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We investigate the thermally activated escape of a Brownian particle over a potential barrier whose
height fluctuates with a rate o. between the values E+ and E . We are mainly interested in the low-

temperature behavior where E+ /T &)E /T. We calculate the mean exit time as a function of the rate
of the barrier fluctuations for the piecewise linear and the piecewise constant barrier, ~=~(a). For the
piecewise constant potential we find three different regimes: ~-~+ for a(~+ =exp( —E+ /T), ~-2~
for a& w '=exp( —E /T), and w-a ' for ~+'(e(w '. The mean exit time for the piecewise linear
potential has a different behavior for fast barrier fluctuations, o.)~; ~(a) is a monotonously increasing
function that approaches the asymptotic value r- Jr+ r for a —+ ~. We show that the behavior of the
mean exit time for the piecewise constant potential is characterized by the absence of correlations be-
tween barrier crossings and barrier fluctuations. We discuss these correlations in some detail for the
piecewise linear potential barrier.

PACS number(s): 05.40.+j, 02.50.—r, 82.20.Mj

I. INTRODUCTION

The diffusion of a particle over a barrier has attracted
much attention over the past 50 years. It has many appli-
cations in problems from physics, chemistry, biology, and
other fields. A particle is moving in a potential with two
local equilibrium positions that are separated by a poten-
tial barrier. The particle is coupled to a heat bath so that
in a reduced description, the particle is subject to both a
damping force and a fluctuating random force. In many
cases the motion of the Brownian particle is approximat-
ed by a Markov process whose transition probabilities
obey a Fokker-Planck equation [1].

The particle stays near one of its equilibrium positions
for a long time until the particle jumps to the top of the
barrier due to rare energy Auctuations. The escape rate is
governed by a Boltzmann factor, to ~ exp( b,E /T), —
where AE is the potential difference between the top and
the bottom of the potential and T is the temperature of
the heat bath (in units with kii= 1). The prefactor is
determined by the properties of the motion of the particle
near the bottom and the top of the barrier as well as the
strength of the coupling between the particle and the heat
bath. An account of the exhaustive discussion of these
questions is found in a recent review [2].

In the last decade, thermally activated escape has been
studied in systems in which other dynamic processes are
present. In particular, nonlinear cooperative effects have
been observed in systems with fluctuational transitions
and periodic modulations both experimentally and
theoretically. It was found that the addition of external
noise may amplify the signal-to-noise ratio (SNR) in a
periodically driven bistable system (stochastic resonance)
[3—8].

The standard model for stochastic resonance is an
overdamped Brownian particle which is moving in a bi-
stable potential and is driven periodically. At low-noise
level, the particle hops infrequently between the wells

with a rate that increases with increasing noise level ~ In
the intermediate-noise-level regime, the likelihood of a
hop is greatest when the deterministic modulation
reaches its maximum value. With further increase of the
noise level, the particle hops frequently between the
wells. The SNR thus has a characteristic domelike
shape.

In this paper, we study the thermally activated escape
of a Brownian particle over a fluctuating barrier [9,10].
In our model, we take for the barrier height a dichotomic
random process. That is, the barrier height fluctuates
with a rate o, between the values E+ and E . This mod-
el has previously been studied by one of us [11] and this
work constitutes a more complete presentation and ex-
pansion of that work. It was found that as a function of
the rate of the barrier Auctuations, the mean exit time has
a resonancelike behavior.

We may expect that at all times, the Brownian particle
escapes over either the large or the small barrier. With
this assumption, a particular behavior of the mean exit
time already follows. For slow barrier fluctuations, the
mean exit time is governed by the escape over the large
barrier E+, r-r+=exp(E+/T), while the escape over
the small barrier E governs the mean exit time for fast
barrier fluctuations, r- r =exp(E /T). In an inter-
mediate regime, the mean exit time is inversely propor-
tional to the rate of the barrier Auctuations, ~-a
However, in the case of the piecewise linear potential bar-
rier, the Brownian particle is moving in some average po-
tential for fast barrier fluctuations. For the mean exit
time, we therefore find r-Qr+r =exp[(E+
+E )/2T] in the limit a~oo. These considerations
show that barrier crossings and barrier Auctuations are
correlated for a general form of the potential barrier.

The outline of the paper is as follows. In Sec. II, we
specify more completely the model of an overdamped
Brownian particle moving in a metastable potential with
a fluctuating barrier. We find exact results for the mean
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exit time for both the piecewise constant and the piece-
wise linear potential. The results are discussed in Sec.
III. In Sec. IV, we introduce a truncated version of our
model that is described by two coupled rate equations.
The discussion shows the correlations between barrier
crossings and barrier fluctuations. Finally, we summarize
and discuss our main results in Sec. V.

