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Multifractal analysis of the galaxy distribution: Reliability of results from finite data sets
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We test the reliability of the different generalized fractal dimension estimators, when applied to point
distributions with a priori known scaling properties. We consider the effects of varying the amount of
available data and the dimensionality of the distribution. The present work is motivated by the growing
interest in cosmological context to safely analyze the scale-invariant properties of the observed galaxy
distribution; these results may also be of value in all physical situations where the statistical analysis of a
fractal "dust" is required. We consider (a) a monofractal structure with dimension D =1, (b) a mul-

tifractal structure, and (c) a scale-dependent structure, behaving like a D = 1 monofractal at small scales
and an homogeneous dust at large scales. For this structure, the clustering strength and the point num-

ber density have been chosen as to be similar to those observed for the galaxy distribution. Although the
different methods display different advantages and pitfalls, we find that the presently available galaxy
samples can be usefully employed to trace the scaling properties generated by nonlinear clustering.

PACS number(s): 05.45.+b, 02.50.—r, 98.60.Eg

I. INTRODUCTION

In recent years, the availability of extended galaxy red-
shift samples has significantly improved our view of the
large-scale structure of the Universe. One striking
feature of large-scale clustering is the remarkable
hierarchical arrangement in the distribution of observable
structures: galaxies are not randomly distributed, but
tend to be clumped to form clusters, while clusters form
in turn even larger structures, the superclusters, involv-
ing scales of several tens of megaparsecs. This remark-
able behavior led several researchers to interpret the
large-scale galaxy distribution in terms of a fractal struc-
ture [1—12]. The by-now classic results on the power-law
behavior of the two-point galaxy correlation functions, as
well as the hierarchical behavior of the n-point functions
(see, e.g., Ref. [3] for a review), indicate that the large-
scale structure of the Universe possesses well-defined
scaling properties, at least on scales & 10h ' Mpc. (As
usual in cosmology, h represents the value of the Hubble
constant in units of 100 km s ' Mpc '. In general
0.5 & h & 1 is considered. ) The interpretation of this scal-
ing behavior in terms of fractal clustering has recently
stimulated various quantitative analyses of both the ob-
served galaxy [5,6,9—11] and cluster distribution [12], as
well as of cosmological N-body simulations [13]. To this
purpose, a variety of methods have been used, which
have been originally developed in the framework of sta-
tistical mechanics and dynamical systems theory for
evaluating the spectrum of generalized fractal dimen-
sions. Among these, we mention the evaluation of the

generalized correlation integrals [14,15], the classic box-
counting algorithm [4], the density-reconstruction pro-
cedure [16], the nearest-neighbor method [17,18], and the
recent method based on the minimal spanning tree algo-
rithm [10,19].

The various generalized dimension estimators, howev-
er, are based on different assumptions and they may be
affected by different systematic errors. In addition, these
methods may be sensitive in a different way to the scaling
properties on different scale ranges, a fact which may be
of relevance in the analysis of natural fractal sets, where
the scaling behavior may be confined to a finite range of
scales and where different types of fractal properties may
be encountered at small and large scales. This aspect is

extremely relevant in a cosmological context, where frac-
tality of galaxy clustering is detected at small scales,
while homogeneity is expected to hold at large enough
scales. For the above reasons, some differences should a
priori be expected among the results provided by the vari-
ous multifractal analysis methods. The limited statistics
normally encountered in the study of galaxy samples may
be another source of problems. Analogously, the pres-
ence of boundary effects (related to the peculiar shapes of
galaxy surveys) may potentially affect the results of the
analysis.

In order to assess the reliability of the results provided
by the different multifractal estimators when dealing with
a finite number of data points, in this work we apply the
different algorithms to fractal distributions with known
scaling properties and with different statistics. We also
analyze a scale-dependent rnonofractal distribution to ex-

1063-651X/93/47(6)/3879(10)/$06. 00 47 3879 1993 The American Physical Society



3880 BORGANI, MURANTE, PROVENZALE, AND VALDARNINI 47

A correct definition of a fractal set is "a mathematical
object whose fractal (Hausdorff) dimension D is strictly
larger than its topological dimension DT." The rigorous
definition of fractal dimension may be found, for exam-
ple, in Mandelbrot [4]. For a fractal point set in a three-
dimensional ambient space (such as the galaxy distribu-
tion), it is DT =0 and 0 (D ~ 3. If D =3, the point set is
space filling on scales larger than the mean interparticle
distance. This behavior is the signature of homogeneity;
in this case the fractal nature of the distribution is rather
trivial. If D &3, then the point set does not fill the am-
bient space. For a fractal distribution, one has that

Do
Nb(r) ~ r

at small r, where Nb(r) is the number of boxes with side r
that are needed to cover the distribution under study.
The quantity Do is the "box-counting dimension, " which
provides an estimate of the fractal dimension D.

