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Three dynamical methods for computing canonical-ensemble Helmholtz free energies are discussed

and compared for a thermostatted six-body harmonic chain. We use a Martyna-Klein-Tuckerman ther-

mostat [J. Chem. Phys. 97, 2635 (1992)] with six time-reversible friction coefficients to study both single-

trajectory and ensemble-averaged free-energy changes. Though all three dynamic methods produce
identical long-time averages, the one based on Kirkwood's coupling-parameter theory [J. Chem. Phys. 3,
300 (1935)]converges much more rapidly than do the two based on time-integrated heat transfer.

PACS number(s): 05.70.—a, 02.70.—c, 63.70.+h, 64.60.Ak

I. INTRODUCTION

"New" computational free-energy methods have their
conceptual roots in Gibbs's microscopic statistical
mechanics and Clausius's macroscopic thermodynamics.
Entropy furnishes the link between these classic micro-
scopic and macroscopic approaches. Gibbs's statistical
entropy is a measure of the accessible phase-space volume

SG;», —=k lnQ, where k is Boltzmann's constant. In the
case of Gibbs's microcanonical ensemble, the available
phase volume A(N, E, V) is constrained by the total mass,
momentum, and energy of the system. Clausius's thermo-
dynamic entropy is an integrated measure of the reversi-
ble heat taken in, divided by the corresponding ideal-
gas-thermometer temperature T. The heat transfers

IRAQI take place along a reversible path linking a stan-
dard zero-entropy state to the state of interest

Sci,„„„,—= J (g/T)dt .

It was Gibbs's remarkable finding that the microscopic
state-counting and macroscopic heat-transfer methods of
determining the equilibrium entropy agree,

Cxibbs Clausius

Once fast computers became available, numerical
methods for determining entropy were developed, based
on these same two definitions [1]. Both microscopic sta-
tistical state counting and macroscopic thermodynamic
integration have been used to determine the entropy S. A
third computational approach has been developed more
recently and is unique to computation. The basis of this
new dynamical approach is the adiabatic principle of

mechanics. This principle asserts that whenever external
work is performed sufficiently slowly ("reversibly" ), the
system occupies near-enough-to-equilibrium states that
the entropy is a constant of the motion. When state
changes occur at finite rates, the deviations from equilib-
rium are typically quadratic in the rates The .dissipation
provided by viscosity and heat conduction, as well as the
thermodynamic dissipation we quantify in this paper, are
examples. The phenomenological nonequilibrium
coefficients describing these close-to-equilibrium state
changes are accessible through equilibrium linear-
response (" Gree nK buo) theory.

Changes in system energy need not be induced by
mechanical work or by heating. In Section 2 we recall
Kirkwood's idea for determining free energy by varying
the Hamiltonian. We then detail Watanabe and
Reinhardt s suggestion that this idea be applied dynami-
cally. A dynamics appropriate to Hamiltonian variation
is described in Sec. III. It is the Martyna-Klein-
Tuckerman generalization of Nose's isothermal molecu-
lar dynamics. With the isothermal dynamics of Martyna,
Klein, and Tuckerman, computation of Watanabe and
Reinhardt's extension of Kirkwood's free-energy idea can
be carried out. We extend this approach in Sec. IV.
There we derive results linking free-energy changes to
time-averaged values of isothermal friction coefficients.
Section V describes a particular simple one-dimensional
chain model, with a known free energy, to which we ap-
ply all these ideas. Our numerical results, including an
evaluation of the complete spectrum of Lyapunov ex-
ponents for this system, and our conclusions, make up
Secs. VI and VII.
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II. STATIC AND DYNAMIC
COUPLING-PARAMETER METHODS

In the usual situation, thermodynamic work is per-
formed by manipulating some of the system coordinates

{q j. Work can involve a volume change or a shape
change, as well as motion within an external field. Heat is
transferred to a system differently, by varying some of the
system momenta {p j at fixed coordinate values.

External work need not affect the particle coordinates
by prescribing their time variation as in a volume, shape,
or field change. Instead, the functional dependence of the
forces {F({q j ) j on the particle coordinates {q j can be
gradually changed. In this way, one thermodynamic ma-
terial can be transformed into another. The simplest way
to realize this computational alchemy is to let the poten-
tial function N( {q j ) vary with time. Likewise, and
equivalently, the Hamiltonian H —= 4&( {q j )+K( {p j )

varies with time. The conventional description of such a
change of forces, potential energy, and Hamiltonian uses
a coupling parameter X which varies from 0 to 1. If we
specify a time dependence for the coupling parameter,
A, (t'), with a dummy time variable t', we can likewise re-
gard the Hamiltonian as changing from Ho, at time 0, to
H, =H& at time t:

1= xpxt
E(t)—:fdxp(x, t)H(x):—(H(t)), (2.3)

S(t)—= —k fdxp(x, t) lnp(x, t)—:—k( lnp(t)) .