II. MODEL

The equation of motion of an overdamped Brownian
particle is given by

x(t)+ U'(x) =g(t), (2.1)

where x (t) is the coordinate of the particle at time t,
U (x) is the deterministic force, and g(t) is the Gaussian
noise of zero mean intensity T (in units with ks = 1),

(g(t) ) =o,

(g(t)g(s)) =2Th(t —s) .

(2.2)

(2.3)

Closed expressions for the diffusion in a bistable potential
has been obtained for simple models I12]. We consider
the piecewise linear potential,

FIG. 1. (a) Sketch of the piecewise linear potential barrier
Ul(x). (b) Sketch of the piecewise constant potential barrier
U, (x).

(s/L)(L —x), O~x ~L,
U(x)= '

(E/L)(L +x), Lx 0, — (2.4) We define the quantities r+(x) by

and the piecewise constant potential, 1

2

1

2
(2.10)

0,
U, (x)=

0,

a&x&L,
—a&x&a,
—L&x& —a .

(2.5)

The stochastic process x (t), cf. Eq. (2.1), is defined once
we specify the boundary conditions at x =L and —L.

We consider the case when the barrier height flips with
equal rates between the two values E+ and E . That is,
the barrier height c is a Markovian two-state process,

where Xt+ are the adjoint Fokker-Planck operators for
the barriers with the heights E+ [14]. In Eq. (2.10) we as-
sume the stationary distribution of the barrier height
when the diffusion process starts off.

The boundary conditions (BC) for the r+ and r must
be specified. We choose reflecting BC at the bottom of
the barrier x = —L and absorbing BC at the top of the
barrier x =0,

E+ +E E+ —E
+ y(t), (2.6)

d T+
(x = L)=0, —

dx
(2.11)

y(t)=+1, (2.7) r+(x =0)=0 . (2.12)

with equal jump rates (1~—1)=a and ( —1~1)=a, re-
spectively. The fluctuating potentials are sketched in
Figs. 1(a) and l(b). The symmetric dichotomic noise has
zero mean and an exponential correlation,

(y(t) ) =o,
(y(t)y(s) ) =e

(2 &)

(2.9)

Because (x,y) is a two-variable Markov process, the
mean exit time is obtained in a standard manner [13].

r=r+( L)+r ( L) . — — (2.13)

The calculation of r+(x) is straightforward and is out-
lined here for the piecewise linear potential UL (x) only.
The adj oint Fokker-Planck operators are given by

With this choice r+(x) and r (x) are completely
specified. In the subsequent discussion, we are mainly in-
terested in the mean exit time of the Brownian particle
that is placed at the bottom of the barrier x = —L„
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Xt+= —(dU+/dx)(d/dx)+T(d /dx ). From Eq. (2.10),
we And

E+ d~+ d r++ —ar+(x)+ar (x)= —
—,',

dx dx' +

(2.14)

E d~ dv+T
2

ar (—x)+as+(x)= —
—,
' .

L dx

E
yp= T

Three parameters characterize our model,

L T
Tp 2 E2

A, =CX7p ~

(2.25)

(2.26)

(2.27)

We introduce

(2.15)

E
(2.28)

E+ +EE=
2

and

cr(x =0)=0, do (x = —L)=0,
dx

o (x)=r+(x)+r (x),
5(x)=r+(x) —r (x) .

We And the coupled differential equations

Edo. d o. 5 d5
L dx dx ~ L dx

Ed5 d5 5 do.+ T —2a5(x) =-
L dx dx L dx

and the boundary conditions,

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

do. d20 +p d5
dy dy 2 2 dy

d5 + d 5
g5( )

do'
2

(2.29)

(2.30)

The Brownian particle is subject to both the stochastic
force g(t) and, on the average, the deterministic force
E/L. Its mean-square displacement increases quadrati-
cally in time due to the deterministic force while it in-
creases linearly in time due to the stochastic force. It fol-
lows that the motion of the Brownian particle is dominat-
ed by the stochastic force on time scales shorter than ~p
while the motion is dominated by the deterministic force
on time scales longer than 7.p. Thus the time scale ~p

separates the deterministic from the stochastic regime of
the Brownian motion in the linear potential. On the time
scale wp, the rate of the barrier Auctuations is given by A, .
Finally, the relative change in the barrier height is given
by g.