The simplest fractal distributions are self-similar
monofractals (homogeneous fractal sets), which are
characterized by a single fractal dimension and by a
unique scaling behavior, i.e., all moment of the probabili-
ty distribution scale equivalently. More complex fractal
sets are represented by the so-called multifractals
[20—22]. For a multifractal set, a single fractal dimen-
sion is not sufficient to characterize the scaling properties
of the distribution, and an entire spectrum of generalized
fractal dimensions D is required. The different general-
ized dimension estimators have the goal of evaluating this
spectrum.

The most intuitive approach to the evaluation of the
generalized dimensions is based on an extension of the
box-counting (BC) algorithm. For a set of N points, we
define the partition function

Nb(r)

B(r,q)= g [p; (r)]~,
Nb(r)

b

(2)

ib being the label of the box, p,. (r)=n, (r)/N, and n, (r)
b b b

the number of points falling in the ibth box. For a fractal
set, at small r we expect B(r,q ) ~ r ~~', where

r(q) = (q —1)D~ (3)

and D is the generalized dimension of order q. The BC
dimension is found for q =0. For a monofractal, the gen-
eralized dimensions are all equal, while multifractal sets
are characterized by Dq & Dq when q & q'. According to
the definition (2) of B(q, r ), it turns out that for q & 0

plore how the different methods are sensitive to scale
changes in the fractal behavior. This is particularly in-
teresting since it turns out that a scale-dependent
monofractality may sometimes be seen as a spurious mul-
tifractality. In our opinion, these tests are a necessary
step in order to obtain reliable estimates of multifractal
properties from galaxy data. Clearly, the results dis-
cussed here should be of value for any fractal analysis of
points distributions with a finite amount of data, indepen-
dent of their physical origin.

II. FRACTAL DIMENSION ESTIMATORS

overdense regions are mostly weighted, while negative-
order dimensions deal with the scaling of the distribution
inside the underdense regions. (See, for example, Ref.
[22] for a technical introduction to multifractals. ) Note
also that the generalized fractal dimensions are rigorous-
ly defined only in the limit r —+0. For "physical" fractals,
however, different "effective" fractal dimensions may be
associated with different scale ranges, provided that a
power-law behavior of B(r, q) is observed on a sufficiently
large interval. In this case, the generalized dimension es-
timators provide information on both the scaling proper-
ties and the extent of the scaling range. In this respect,
we note that every set composed by a finite number of
data points has a fractal dimension D=O in the limit
r~O, since at very small scales the dimension of each
single point is estimated.

We now brieAy review the other generalized dimension
estimators that will be used in this work. A useful tech-
nique is based on an extension of the correlation-integral
(CI) method [14,15]. The partition function is defined as

N

Z(r, q)= —g [C, (r)]~ (4)

where R;(p) is the radius of the smallest sphere (centered
on the ith point) containing Np points, with 2/N ~p ~ 1.
For a fractal set, it is W(p, r) ~p' i at small p values.
Note that in this case one obtains q (and consequently the
dimension) as a function of r. From this, the generalized
dimensions may be easily obtained through Eq. (3).

The nearest-neighbor (NN) algorithm [17,18] is based
on the partition function

G„(n,r)= —g [5I"'(n)]1

n,.

where 5I"'(n) is the distance of the ith particle to its kth
nearest neighbor and n is the number of points in a ran-
domly selected subsample of the distribution. In general,
the evaluation of the first neighbor (k =1) is aff'ected by
small-scale random errors; for this reason it is preferred
to use k = 3 or k =4. For a fractal distribution
Gk(n, r) ~ n~ ', independent of the neighbor order.
Again, one obtains q as a function of ~.

A last method to compute the spectrum of generalized
dimensions has recently been proposed [10,19]. This is
based on the evaluation of the minimal spanning tree
(MST) connecting the points of the distribution. For a
given point set, the MST is defined as the unique graph
connecting all the points, with no closed loops and hav-

where NC, (r) represents the number of neighbors with r
from the ith point. For a fractal set, at small r the scaling
Z(r, q) ~r~~' holds and gives the Dq dimension accord-
ing to Eq. (3). The well-known correlation dimension
[14] is found for q =2.

Another method to evaluate the spectrum of the D 's,
called the density-reconstruction (DR) method, is based
on the evaluation of the partition function [16]

W(p, r)= —g [R;(p)]
1 N

N, .
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ing minimal length. In this approach, a partition func-
tion is defined as

m

S(m, r)= g [A.;(m)]
m, .

