental pressures measured by Weber [50] and the curves
represent pressures calculated from the crossover model (0,
p =7. 1 mol/1; A, p =7.5 mol/l. ; V, p =7. 8 mol/1; 1, p =8.0
mol/1; ~, p= 8.4 mol/1).

tween the critical temperature and pressure deduced by
Weber from his P-p-T-x data and those found by other
investigators as represented by Eqs. (5.1) and (5.3) [54].
The origin of these discrepancies is not known.

Shmakov [49] has reported accurate c~„data at

p =p, (x) for mixtures of CO2 and C2H6 at three composi-
tions, namely, x =0.281, 0.436, and 0.720. As discussed
in previous publications [6,8,54], there are some small
discrepancies between the critical temperatures reported
by Shmakov and those found by other investigators.
Hence, we applied a shift of —0.0743 K at x =0.281, of
+0.0763 K at x =0.436, and of +0.0213 K at x =0.720
to the temperatures attributed to the experimental cz„
data, so that the T, values at these concentrations would
coincide with those implied by Eq. (5.1). After this
correction was applied our crossover Helmholtz free-
energy density represents the experimental cz values at
x =0.281, 0.436, and 0.720 with standard deviations of
1.1%, 1.6%, and 2.6%, respectively.

A comparison between the measured and calculated
specific-heat values is shown in Figs. 8 —10. The agree-
ment at x =0.281 and x =0.436 is certainly within ex-
perimental accuracy. At x =0.720 there are some small
discrepancies for the data very close to T„but two re-
marks should be made. First, as mentioned above, at this
concentration there exists the largest uncertainty in the
critical temperature and pressure [54], which may affect
the equation of state implied by our Helmholtz free-
energy density close to the critical line at this concentra-
tion. Second, Shmakov actually measured the ratio of an
energy difference Uz —

U& over a temperature difference
T2 T I . At x =0.720, for some data points, he used
temperature steps of T2 —T, =0.035, which are about
four times larger than the temperature steps employed at
the other concentrations and close to T, (x). These tem-
perature differences are no longer small compared to
T —T, (x). In comparing the experimental values with
our crossover model we calculated the ratio of the corre-
sponding energy and temperature differences, but the
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FIG. 7. Pressures of CO2+C2H6 as a function of temperature
for various densities at x =0.7483. The symbols indicate exper-
imental pressures measured by Weber [50] and the curves
represent pressures calculated from the crossover model (0,
p= 6.5 mol/1; j, p =7.2 mol/1; +, p= 8.2 mol/1; $, p =9.0
mol/1„~,p =9.7 mol/1).
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FIG. 8. Specific heat c&„ofCO2+C&H6 at the critical densi-
ty p=p, (x) as a function of b, T*(x)=[T—T, (x)]/T, (x) for
x =0.281. The symbols indicate experimental data reported by
Shmakov [49] and the curves represent values calculated from
the crossover model.
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FIG. 9. Specific heat cv „ofCO, +C2H6 at the critical densi-
ty p=p, (x) as a function of ET*(x)=[T T, (x)]—lT, (x) for
x =0.436. The symbols indicate experimental data reported by
Shmakov [49] and the curves represent values calculated from
the crossover model.

FIG. 10. Specific heat c~ of CO2+C2H6 at the critical den-
sity p=p, (x) as a function of ET*(x)=[T—T,(x)]jT,(x) for
x =0.720. The symbols indicate experimental data reported by
Shmakov [49] and the curves represent values calculated from
the crossover model.

question arises as to which temperatures the cz„values
thus obtained should be attributed [g]. In practice, we as-
signed the cz„values not to the linear average but to the
logarithmic average between T, and T2. However, even
this procedure may become less reliable when T2 —T, be-
comes comparable to T —T, (x ).

The experimental specific-heat data obtained by
Shmakov [49] cover a very limited range of temperatures.
The specific heat in a larger temperature range is shown
in Fig. 11. It can be seen that the cz values calculated
from our Helrnholtz free-energy density cross over to the
values calculated from the globa1 analytic equation of
state developed by Magee, Howley, and Ely [56] at tem-
peratures far away from the critical temperature. In
principle we expect the coefficients k ' in Eq. (4.16) for
the system-dependent parameters k;(g) to be of order
unity. From the values quoted in Table II we see that
this is indeed the case except for the coefficients p 3

' and

p4 '. The latter coefficients are related to the tempera-
ture dependence of the background specific heat far away
from the critical temperature and they are likely affected

by the expected limited accuracy of the specific heat im-
plied by the global analytic equation of state. Values of
the pressure P, of the specific heat c~, and of the hidden
field variable g, calculated from the crossover model at
some selected concentrations, temperatures, and densi-
ties, are presented in Table IV as an aid for cornputer-
program verification.