The coupled differential equations then read

5(x =0)=0, d5
(x = —L)=0 .

dx

We introduce a scaled dimensionless coordinate,

LT
(2.24)

do
( —yo)=0, o(0)=0,

dy

d5
( —yo) =0, 5(0)=0 .

dy

(2.31)

(2.32)

(2 23) and cr(y) and 5(y) are subject to the boundary conditions,

so that the length scale of the potential barrier L is given
by

A straightforward calculation gives the mean exit time
r, cf. Eq. (2.13),

7 p D
2

—qi(q, —1)(q3 —qz)e ' '+ (q2 —q, )(q3 —1)(q,q2+q3 —1)e
q3

—q, q2(qz —q, ) 1+ 1 1 1

q&q2q3 qi q2 q3

—
(q& +q2+q3)yo

e ' ' ' +cycl. perm. (2.33)

where D is given by
—q~+q2 ~0D =q, q2(q2 —q, )(q3 —1)e +cycl. perm.

The roots q;, i = 1,2, 3, follow from

q, +q, +q, ——2,
q, q2+ qzq3+ q3q| = —(A, +vP —1),
q&q2q3

(2.34)

(2.35)

(2.36)

(2.37)
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We discuss this result in more detail in the next section.
The piecewise constant potential barrier is the limiting case when the Brownian particle is subject to a nonvanishing

deterministic force for an infinitesimal time only. In this case, the expectation value of the mean-square displacement
between two consecutive changes in the barrier height is a quantity that characterizes the Brownian motion,

T
2(x

(2.38)

The mean exit time for the Brownian particle in the fluctuating piecewise constant potential follows:

a (L —a) E+ /T E /T
[[2+tanh(va )tanh[a(L —a)](e + +e ) I

E+ /T E /TX(e + Il+tanh(~a)tanh[~(L —a)]e

E /T E+ /T L 2

+e [ I+tanh(za)tanh[1~(L —a)]e +
] )—1]+ 2T

' (2.39)

Thus the mean exit time v; depends on the rate of the
barrier Auctuations through the combinations va and
~(L —a).

Using 1+r1=2E+ /(E++E ), yo=(E++E )/2T, and
ro=8L T/(E++E ), we have

III. MEAN EXIT TIME
L T

7 I
= exp

2E+
a=0 . (3.8)

In the presence of barrier Auctuations, the properties of
the mean exit time depend on the rate of the barrier Auc-
tuations on the time scales defined by the thermally ac-
tivated escape over the small and the large barrier, re-
spectively. Two time scales are thus defined by

esp
q2—

a~p+ g
(3.10)

In the limit a~ ~, the roots q;, i = 1,2, 3, are given by

(3.9)

T+ =exp T (3.1) q3 —+ oo (3.1 1)

The barrier fluctuations are slow for a &~+', while they
are fast for a & ~ '. In the intermediate regime we have
~+ &a &~ . In the case of the piecewise linear poten-
tial, the mean exit time depends on the rate of the barrier
Auctuations through the combination A, =o,~p only, cf.
Eqs. (2.27), (2.29), and (2.30). For suSciently low temper-
atures or high barriers, we assume ~+ & ~

We consider first the case of the piecewise linear poten-
tial. For a =0, the roots q, , i = 1,2, 3, cf. Eqs.
(2.35)—(2.37), are given by

and

rl = —q, (q, —1)(q& —1)e
7p

(3.12)

~&i+'»oD =q, (1—q, )(q3 —1)e

Hence

(3.13)

Tp y
7 I

= e, cx~ ~ (3.14)

It follows that both Dr and D diverge like exp( —qiyo),

qi =0,
q2=1 —g,
q3=1+g . (3.4) L T

&I = expE2

(3.2)

(33) that is

E+ +E
2T

Q', ~ OO (3.15)

For q, =0, we find from Eqs. (2.33) and (2.34),
Further, for small A, , we find in first order,

2D

Vp

and

r=q2q34(qz —1)e ' '+ (q&
—l)(q3 —l)e

q3

D = —q2q3(q3 —q2)e

(3.5)

(3.6)

EXVp

CX7 pq2=1 —g+ 2(1 —i))
aV.p

q3 1+g+

(3.16)

(3.17)

(3.18)

Hence, we find for a=0,
&p (1+g)yo

+1 e ', a=0.
4(1+ii)

(3.7)