(7)

III. EVALUATING THE DIMENSION SPECTRUM
OF FRACTAL DISTRIBUTIONS

In order to test the properties and the pitfalls of the di-
mension estimators discussed above, we now apply them
to the analysis of fractal structures whose scaling proper-
ties are known a priori. The point distributions con-
sidered here have been generated by a modification of the
P model and random P model of turbulence [23,24],
which have recently been proposed as simplified models
of the large-scale distribution of galaxies [25—28]. Such
models provide fractal point distributions through a cas-
cading process, which in the context of turbulence model-
ing represents the energy transfer from large scales to
small scales, where dissipation occurs. For the cosmolog-
ical interpretation of these models see, e.g., Refs. [26,27].
To implement the cascading process, we start with a
"parent" cube of side L„which breaks into 2 "child"
subcubes having side L/2. Let f, (i=1, . . . , 8) be the.

where A,;(m) is the length of the ith link in the MST and
m is the total number of links composing the MST. For a
fractal set, extracting randomly selected subsamples hav-
ing different number m of points, we have
S(m, r) ~m~ '. Also in this case one obtains q as a
function of ~.

It is important to note that there is a crucial difference
between the first two methods (BC and CI) and the
remaining three. In fact, the first two algorithms evalu-
ate the partition function by a priori fixing the scale r.
The "effective" dimension D (r) (as given by the local
logarithmic slope of the partition function) is thus a func-
tion of the physical scale r. This fact allows for disentan-
gling the contributions of different scaling regimes at
different scales, i.e., for detecting a scale-dependent frac-
tal behavior (or, eventually, a nonscaling behavior). The
other methods, however, evaluate the partition functions
as functions of the probability p or of the number of
points in random subsamples. All these quantities do not
bear a one-to-one correspondence with the physical scale;
e.g. , in the DR method a given probability is associated
with a broad distribution of scales, providing information
on the distance scale only on average. As a consequence,
the behavior of the partition function at a given value of
p, n, or m mixes several contributions from different scale
ranges; this may cause trouble in situations where
different scaling regimes are present at different scales.
In addition, the shape of the scale distribution is a func-
tion of ~, being narrower for large values of ~ and much
broader for negative ~'s. This dependence on ~ leads to
weighting the various scales in a different way at different
values of ~; a monofractal distribution with two scaling
regimes at different scales may thus be spuriously viewed
as a multifractal distribution when analyzed with these
methods. An example of such a behavior is given in Sec.
III C below.

i=1
1 —

q
(8)

where mass conservation requires gs, f, = 1. According
to Eq. (8), the number of nonvanishing f s determines
the value of the Hausdorff dimension, while the asymp-
totic values D and D+ ~ are fixed by the smallest and
largest f;, respectively. Once the final density field is ob-
tained, its Monte Carlo sampling gives the required point
distribution. A particularly simple case is when all the
nonvanishing f s take the same value. In this case, Eq.
(8) gives a monofractal spectrum, with the dimension
value uniquely fixed by the number of nonvanishing f s.
A homogeneous space-filling distribution is obtained
when the f s are all equal and different from zero, so
that the mass is equally distributed between all the sub-
cubes.

Another interesting case occurs when the f; values
change with the iteration step. The corresponding struc-
ture is not self-similar, but it has different scaling proper-
ties on different scale-ranges, or a nonscaling behavior,
depending upon the selected scale dependence of the f s.

A. Monofractal distribution

We start our analysis by considering a monofractal
point distribution with D =1. According to Eq. (8), this
can be obtained from the cascading process described
above by taking only two nonvanishing f s, each holding

To obtain a more realistic distribution, we take the
number n; of nonvanishing f s for each breaking object
as a random variable with mean value ( n; ) =2; this is
obtained by prescribing each object in the iteration cas-
cade to have a probability p =

—,
' of being associated with

a nonvanishing f, .
Figure 1 reports the results of the multifractal analysis

of the corresponding point distribution. To check the
sensitivity of the various methods to changes in the statis-
tics, we consider both a distribution with about 18000
points and a random subsample of 3000 points. In Fig. 1,
the three different columns report the results of the
methods introduced in the preceding section. The
different panels in each column refer to different values of
q or ~; they report the local logarithmic slope of the par-
tition functions, as obtained by a linear least-squares fit
over three adjacent values (in log-log coordinates). Here
and in other following plots, solid circles refer to the en-
tire distribution, open triangles refer to the random sub-
sample. A meaningful value of the "effective" general-
ized dimension is defined by the constancy of the loga-
rithmic slope over a sufficiently wide range of scales. A

fraction of the mass of the parent cube which is assigned
to the ith subcube. By repeating k times this cascade
iteration, we end up with 2 small cubes with side I./2,
each containing a fraction of the total mass, that depends
on its fragmentation history. The subsequent mass distri-
bution can be uniquely related to the D spectrum of gen-
eralized dimensions. In the limit of an infinite number of
iterations, it can be proven that