The internal energy function H (x) is defined by

H(x) =K( {p j )+@({q j )+H&( {gj),
where K and N are the kinetic and potential energies of
the particles and H& is the contribution of the thermo-
stats.

Because the trajectories are independent of one
another, the (2dN+M)-dimensional ensemble "fiuid" is
characterized by a local fiuid velocity u(x, t)=x(x, t),
which we recognize as the many-body equation of
motion. This simple dependence of u on position is quite
different from the Quid velocity to which we are accus-
tomed in hydrodynamics, where mass elements transfer
mornenturn and energy to one another. Because of this
simplicity (at the expense of a large number of degrees of
freedom, of course), the dynamics of an ensemble of tra-
jectories in nonequilibrium statistical mechanics requires
only Liouville's continuity equation for p:

H (A, ) =—H (t') = (1—
A, )HO+AH, = (1—

A, )HO+ AH, ,

(2.1)

Bp +V (pu)=0= Bp
at

+u Vp +pV.u

4&(A,):4(t')—:—(1—
A, )@o+A&P,—:(1—

A, )@0+A@, . (2.2)
dp +pe
dt

(2.4)

It is worth emphasizing that Ho H& Co and 4& are
not themselves functions of A, . A, (t') furnishes a linear in-
terpolation linking the two material end points. In simu-
lating a thermodynamically reversible process, the cou-
pling parameter A, =A,(t'), which transforms the Hamil-
tonian from Ho at time 0 to H, at time t, must vary
sufFiciently slowly and smoothly between its initial and
final values, 0 and 1.

The idea of such a varying Hamiltonian was used in
statistical mechanics by Kirkwood [2], but in the restrict-
ed context of equilibrium ensemble theory, without an ex-
plicit time dependence for A, . Watanabe and Reinhardt
[3] extended Kirkwood's idea by varying A, dynamically,
with time. Either Kirkwood s original approach, or
Watanabe and Reinhardt's dynamic generalization of it,
can, for instance, be used to add a perturbing attractive
potential to a repulsive reference potential, or to add the
full interaction potential to an ideal gas.

The nonequilibrium dynamics of an ensemble of trajec-
tories, with differing initial conditions, and subject to iso-
therrnal boundary conditions —contact with a thermal
reservoir at temperature T via thermostatted equations of
motion —can be cast in the familiar framework of hydro-
dynamics: The time-dependent density of trajectories in
phase space is the distribution function p(x, t), where the
phase-space position x=({qj, {pj, {gj) is the collection
of N-particle, d-dimensional coordinates and rnomenta,
as well as M thermostatting control variables {gj, de-
scribed in more detail later. The normalization of p, the
ensemble average of the energy E, and the entropy S are
given by

—d lnp-e= V.u=
dt

(2.5)

S=—k =k e (2.6)

For the microcanonical (constant-energy) ensemble
where there is no coupling of the particles to a heat reser-
voir, so that the equations of motion are Newtonian
(Hamiltonian),

u(x, t)=x(x, t)= {q=plm;p =F(q)= —V@j, (2.7)

the local rate of phase-space volume expansion is identi-
cally zero:

e=V u= y q+ P =0.8
Bg Bp

(2.8)

Thus, for an ensemble of isolated adiabatic systems
governed by Newtonian mechanics, the entropy is a con-
stant: S=k(i) =0. For an ensemble of thermostatted
systems, however, S is not constant —when work is done
on an isothermal system, the heat extracted by the
thermal reservoirs is directly related to the contraction of
the available phase space relative to equilibrium. There-
fore, we see, qualitatively at least, how the Helmholtz
free energy 2 —=E —TS must be a minimum at equilibri-
um.

where the last expression is the local rate of expansion of
an infinitesimal phase-space volume element. The rate of
change of the entropy of the ensemble is therefore given
by the relation
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As usual, in all of our equations the {q] are general-
ized coordinates and the {p] are the corresponding con-
jugate momenta. Watanabe and Reinhardt [3], following
the example of Torrie and Valleau [4], made use of the
adiabatic principle to correlate the free energy for a sim-
ple inverse-12th-power soft-sphere Hamiltonian Ho with
that of a more complicated Lennard-Jones system, in-
cluding inverse-6th-power attraction H„with unbeliev-
able success. See Table II of Ref. [3], but, in the case of
the first two entries, note the discrepancy between the
number of particles (108) in that Table and the number of
particles (32) actually cited in the original Ref. [4].