At each value of the hidden field g the range of validity
of our crossover model is in principle comparable to that
of the pure Auids, as shown in Fig. 1. However, in prac-
tice there are some additional limitations, since the P-p-
T-x data of Weber and c~ data of Shmakov, which were
used in determining the system-dependent coefficients,
cover a more limited range. This limitation can only be
partially remedied by including cz values calculated
from another equation of state. Furthermore, at each
concentration the P-p-T-x data of Weber were all ob-
tained in the one-phase region with very few data points
at temperatures below T, (x). As a consequence, our
crossover equation will still have limited validity near the

TABLE IV. Table for computer verification.

Mole fraction
of C,H6

0.281
0.281
0.281
0.281
0.436
0.436
0.436
0.436
0.720
0.720
0.720
0.720

0.283
0.282
0.281
0.282
0.431
0.435
0.436
0.438
0.711
0.717
0.722
0.727

Temperature
{K)

287.39
291.45
293.93
297.00
284.01
291.61
292.43
295.37
288.14
292.68
295.48
302.27

Density
{mol/l)

8.879
8.879
8.879
8.879
8.463
8.463
8.463
8.463
6.938
6.938
6.938
6.938

Pressure
{MPa)

5.606
6.119
6.455
6.878
5.066
5.937
6.042
6.422
4.596
5.018
5.294
6.000

~V, x

{J/mol K)

145.13
175.92
67.74
57.95

139.01
72.42
66.33
58.22

142.78
158.39
109.06
60.08

Phase
region
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FIG. 11. Specific heat c&„ofCO, +C~H6 at the critical density p=p, (x) as a function of temperature for x =0.281, 0.436, and
0.720. The squares indicate experimental data reported by Shmakov [49], the solid curves represent values calculated from the cross-
over model, and the dashed curves represent values calculated from the analytical equation of Magee, Howley, and Ely [56].

phase boundary at temperatures below T, (x).
Nevertheless we have calculated the vapor pressures

and coexisting vapor and liquid densities implied by our
crossover model. The calculated vapor and liquid densi-
ties are compared with experimental data reported by
Khazanova, Lesnevskaya, and Zakharova [57] in Fig. 12.
The agreement is comparable to that obtained by Mold-
over and Gallagher [16] and by Chang and Doiron [15] in
terms of a scaled equation with effective empirical critical
exponent values. The calculated vapor pressures are
compared with experimental data reported by Khazano-
va, Lesnevskaya, and Zakharova [57] in Fig. 13 and with
experimental data reported by Ohgaki and Katayama
[58] in Fig. 14. For large values of the mole fraction x of
ethane the agreement is comparable to that obtained by
Moldover and Gallagher [16] and by Rainwater [59], but
for x ~0.5 the agreement is not satisfactory. However,
the figures also reveal the existence of appreciable
discrepancies in the pure-Quid limits x —+0 and x~1.
Since our crossover model represents the P-p-T data of
pure Auids [6,8], we conclude that there are inconsisten-
cies between the data reported by Khazanova,

Lesnevskaya, and Zhakarova and Ohgaki and Katayama
for the mixture and those reported by other investigators
for the pure Auids.

VI. ZERO POINT OF ENERGY
AND HEAT OF MIXING

u, (x)=p, (x)[J,(x)+p&(x)], (6.1)

and

In developing our crossover model we have implement-
ed the critical-1ine condition (4.13) by selecting the
coefficients pp(g) and p, (g) in accordance with (4.14) and
(4.15). Specifically, p, (g) was identified with —A, (g),
while pp(g) was determined by integrating (4.14). In Fig.
15 we show pp(g) as a function of g. It is seen that the
dependence of pp(g) on g shows only small deviations
from a linear variation.