8

log, y fP
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FIG. 1. The local dimension as estimated
from the slope of the partition functions for a
pure monofractal structure with D =1; the lo-
cal slopes have been obtained as a running
least-squares fit over three adjacent values of
the partition function. Solid circles refer to
the complete distribution and open triangles
refer to the 3000-point random subsample.
Column 1 reports the results of the CI method,
column 2 refers to the BC method, column 3 to
the DR method, column 4 to the NN method,
and column 5 to the MST method. In columns
1 and 2 the five panels refer to q = —2, 0, 2, 4,
and 6 from bottom to top. In column 3, the
five panels refer to w= —4, —2, 0.1, 4, and 6
from bottom to top. In columns 4 and 5, the
panels refer to ~= —6, —4, —2, 0.1, and 2
from bottom to top.

log «[r/L] log „[r/L] log„[n] log M[m]

monofractal distribution is revealed by the equality of the
generalized dimensions corresponding to different values
ofqor w.

Column 1 indicates that the CI method works rather
well for q ~0, both for the complete distribution and for
the random subsample. Note also the oscillations
presented by the local dimension around the correct
value. This is not a spurious artifact of the fractal algo-
rithm, but is the consequence of the "lacunarity" (i.e., the
presence of big voids with approximately periodic struc-
ture) generated by the cascading process [17]. For nega-
tive q's this method does not provide the correct results.
For example, for q= —2 the method indicates a well-
defined scaling behavior with D 2 =0.4 in the case of the
complete distribution. This is due to lack of statistics and
discreteness effects, which heavily affect the results at
negative q's, when underdense regions with very few
points are mostly weighted. Care should thus be taken in
considering the results provided by this method for q & 0.
Similar behavior is evident in the results provided by the
BC method (column 2), although some larger scatter of
the local dimension is observed. Reliable results are ob-
tained for 0 + q ~ 4; the scatter becomes rather strong for
q )4. This scatter is probably due to the difficulty of the
BC algorithm to follow the oscillations of the local di-
mension due to lacunarity effects. For negative q's, the
method seems to work better than the CI approach, even
though a dimension less than the correct value D =1 is
detected.

The results of the DR method (column 3) are particu-
larly interesting. In fact, the correct dimension D =1 is
estimated for w) 0 in the case of the entire distribution;
however, for the random subsample there is a tendency
towards estimating a larger dimension; for example, the
estimated dimension is D =1.4 for ~=0. 1 for the 3000
points sample. This trend becomes rather dramatic for
negative ~'s. For ~&0 an average dimension D=1 is
correctly estimated from the entire distribution (even

though with a noticeable scattering of the local slope);
however, for the 3000 points sample the dimension esti-
mates are much larger (e.g., D, =2 for r = —2). Analysis
on much larger distributions (e.g. , a fractal with D =1
and 100000 points) has revealed that the DR method
provides extremely reliable results for large data sets.
However, the results in Fig. 1 show that this method is
very sensitive to the problem of limited statistics, espe-
cially for values of ~ ~ 0: the resulting variation of the di-
mension with ~ simulates some spurious rnultifractality.

Column 4 reports the results for the NN method when
the fourth-order neighbor is considered for ~ + 0 and the
first-order neighbor is used for ~&0. The analysis has
been repeated for the first four orders of neighbors, for all
values of ~. The results for all these neighbor orders are
very similar; the above choice minimizes random scatter
and Auctuations in the logarithmic slope of the partition
function. In general, for the entire distribution this
method provides the correct results for ~ ~ 0; the results
for the random subsample are not reliable even for posi-
tive ~'s. For negative values of ~, the NN method does
not give the correct results, for neither the entire distri-
bution or the random subsample. The discreteness prob-
lerns present for ~ &0 are sometimes translated by this al-
gorithm into a wild scattering of the local slope of the
partition function. On the other hand, note that the
method provides a well-defined, but wrong, estimate
D =2 for ~= —2 for the entire distribution. This
behavior is rather critical since the fiatness of the local di-
mension may lead to incorrect conclusions.