Here, we assume g%1, i.e., E %0. We insert Eqs.
(3.16)—(3.18) into Eq. (2.33) and expand its right-hand
side (RHS) to first order in r+ and aro,
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(3.19) + r+ —2g( 1 r—I)r+ 'r1+g
1+q

Similarly, we expand the RHS of Eq. (2.34) to second or-
der in ~+ ' and Q~o, Thus, we find

(3.20)

~o (2E /E+E )aro~+r +(E /E+ )~++(E+ /E )~

aro[(E /E+ )r++(E+ /E )~ ]+2(E+E /E )
(3.21)

We summarize the behavior of the mean exit time over
the Auctuating linear potential as a function of the rate of
the barrier Auctuations. For slow barrier Auctuations,
Q&~+', ~I is independent of Q and ~I-—w+. The mean
exit time then decreases with increasing rate of the bar-
rier Auctuations. We find ~I-—Q ' for ~+'&Q&~ '. The
mean exit time has a minimum at Q = v. where ~&

——~
—1

For fast barrier fluctuations, Q &~, ~I increases with in-
creasing rate of the barrier Auctuations and approaches a
finite value r& —-Qr+r as a~~. These three different
regimes are clearly seen in Fig. 2. For the numerical cal-
culation we use parameters with log &o~+

= 14 and
log (o7 =6.

The closed expression for the mean exit time for the
Auctuating piecewise constant potential is given in Eqs.
(2.38) and (2.39). For a =0, we have v=0. We find

a (L —a) [a (L a)/T—]ar+r +~++r
2+2[a (L a)/T —]a(~++r )

&Q&w (3.24)

To summarize, the mean exit time for the Auctuating
piecewise constant potential is independent of the rate of
the barrier Auctuations for Q&~+' and ~, =&+. For
~+' & Q & ~ ', the mean exit time is inversely proportion-
al to the rate of the barrier Auctuations, ~, =Q '. For
fast barrier Auctuations the mean exit time is again in-
dependent of Q and ~, =~ for Q & ~ '. This behavior of
r, (a) is shown in Fig. 3. Again, we use parameters with

log, p7+ 14 and log, o~ =6.
Thus the mean exit times for the Auctuating piecewise

constant and the Auctuating piecewise linear potential
have similar behavior for slow barrier Auctuations,

a (L —a)
~+, Q=O . (3.22) c +I& Q

—1 (3.25)

Similarly, we have x —+~ for Q~ ~, while their behavior is different for fast barrier Auctua-
tions,

a (L —a)
'T —2 g Q —+ oo

C (3.23)
Q&W (3.26)

For intermediate rates of the barrier Auctuations,
~+' &Q &w ', we assume the length scales of the poten-
tial such that aa ( 1 and ~(L —a) ( 1. The mean exit
time then follows as

For a static potential barrier, the mean exit time is pro-
portional to the thermal activation, 7.=rzexp(E/T). De-
tailed properties of the potential barrier enter this expres-
sion through the prefactor ~ only. Our results show that
in the case of the Auctuating potential, the exponential
factor itself depends on details of the potential barrier.

10gip Ti

10g1p 7c

15-

10
10-

—10 10g1p Ct'

—10 0 10ggp Q!

FIG. 2. The mean exit time for the fluctuating piecewise
linear potential barrier as a function of the rate of the barrier
Auctuations. Parameters are chosen with log lot+ 14,
log&0~ =6, and (L —a)a/T = 16.

FICy. 3. The mean exit time for the Auctuating piecewise con-
stant potential barrier as a function of the rate of the barrier
Auctuations. Parameters are chosen with log lQ7+ 14,
log&0~ =6, and (L —a)a/T= 16.
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This dependence is most clearly seen in the limit of fast
barrier Auctuations. In this limit, the Brownian particle
moving in the piecewise constant potential escapes with
certainty over the small barrier and
=exp(E /T) as a~ ~. In the case of the Auctuating
piecewise linear potential, the Brownian particle is sub-
ject to the average deterministic force E/L in the limit
e—+ 00. The thermal activation then follows
as ri —Qr—+r =exp(E/T) =exp[(E+ +E )/2T] for
Q —+ OO.

We conclude that in the presence of barrier Auctua-
tions, thermal activation processes depend on properties
of the Brownian motion in the potential well. In the next
section, we demonstrate that barrier crossings and barrier
Auctuations are correlated depending on detailed proper-
ties of the potential barrier.