On the critical line x =g the coefficients pp(x) and
p, (x) are related to the internal energy density u =u/V
and entropy density s =S/Vby

20
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FIG. 12. The coexisting vapor and liquid densities of
CO2+ C2H6 at various temperature as a function of the concen-
tration x. The symbols indicate experimental values reported
by Khazanova, Lesnevskaya and Zakharova [57] and the curves
represent values calculated from the crossover model.

FIG. 13. The vapor pressure of CO&+C~H6 at various tem-
peratures as a function of the concentration x. The symbols in-
dicate experimental values reported by Khazanova,
Lesnevskaya, and Zakharova [57] and the curves represent
values calculated from the crossover model.
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FIG. 14. The vapor pressure of CO2+C2H6 at various tem-
peratures as a function of the concentration x. The symbols in-
dicate experimental values reported by Ohgaki and Katayama
[58] and the curves represent values calculated from the cross-
over model.

P, (x)
s, (x)= [1—Po(x) —A, (x)—P, (x)]

C

—Rp, (x)[x lnx+(1 —x)ln(1 —x)] . (6.2)

0.0

—0.3

—0.4

—0.5
0.0

I I I

0.2 0.4 0.6 0.8 1.0

FICx. 15. The coefficient pe as a function of g as determined
from Eq. (4.14). The dependence on g shows only small devia-
tions from a linear variation.

Thus p& determines the zero point of energy and, for
given p„podetermines the zero point of entropy. For
the pure Auids these zero points or, equivalently, po and

p& can be chosen arbitrarily, but for the mixtures such a
thermodynamic degree of freedom does not exist. Hence,
in contrast to an earlier suggestion of Rainwater [27], the
critical-line condition (4.13) introduces an approxima-
tion, even when the theoretical model is only used to
represent P p T xdata [54]-. --

In principle the critical-line condition can be imple-
mented in many different ways [4,16,18,23,27,52,53,60].
The practical consequences of this approximation will de-
pend on the specific manner in which the condition is irn-
plemented. From (4.15) and (6.1) we note that in our ap-
proach the critical-line condition is implemented by
demanding that the internal energy is zero everywhere on

the critical line.
As pointed out by Anisimov and Sengers [60], the

critical-line condition (4.13) puts a restriction on the rela-
tionship between the partial molar volumes and partial
molar enthalpies and, hence, on the volume and heat of
mixing on the critical line. Since we have fitted the
theoretical Helmholtz free-energy density to experimen-
tal volume data measured by Weber [50], the effect of im-
posing the critical-line condition (4.13) can lead to a dis-
tortion of the heat of mixing near the critical line. For-
tunately, Wormald and Hodgetts have recently obtained
heat-of-mixing data for COz+C2H6 mixtures near the
critical line [61]. A comparison between the measured
and calculated values of the molar excess enthalpy H is
shown is Fig. 16. It should be noted that the comparison
can only be made with limited accuracy. The reason is
that neither the experimental pressure data of Wormald
and Hodgetts nor our fit to the pressure data of Weber is
sufficiently accurate to calculate the densities associated
with the experimental excess enthalpy data with satisfac-
tory accuracy. Nevertheless, from the observation that
our crossover model implies a heat of mixing near the
critical line of the correct order of magnitude we expect
that any distortion of our Helmholtz free-energy density
due to the imposition of the condition x =g on the criti-
cal line will be small.

VII. DISCUSSION

We have developed a Helmholtz free-energy density
for Auid mixtures near the vapor-liquid critical line that
incorporates the asymptotic scaling laws with Ising criti-
cal exponent values and which can be shown to yield a
consistent representation of both P-p-T-x and c~„data.
Moreover, the Helmholtz free-energy density obtained
reduces to a regular analytic free-energy density far away
from the critical line.