Column 5 shows the results for the MST method. This
method provides the correct result D =1 for all values of
~, in the case of the entire distribution. For the same
values of ~, the results for the random subsample provide
D =2. Note that the local logarithmic slope of the parti-
tion function is apparently well behaved also for the ran-
dom subsarnple; however, the convergence is forced to a
wrong value of the dimension. To optimize the perfor-
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mance of the MST method, it has been suggested [19] to
eliminate the very small (for r) 0) and the very long (for
r (0) edge links from the construction of the MST.
These edge links are in fact likely to introduce small- and
large-scale noise, respectively. Progressively cutting the
tails of the edge-links distribution induces convergence to
a well-defined local logarithmic slope of the partition
function. For the case studied here, this procedure fur-
nishes the correct results, since the partition function has
either no scaling behavior (for the wrong edge-links cuts)
on a local logarithmic slope giving D=1. As a con-
clusion, we observe that the MST method gives a correct
answer for all values of ~, when a distribution with a
sufficiently large statistics is analyzed. In general, this
method should, however, be used with with great care on
distributions with limited statistics in order to avoid ap-
parent convergence of the local slope and consequent
spurious estimates of the dimensions.

B. Multifractal distribution

As a second step, we consider the analysis for a mul-
tifractal distribution with dimension spectrum fixed ac-
cording to Eq. (8). For the purpose of the present study
we have chosen the f s such that D„=0.8, Do=2, and
D =3. The field produced by the random P model has
been sampled with a total of 50000 Monte Carlo points.
Figure 2 reports the local dimensions estimated by the
various partition functions.

Column 1 reports the results for the CI method. Note
the growth of the local dimension at small scales, due to
the presence of small-scale Gaussian noise generated by
the Monte Carlo sampling. This is more evident at larger
values of q; in fact, in the regions of high density there is
a larger number of points, which are uniformly random
distributed inside the same box. In this case, the average
distance between points in high-density regions is less
than the minimum scale generated by the random p mod-
el; at very small scales the distribution has dimension

three. At larger scales, the correct dimension is deter-
mined for values of q) 0, even though the local scope
displays non-negligible functuations. For q(0 the re-
sults provided by the CI method do not reproduce the
correct dimension spectrum, as already noted in the
study of the monofractal dust with D = 1. In the present
case, the Do dimension is not correctly evaluated by the
CI approach.

The results of the BC method are reported in column
2. The local slope of the partition function is extremely
scattered in this case, while discreteness effects do not al-
low the evaluation of the dimensions for q (0. For posi-
tive q's, the average value of the logarithmic slope of the
partition function provide an approximate estimate of the
corresponding generalized dimension.

Column 3 reports the results for the DR method. For
r))0, this method is able to separate the (small) scales,
where random noise dominates, from the (larger) scales,
where the distribution is fractal. For example, in the case
of the entire distribution, for ~=6 there is a large plateau
with D, =2.5 for p &0.01; the dimension estimates as-
sume their correct value for p)0.01. For the random
subsample this effect is even more evident; the dimension
estimate is D, =3 for large ~'s and p &0.01. For ~(0,
the dimension estimates for the entire distribution are
close to the theoretical values, even though they tend to
remain below the correct values, especially for ~ &&0, be-
cause of discreteness effects. For ~(0 the results for the
random subsample provide dimension estimates that are
larger than the correct ones. In general, the D estimates
provided by the DR method are rather reliable once the
local slope is evaluated over a p range where small-scale
noise is absent. This is clearly shown in Fig. 3, which re-
ports the dimension estimates obtained with this method
together with the theoretical dimensions [as obtained by
Eq. (8)j. A good agreement between the two spectra is
obtained.

The NN method, shown in column 4 of Fig. 2, pro-
vides a correct evaluation of the multifractal spectrum
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multifractal structure discussed in the text.
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FIG. 3. Spectrum of generalized dimensions D, vs ~ for the
multifractal structure analyzed in Fig. 2. The solid line indi-
cates the theoretical values of the dimension while solid circles
indicate the dimension estimates obtained by the DR method.

in fact detected for the random subsample; confirming
the high sensitivity of the MST method to statistics.

For the MST method, the choice of different cuts to
the edge-link distribution does not improve the evalua-
tion of the multifractal spectrum. Figure 4 reports the
local logarithmic slopes of the MST partition functions
for different cuts in the edge-link distribution. The vari-
ous columns correspond to different edge link cuts, the
values of ~ are the same as already considered in Fig. 2.
Contrary to what happens in the analysis of a pure
monofractal distribution, where either convergence to the
correct value of the dimension or a huge scattering of the
local slope is observed, for the multifractal dust the
slopes appear to converge rather clearly to an approxi-
mately constant value for various choices of the edge-link
cuts. The spurious estimates provided by the MST ap-
proach are not an artifact of a particular choice of the cut
on the distribution; rather, they seem to be inherent in
this method.