Relatively recently, but inspired by Gibbs s vintage-
1900 ensembles, extensions of straightforward isoenerget-
ic Newtonian computer simulation to new isothermal and
isobaric forms have developed [5—9]. Reference [9]
presents a useful overview of these approaches, beginning
with Nose's seminal 1984 paper. With the new deter-
ministic time-reversible methods in hand, it is natural to
study the analogs of the adiabatic principle for slowly
changing dynamical systems connected to thermal and
mechanical reservoirs. Isothermal dynamics, for in-
stance, corresponds to a system connected to a constant-
temperature heat bath, so that the reversible isothermal
thermodynamic work corresponds to an isothermal
change in the corresponding free energy, including heat
transfer, rather than to an adiabatic change of internal
energy. We undertake here an exploration of this natural
extension of the work of Kirkwood, Watanabe, and
Reinhardt, applying a particularly simple and robust
computational scheme [9] to a simple model Hamiltonian
for which ana1ytic free energies are known.

III. ISOTHERMAL EQUATIONS OF MOTION

Here we focus on isothermal isochoric dynamics, cor-
responding to Gibbs's canonical ensemble. The corre-
sponding free energy is the Helmholtz free energy
A (N, V, T) for a system of N particles in d space dimen-
sions, with dN degrees of freedom, confined to a volume
V, and at a temperature T. The corresponding equations
of motion must be consistent with the canonical phase-
space distribution. In the simplest ["Nose-Hoover" ]
case, the equations incorporate a single friction coefficient
g or z, which responds to Iluctuations of the kinetic ener-

gy about its mean value Ko =3NkT/2 in three space di-
mensions (d =3) or KO=NkT/2 in one dimension
(d =1). The equations of motion can be written in either
of two equivalent forms:

dg d
dt ' dt

=plm; = —VC& —gp, n =1,2, . . . , dN,
(3.1)

motion for the {q] and {p]. The two possibilities for
defining the friction coefficient are simply related:
g—=vz =z—lr. Note that g, v, and 1/r have units of fre-
quency, while z is dimensionless. The phase-space con-
tinuity equations for the densities p({q],{p],{g]) and
p({q],{p],{z]) show that the corresponding canonical
distributions are stationary:

po;b» ~ exp[ H(—q,p)/kT) exp[ dN—( r /2]

o- exp[ H(q—,p)/kT] exp[ dNz —l2] .
The Gaussian friction-coefficient distribution shows that
the friction coefficient, g or z, takes on values of order

, so that the frictional-force contribution to the dy-
namics of the nth degree of freedom, —gp„= —vzp„,
vanishes, in the thermodynamic limit, in the same way as
do the fluctuations in intensive thermodynamics vari-
ables.

This single-friction-coefficient representation is ade-
quate for treating some systems —those with strong
enough mixing characteristics for a thorough exploration
of phase space. Such thorough mixing appears to be
present in the usual three-dimensional Quid and solid sys-
tems simulated with molecular dynamics [10]. But the
single-friction-coefficient dynamics fails to give the com-
plete canonical distribution for sufficiently nonmixing
systems, such as a free particle or a one-dimensional har-
monic oscillator. Such systems explore only a part of
their phase spaces, with that part depending upon the ini-
tial conditions. Many ideas have been advanced to pro-
vide better mixing through more complicated versions of
deterministic friction [7—9].

In the present work we adopt an elegant generalization
of the single-friction-coefficient idea to chains of M in-
teracting friction coefficients, which Martyna, Klein, and
Tuckerman introduced [9]. They showed that this ap-
proach can be sufficiently mixing to generate a canonical
distribution for a single harmonic oscillator. As a start-
ing point, we choose Eq. (10) of Ref. [9] to be the basis for
our discussion of canonical-ensemble dynamics. For sim-
plicity we specialize that equation to the case of four
thermostat variables {g„g2,$3, $4] governed by four pa-
rameters with the same physical units [mass X length ] as
a moment of inertia (unfortunately called "masses" by
most workers) {Q„Q2,Q3, Q4] from which the general
case, with M thermostat variables and M parameters,
should be clear:

dg dp
dt dt

=plm; =F —gtp, n =1,2, . . . , dN

dg, = [2K —2KO ) /Q, —
g2g, ,

or
dt

= [(K/Ko) —I ]/r

=v[(K/Ko) —1] .