Nevertheless, in reaching this result we have encoun-
tered some problems of both a practical nature and a
theoretical nature. From a practical point of view a more
accurate test of the validity of our theoretical crossover
Helmholtz free-energy density is hampered by incon-
sistencies between various experimental data sets, even
for a mixture as well investigated as CO&+ C2H6. Among
others, these discrepancies lead to some serious inaccura-
cies in our knowledge of the location of the critical locus
[54]. In principle, we can obtain a better fit to the experi-
mental pressure data reported by Weber [50] if the con-
centration dependence of the critical-point parameters
T, (x), p, (x), and P, (x) would be represented by equa-
tions with freely adjustable parameters, as done in some
previous studies [16,59]. However, it would increase the
discrepancy of our Helmholtz free-energy density with
experimental data of other investigators [54]. A theoreti-
cal limitation is the condition that the hidden field vari-
able g be equal to the concentration x on the critical line.
We have argued that the manner in which we have imple-
mented this condition does not lead to a significant dis-
tortion of the equation obtained for the calculation of
pressure and specific-heat values. However, for an accu-
rate representation of excess functions it will be desirable
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FIG. 16. The molar excess
enthalpy H of CO&+C,H6 at
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indicate experimental values ob-
tained by Wormald [61] and the
curves represent values calculat-
ed from the crossover model.

o.o ~

0.0 0.2 0.4 0.6 0.8 1.0
x (Mole Fraction of C2He)

0.0 I

0.0 0.2 0.4 0.6 0.8 1.0
x (Mole Fraction of C2He)

to drop the critical-line condition at the expense of some
added complexity in the use of the crossover model.

At this stage our crossover model for the Helmholtz
free-energy density is primarily suited for representing
the thermodynamic properties of mixtures in the one-
phase region near the critical line. We have not yet been
able to include a representation of the vapor pressures
and the densities of the vapor and liquid phases at the
two-phase boundary of the same quality as obtained by
Moldover and Gallagher [16] and Rainwater [59] with
equations especially designed for the phase boundary. To
improve the capability of our crossover Helmholtz free-
energy density for dealing with properties in and near the
two-phase region, additional research will be necessary.

T —T, (g) p
—p, (g)

Ap=
T '

p (0)

Q

RT, (g)

A,~=hp —P,

with

x 1 —x 1 d c

1 —
g T dg
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APPENDIX

The relation between x and g is

p

BA, 1 dT, (g) BA,
Bg,p T dg r)r

dP= U dr+pdh+ Wdg,

dA, fr= —Odr+h dp —W'dg .

(AS)

(A9)

. 0p

(A 10)

1. Fundamental thermodynamic quantities 3. Equations for crossover model

1 n PT=, I'=, x =p2/p,RT' RT'

P& P2
u =U/V P1 RT P2

with

(A 1) p, (g)
ff(r, p, g)= tb A(r, p, g)+ Ao(r, g)+pho(r, g)]

C

(A 1 1)

with
dP = —u dT+p&dp&+p2dp2 .

2. Isomorphic thermodynamic quantities

h =ln(e '+e '),~z

1+ (P1 P2)

(A2)

(A3)

4

&o(r, g)= —1+ g A, (g)rj,

5

ho(r, g)= g p (g)r'.
Pc j ——P

The critical part 62 is given by

(A12)

(A13)
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Bb, /I„
b, A (r,p, g) =b, A„(t,M, () c(—g)

with

aaA,
M, g

(A14)

AA„(t,M, g)= ,'tM—TX)+—u u(g)A(g)M 2) 'll+ —a (g)M 2) / VV/+ —a (g)M 2) ll

+—a (g)tM T2) n' + a (g)t M T 2)n ' 't —JY—
1 1

4t 14 2125 22 2 (A15)

BhA„
t =c,(g)~+c(g)

BM
(A16) Pressure:

4. Derived thermodynamic quantities

aaA,M=c (g)[bp —d, (g)~]+c(g)

The rescaling functions V; 2), Vl, V, and W are

V—Y(2—I/v)/co gl —Y ~/~ ay= Y~/
7

(A17)

(A18)

P, (g)T aa J„P= pT (g) Bp

Energy density:

—5A„(~,p, g) —Jo(r, g)

(A23)

V= Y'
(xu A

The crossover function Y is to be determined from the
equations

BA,~
u = RT, (g)—

a1- p, g

(A24)

1 —[1—u(g)]Y=u(g) 1+ A( ) (AI9) P, (g) c, (—g) at M, g

x =tV'+ 2u*u(g)A(g—)M 2)Vl .

The relevant thermodynamic derivatives are

(A20) aaA„—c (g)d, (g) + g jAJ(g)~~
BM

aaA
=c~(g)

asap

aaA„
M, g

(A21) 5

+ Kit, (k)r' '

P, (g),

Enthalpy density:

(A25)

aaA„—cp(g)d, (g) (A22) H—=P/p+u .
V

(A26)
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