for ~~0, if the large sample is considered. The analysis
of the random subsample does not give any stable result.
For positive values of v, the analysis of the entire distri-
bution reveals the small-scale random noise (correspond-
ing in this case to large values of n), providing also an ap-
proximate estimate of the correct generalized dimension
at small values of n. The results of the MST approach
are reported in column 5 of Fig. 2. This method provides
a correct dimension estimate for ~= —2, corresponding
in this case to q =0, for the entire distribution. The di-
mension estimates obtained for the other values of ~ do
not correctly reproduce the theoretical values of the gen-
eralized dimensions. For ~& —2, the dimensions remain
larger than the theoretical values, while for ~( —2 the
dimensions remain below the correct values. In general,
this method displays some tendency towards providing
dimension estimates about D =2 for this multifractal dis-
tribution. For the random subsample, the MST method
does not provide reliable results. A dimension D, =3 is

C. Scale-dependent distribution

In most natural systems, the fractal behavior does not
extend over arbitrarily large-scale ranges; instead, it is
observed only on a finite scaling regime. In a cosmologi-
cal context, this is just the case for the large-scale distri-
bution of galaxies. Observational evidences indicate that
the multifractal properties of the galaxy distribution are
confined to small scales, while D =3 at scales larger than
an appropriate homogeneity threshold. Such a behavior
is consistent with the view that the fractal properties are
built by the process of nonlinear gravitational clustering
[13]. According to the results of N-body simulations of
cosmological gravitational clustering, an initially homo-
geneous point distribution is transformed by the gravita-
tional evolution into a fractal dust; since the gravitational
clustering starts from the small scales, at every finite time
there is the simultaneous presence of an evolved mul-
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tifractal distribution at small scales and of an homogene-
ous distribution at large scales. In this case, it is impor-
tant to verify the behavior of the various analysis
methods, especially of those algorithms which mix
different scale ranges in the evaluation of the partition
function.

To approach this problem, here we consider a scale-
dependent monofractal distribution which is character-
ized by D =3 for scales larger than an homogeneity scale
Lz and by D =1 for scales smaller than Lz. This distri-
bution is obtained by the cascading process previously
discussed, by an appropriate choice of the f; parameters
in the two different scaling ranges. The homogeneity
scale is chosen to be —,

' of the size L of the simulation box;
there is a total of 30000 points in the distribution. A
comparison with the galaxy distribution is made possible
by requiring the number density of the simulated distri-
bution to be approximately equal to the average number
density ( n ) of bright galaxies, (n ) =0.01h ' galaxy
Mpc . Such a density is consistent, e.g. , with the average
galaxy density obtained in the CfA II [29] redshift sam-
ple. The density indicated above gives L=140h ' Mpc
and Lh =35h ' Mpc in physical units. As an example of
undersampling, we also analyze a 3000-point random
subsample of the complete distribution.

Figure 5 shows the results of the multifractal analysis
of the entire scale-dependent monofractal distribution
(solid circles) and of the random subsample (open trian-
gles). For positive q's, both CI and BC methods provide
extremely reliable results for the complete distribution,
indicating both the correct value of the dimension at
small scales (D =1) and the transition to homogeneity
above Lh. For q =0, the BC method gives a correct esti-
mate of the dimension, while the CI approach provides a
slight underestimate of the dimension. The improved re-
liability of the BC method with respect to the scale-free
D =1 structure is due to the fact that large-scale homo-
geneity fills the voids, thus suppressing the presence of la-

cunarity. This is also apparent from the remarkable sta-
bility of the local dimensions revealed by the CI method.

As usual, none of these methods is able to estimate at
small scales the generalized dimensions for q &0, due to
discreteness effects, while detecting the large-scale homo-
geneity. Note that the CI method gives an apparently
stable (but incorrect) estimate D =0.5 for q = —2. For
the random subsample, neither the CI nor BC method
provides reliable results at small scales. However, both
methods still detect the transition to large-scale homo-
geneity. This behavior is generated by the fact that many
points are now found at large mutual separations, due to
the imposed large-scale homogeneity. In the case of the
random subsample, the statistics is thus not sufhcient to
correctly sample the fractal behavior at scales smaller
than L„. Analogously, for the complete distribution this
effect leads to the presence of discreteness effects at scales
slightly larger than those detected for the pure D =1 dis-
tribution, even though the total number of points in the
scale-dependent distribution is larger.

The results of the DR method are reported in column
3. For ~~ —2, this method provides a reliable estimate
of the fractal dimension and of the transition to homo-
geneity in the case of the complete distribution. For the
random subsample, the results are not correct and they
provide spurious estimates of the fractal behavior. As
discussed in Sec. II, an important characteristic of this
method is that it mixes different scale ranges in the evalu-
ation of the partition function at a given value of p. This
mixing becomes more evident as the value of ~ decreases;
for ~ ~ —4 the results can hardly be interpreted, due to a
strong mixing between the small scales (where D = 1) and
the large scales (where D =3). Care has thus to be taken
when using this method for evaluating the negative ~ di-
mensions on scale-dependent fractal sets.