IV. TRUNCATED MODEL

For a static potential barrier, we define the probability
that at time t the Brownian particle is to the left, say, of
the barrier, n = n (t). We assume n (0)= 1. The particle
escapes over the barrier with the rate r. We neglect the
probability Aux of the particle from the right to the left
side of the barrier. We find the differential equation for
n (t), dn /dt = rn (t), an—d hence n (t) =exp( rt). —

For a barrier whose height Auctuates with a rate a be-
tween the two values E+ and E, we similarly define the
joint probabilities n+(t) and n (t). We assume the equi-
librium distribution of the barrier height at the initial
time t =0, n+(0) =n (0)= —,'. If the rate of the barrier
Auctuations vanishes, the joint probabilities decay in-
dependently of each other with the rates
r+ =exp( E+ /T) and—r =exp( E /T), respectiv—ely,
i.e., n+(t) =

—,'exp( r+ t) and —n =
—,'exp( r t). We-

neglect correlations between barrier crossings and barrier
fluctuations and find the coupled rate equations for n+ (t)
and n (t) for arbitrary rates of the barrier fluctuations
[15]

r~r +a(r~+r )
r=,r+ &e&r2a+r+ +r (4.6)

74 &Q(7 (4.7)

The qualitative behavior of r*(a) is identical with the
behavior of the mean exit time for the Auctuating piece-
wise constant potential r, (a) over the entire range of the
rate of the barrier Auctuations. This result was to be ex-
pected. In the case of the piecewise constant potential,
the Brownian particle escapes over either the small or the
large barrier at all times. Barrier crossings and barrier
Auctuations are thus two independent stochastic process-
es and the behavior of ~, follows.

In the case of the piecewise linear potential, the time
scale ro=2L T/E is characteristic for the motion of the
Brownian particle inside the potential well. On time
scales shorter than ro, the motion is diffusive (with the
diffusion constant 1) while on time scales longer than ro,
the average deterministic force dominates. We introduce
joint probabilities that are averaged over the time ~p,

t+vo
n+(t)= J n+(s)ds .

+0
(4.8)

For slow barrier Auctuations, a « 70 we have
n+(t)=n+(t) and we recover the model studied above.
The probabilities n+(t) and n (t) are equilibrated on the
time scale o, '. It follows that for fast barrier Auctua-
tions a &)'Tp, the time-averaged probabilities n+(t) and
n (t) are equal,

n+(t)=n (t)=n(t)= ,'e "', a&)ro—'. (4.9)

Or, using ~+ =r+ ', we find for the mean exit time
&*=1/r* [16],

—1
w+, o,'&~+,
(2aryr +rqr ) /[1+ a(ry+7 )]

dn+
r+n+(t) an+(t)—+—an (t),

dt
(4.1)

The average probability n(t) decays in time with the
average rate

dn rn —(t) an (t)+an~—(t) . (4.2)
E~+E

r =Qr r =exp+ 2T
E=exp T

From Eqs. (4.1) and (4.2) we derive a second-order
differential equation for n+ (t). We make the ansatz

n+(t)=e ~', g) 0 . (4.3)

The decay of the probabilities n+(t) is determined by the
smaller of the two roots r*. We find

r*=a+ —,'(r++r ) —Qa + —,'(r —r+ ) (4.4)

For slow and fast barrier fluctuations, respectively (recall
that r & r+),

r+ ) Q (r+

(4.10)

For finite values of the rate of the barrier Auctuations,
the time-averaged probabilities n+(t) obey the same rate
equations as n+(t) where, however, the bare time con-
stants r+ and e are replaced by respective renormalized
quantities. Since the barrier Auctuates with probability
1 —exp( —I, ) during a time interval of length ro (A.=aro),
we estimate the renormalized probability Auxes over the
barrier as

j~ 0
= r+e "n~(t) ——r (1—e ')n+ (t),

r r /2, o'. ) r& .

For intermediate rates, we have

(4.5) = —[r~e +r(1 —e )]n~(t),

r~n~(t), — (4.11)
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and similarly,

j+ + = —ae "n+(t)

are negligible,

l~ =0 [rectangular barrier ], (4.17)

a—n+(t) .