Columns 4 and 5 of Fig. 4 report the results of the NN
approach and of the MST method, respectively. The ran-
dom subsample provides extremely scattered and unsta-
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ble results when analyzed with these two methods. For
positive ~'s, the NN method gives somewhat reliable re-
sults for the complete distribution, with the caveat that
scale mixing tends to obscure the true scale dependence
of the fractal dimension for moderate values of ~. The
best scale separation is obtained here, as for the previous
method, for large values of ~. For ~(0 scale mixing be-
comes dramatic (even worse than for the DR method);
for example, a small-scale (large n) dimension D, =2 is
evaluated for ~= —2, and D =3 for ~= —4, suggesting
(erroneously) the presence of a multifractal distribution.
The use of this method on scale-dependent fractal sets
can thus spuriously transform the presence of two scaling
regimes at different scales into an apparent multifractali-
ty, since the effects of the scale mixing are different for
different values of ~. The results provided by the MST
are quite stable along the whole sequence of ~ values. For
the complete distribution, it always detects the correct
values, D =1 and D =3, holding at small and large scales,
respectively. However, because of scale mixing, only a
smooth transition between these two values is detected,
without any evidence of scale invariance over a finite in-
terval. Again, for the smaller sample the limited statis-
tics heavily affects the dimension estimate.

In order to check in detail the effects of undersampling,
we now consider five scale-dependent distributions with
different statistics, characterized by a total number of
points N=3000, 8000, 12000, 19000, and 30000, respec-
tively. These subsets are randomly drawn from an origi-
nal distribution of 60000 points. By power-law-fitting
the slope of the partition functions up to the homogeneity
scale Lz, we verify the reliability of the dimension esti-
mates for various values of q and ~. The results are plot-
ted in Fig. 6 for the BC (a) and the DR (b) methods. The
analysis with the GP method gives results which are simi-
lar to those of the BC algorithm. This is justified on the
basis of the plots of the local dimensions reported in Fig.
5. As for the MST and NN methods, we do not report
any result, given their limited reliability.

In Fig. 6(a) we plot the D dimensions (for the same q
values as in Fig. 5, i.e., q = —2, 0, 2, 4, 6) versus the num-
ber of points N. The error bars are 3' uncertainties aris-
ing from the log-log linear regression. For the highest
statistics, the dimensions converge to the correct value
D =1 at positive q's while the estimate is affected by
discreteness effects at low q's. The situation becomes
worse and worse when poor distributions are considered;
the D values progressively decrease with N. This effect
can be easily understood by a visual inspection of Fig. 5;
reducing N restricts the scale range where D takes Oat,
going to zero at very small scales. This shows the impor-
tance of plotting the local dimensions in order to verify
the width of the scale-invariance range before proceeding
with a crude power-law fit of the partition function over
the scales where self-similarity is expected.

Figure 6(b) reports the generalized dimensions for the
DR method for ~= —6, —4, —2,0. 1,2. In this case, the
W partition function of Eq. (5) depends on the probability
measure p, instead of on the scale r. For this reason, a
suitable prescription must be devised in order to associate
the proper p value to the homogeneity scale L&. From
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FIG. 6. Estimates of the fractal dimension for the scale-
dependent distribution, over the scale range where D = 1 is ex-
pected, as a function of the number of points used to trace the
underlying structure. Different symbols refer to different mul-
tifractal orders. The plotted error bars are 3o uncertainties
arising from the log-log linear regression of the partition func-
tions. Panel (a) is for the BC method. In this case, the dimen-
sion estimates are on the scales belo'w the homogeneity scale Lz.
Panel (b) is for the DR method. Here, the dimension estimates
are realized below the probability p, which is associated to Lz
according to 8'(p*,~= —1)=Lz.

Eq. (5), it is easy to recognize that W(p, v.= —I)
represents the value of the average radius associated to p.
Accordingly, we fit the DR partition function up to the
probability p *, such that W'(p', r= —I ) =Lh. It is, how-
ever, clear that such a procedure is not rigorously
correct, since no one-to-one correspondence exists be-
tween p and r values. As a consequence, some scale mix-
ing always appear, whose amount increases as lower ~'s
are considered (see Fig. 5). As in the case of the BC
method, a reliable estimate of the fractal dimension is at-
tained only for the richest distribution. However, even in
this case, D is systematically overestimated, mostly at
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negative ~. This effect is entirely due to scale mixing;
even at small p value, the partition functions take some
contribution from the large scales, where homogeneity
(D =3) holds. The scale-dependence generates a spurious
multifractal behavior, which we recall to be absent by
construction in the point distribution under study. Once
more, a close investigation of the local dimensions is
strongly suggested in order to avoid incorrect inferences.
The situation becomes even worse for lower statistics;
small-scale discreteness originates an underestimate of
the dimension for ~)0, and, vice versa, an overestimate
for &&0.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have discussed the reliability of the re-
sults provided by different fractal dimension estimators
when applied to three-dimensional fractal dusts with
finite statistics. In particular, we have considered struc-
tures with different fractal properties and with a different
number of points. We have analyzed three different
structures: a monofractal with dimension D =1, a mul-
tifractal, and a scale-dependent structure with D =1 at
small scales and homogeneity (D =3) at large scales. The
present analysis has been motivated by the growing in-
terest in the quantitative determination of the scaling
properties of the galaxy distribution [1—12] and in the
study of the fractal nature associated with nonlinear
gravitational dynamics [13]. It is clear, however, that the
results discussed here are of more general interest, being
relevant to any statistical analysis of experimental or nu-
merica1 point distributions, in many different physical
contexts.

The main results of this work can be summarized as
follows.

(a) The box-counting and the correlation-integral
methods are in general quite reliable to estimate positive-
order dimensions, while they suffer for discreteness effects
for negative q's, where underdense regions are mostly
weighted in the computation of the partition function.
The stability of these methods, when the number of
points in the sample is decreased, depends on the dimen-
sionality of the structure; fractals having a lower dimen-
sion require a smaller number of points to be adequately
sampled. A further advantage of these methods is also
that they fix a priori the physical length scale where the
dimension is estimated. This aspect is of particular
relevance in the analysis of scale-dependent structures.
In this case, the BC and CI methods allow one to safely
detect the presence of a characteristic scale in the distri-
bution, where the dimensionality sharply changes.

(b) The DR method is rather good in estimating both
positive- and negative-order dimensions. For this reason,
this method is particularly suited to follow the whole
spectrum of dimensions in a multifractal structure. This
is clearly seen in Fig. 3, where the DR method measures
Dq values, which are always remarkably similar to the
true values expected on the grounds of Eq. (8). A possi-
ble drawback of this method lies in the fact that,

differently from the BC and CI algorithms, each probabil-
ity value does not correspond to a unique choice of the
physical scale; instead, scale mixing may occur. Clearly,
this could represent a potential problem when dealing
with scale-dependent structures. From Fig. 5, one sees
that the DR method is able to disentangle the different
scaling regimes for positive ~'s where scale mixing is less
dramatic, while the results are much less reliable for neg-
ative ~'s. Finally, this method severely suffers for lack of
statistics. For poor samples, as shown in Fig. 1, the DR
method tends to overestimate the dimension.

(c) As far as the MST and NN methods are concerned,
they appear to give the less reliable answers. The only
case in which they have been shown to be acceptable are
for the D =1 structure with 18000 points. This suggests
that such methods are eKcient only when a very high
sampling rate is allowed. In the analysis of the scale-
dependent structure, these methods displayed a very
strong scale mixing. As a consequence, the local dimen-
sion never flattens at an approximately constant value, al-
though it ranges between the correct values, D = 1 and 3
at small and large scales, respectively. These results sug-
gest that some care must be payed when using the MST
and NN methods to analyze the multifractal spectrum of
the galaxy distribution.

(d) A general indication provided by the results dis-
cussed here concerns the relevance of using the local di-
mensions in order to verify the existence and the exten-
sion of a self-similarity scale range. In fact, discreteness
effects always put a lower bound to the scales where
scale-invariance can be safely detected. Moreover, when
different fractal properties are expected at different scale
ranges (such as for the galaxy distribution in cosmologi-
cal context), the presence of scale mixing in some fractal
algorithms can produce dimension estimates, which de-
taches from the correct values by an amount depending
on the multifractal order.

From the results of the present work, some general
conclusions on the multifractal analysis of the galaxy dis-
tribution can be drawn. The scale-dependent structure
considered here has a number of points and a homogenei-
ty scale which are similar to those encountered in the
analysis of real galaxy samples. The plots of Figs. 5 and 6
show than an excessive sparse sampling (as in the case of
the random subsample) does not allow one to trace ade-
quately the scaling properties where the clustering is non-
linear. However, the results obtained from the entire dis-
tribution indicate that the multifractal analysis methods
discussed here should provide reliable results, when ap-
propriately employed. Our conclusion is thus that com-
plete and extended redshift samples, such as the emerging
CfA II galaxy redshift survey [29], have enough statistics
to trace the fractal and scaling properties associated with
gravitational dynamics. A crucial requisite, however, is
the knowledge of the behavior and of the pitfalls of the
various analysis methods; analogously, the simultaneous
usage of several different analysis methods is an impor-
tant ingredient of a reliable analysis. Both these issues
have been thoroughly discussed here.
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