We thus find the rate equations

(4.12) whereas for the piecewise linear potential we have, cf. the
discussion following Eq. (3.26),

dn
r+ n—+ (t) a—n+ (t)+an (t),

dt
(4.13)

K~ oo, A~ (x)

a=0 [linear barrier] . (4.18)

dIT

dt

where

rn—(t) —an (t)+an+ (t), (4.14)

r+ =r+e "+r(1—e ),
cz =ae

(4.15)

(4.16)

The parameter ~ is a measure of the correlations be-
tween barrier crossings and barrier fluctuations. In the
case of the piecewise constant potential, the correlations

A more thorough understanding of the correlations be-
tween barrier crossings and barrier fluctuations is de-
ferred to a subsequent publication. We have numerically
calculated ~ as a function of the rate of the barrier fluc-
tuations, x=v(a), for some values of the parameters T
and il, cf. Figs. 4(a) —4(c). We observe first that ~(a) is a
monotonical increasing convex function with ~(0)=0 and
v~oo as a~&a. A comparison of Figs. 4(a) and 4(b)
shows that the correlations are enhanced as the tempera-
ture is lowered, i.e., Ir(a, T, ) & z(a, Tb ) for T, & Tb. Fur-
ther, Figs. 4(b) and 4(c) show that the correlations
become stronger with increasing asymmetry
71=(E+ E)/(E—+ +E ), i.e., ~(a, rl) & Ir(a, rl'), for

V. SUMMARY AND CONCLUSIONS

0
10 15

I I I I
/

I I I ~ ) I I I ~
J

I I I IK

10

{c}
I

'IO 15

FIG. 4. The correlation parameter ~ as a function of the rate
of the barrier fluctuations. (a) E/T =10 and g=0.2. (b)
E/T=5 and g=0.2. (c) E/T=10 and g=0.4.

In this paper we have studied the thermally activated
escape of an overdamped Brownian particle over a fluc-
tuating potential barrier. We considered the case of a di-
chotomic random process: the barrier height fluctuates
with a rate a between the values E+ and E . We started
by first discussing the time scales of the escape of a
Brownian particle over a stationary potential barrier. In
this case, the mean exit time is proportional to the proba-
bility that the Brownian particle is thermally activated.
We obtain the Arrhenius behavior, r=r~exp(E/T),
where E is the energy difFerence between the top and the
bottom of the barrier and T is the temperature. The Ar-
rhenius law depends on detailed properties of the Browni-
an motion in the potential well through the prefactor ~
only. The splitting of the mean exit time into an ex-
ponential function and a prefactor has its physical origin
in the separation of time scales. Thermally activated pro-
cesses are slow on the time scales of the Brownian
motion.

For the fluctuating barrier, we obtained exact results
for the mean exit time for the piecewise linear and the
piecewise constant potential barrier. We discussed in
some detail the behavior of the mean exit time as a func-
tion of the rate of the barrier fluctuations.

In the case of the piecewise constant potential, the
mean exit time is independent of the rate of the barrier
fluctuations for both slow and fast barrier fluctuations,
r, -w+ for a & r+'=exp( E+ /T) and r, ——r for
a&r '=exp( E /T). In the interme—diate regime, we
find ~, —e for ~+ & u & ~

For the piecewise linear potential, the mean exit time is
qualitatively the same for slow and intermediate rates of
the barrier fluctuations, i.e., ~1 —~+ for a & ~+ ' and
~&-a ' for ~+' &a &~ '. For fast barrier fluctuations,
the mean exit time increases with increasing rates of the
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barrier Auctuations and approaches the asymptotic value,
lim rt -"ir ~+a =exp[(E+ +E ) l2T].

Hence, the "e6'ective" activation energy, defined as
T ln~, depends on properties of the Brownian motion in
the potential well. That is, for an arbitrary potential bar-
rier, thermal activation processes and the Brownian
motion are no longer separated in time. We discussed a
simplified version of our model and showed that in the
case of the piecewise constant potential, correlations be-
tween barrier crossings and barrier fluctuations are negli-
gible. In the case of the piecewise linear potential, on the
other hand, such correlations are important for fast bar-
rier fluctuations.

We expand our results in several directions. Here, we

briefly mention two of them. First, the Brownian motion
in a general potential has properties similar to that in the
piecewise linear and the piecewise constant potential.
Correspondingly, the mean exit time for the general form
of the potential barrier has similarities to both ~I and w, .
In particular, we expect the correlation parameter ~ to

depend on details of the potential barrier. It is interest-
ing to investigate the behavior of ~ as we continuously
transform the piecewise constant into the piecewise linear
potential.

Second, our paper is restricted to the case of an over-
damped Brownian particle. In this case, the three time
scales ~+ and io characterize the escape over the Auctuat-
ing piecewise linear potential barrier. If the energy of the
Brownian particle dissipates with a finite rate, the damp-
ing constant defines still another time scale. It is thus im-
portant to extend our results to finite damping constants.
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