dp
dt ' dt

=p/m; = —VN —vzp, n =1,2, . . . , dX,
dz (3.2)

dt
We use n as a subscript for the dX similar equations of

dk
=(Qi&i —kT)/Q2 —k4

dg
d, =(Qzkz —k»/Q3 —04k

d&4

dt
=«3k —kT)/Q4

2K = g p Im; 2KO: dN kT . —

(3.3)
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Martyna, Klein, and Tuckerman observed that the
thermal feedback associated with the thermostat vari-
ables [g(Q)j is most efficient if their fiuctuation times
correspond to a typical collision time r or, equivalently,
to a typical vibrational frequency v, of the thermodynam-
ic system described by the dN coordinate-momentum
pairs [q,p]. Thus a reasonable choice for the parameter
Q& is given by

Q, =dN kTlv =dN —kTr

assuring fluctuations of order N '~ in g, . The remain-
ing M —1 thermostat parameters [ Q2, Q3, . . . , QM ] are
not directly linked to the thermodynamic system at all.
Their purpose is to provide fluctuations in the primary
control variable g„ through its chain of interactions with

g3 gM Thus the remaining Q's can be set equal
to Q; »=kTlv =kTH, —so as to induce fluctuations of
order v = 1/r in the friction coefficients [ g,. » ) . Then the
complete set of thermostatted equations becomes

dg dp
dt ' dt

=plm; =F —gjp, n =1,2, . . . , dN

= [(E/Ko) —1]/r —g~(),dt

dq dp=plm; =F —v,z,p, n =1,2, . . . , dN .
n

dz(

dt
=v&[(K/Kp ) 1 ]—vzzzz,

dz2 =v2(—dNz, —1)—v3 3 z,dt

dz3

dt

dz4

dt

=v3(z ~
—1 )

—v4z4z 3,

=v4(z3 —1),

2E =—g p Im, 2KO =dN k—T .

(3.6)

The inverse-square-root dependence z, ~ N ', with dX
thermostatted degrees of freedom, is perhaps clearest
from (3.4) or (3.6). The choice among the three formula-
tions, (3.3), (3.4), or (3.6), is purely aesthetic. Any one of
the three formulations generates a time-reversible deter-
ministic dynamics, robust and consistent with Gibbs's
canonical phase-space distribution. In terms of the di-
mensionless friction coefficients, the distribution has the
form

dt
= [dNkf —(1/~) )

—402

df3
d, =[02—(1«'))—

0403

d04 =[(3—(1/r )] .

(3.4) po,», exp[ H(q, p) lkT—]
T

M
X exp — dNz, + g z,.

1 —2

2

IV. COMBINING KIRKWOOD'S APPROACH
WITH ISOTHERMAL MOLECULAR DYNAMICS

In this formulation it is plain to see that the friction
coefficients have units of inverse time. It is easy to verify,
by direct substitution, that these equations of motion are
consistent with the stationary equilibrium canonical dis-
tribution in the "extended" phase spaces, that is, phase
spaces including the M friction coefficients Ig] as addi-
tional coordinates:

M

p&;bb, o: exp[ H(q, p) /kT) e—xp —g Q, g, 12k T

When the underlying Hamiltonian is varied, reversibly,
under isothermal conditions, the quasistatic change in
Helmholtz free energy can be written as an integral, over
the thermodynamic path, of the time-averaged total per-
turbation energy (4&, —@0):

A, —Ao =—f ((H, —Ho))g0 g 0

po,», exp[ H(q, p)/kT]— —= f ((e,—C, )&,„,dt . (4.1)

M
X exp — dNH~(f+ g r;g;

1=2
2

Q, =dN kT/v„Q~ =kTlv2,

Q3 kT/v3, '
~

QM=——kT/vM
(3.5)

the Martyna, Klein, and Tuckerman equations give the
following system:

An alternative, more transparent, way of rewriting the
Martyna, Klein, and Tuckerman system of equations (1)
is to introduce dimensionless "friction coefficients" [z]
with associated frequencies I v], so that g; —= v, z, . With
the parameter choices

b, A =—f ((H, —Ho))qdi, ,
0

(4.2)

is a familiar consequence of Cxibbs s equilibrium statisti-
cal mechanics. The time-dependent forms follow provid-
ed that the motion is quasiergodic, so that the dynamical
average at time t' corresponds to Gibbs's phase average

It should be emphasized that H, —H0 and @,—N0 are
not functions of the coupling parameter k. The dynamics
governing the motion, through H [A(t')], does depend on
the coupling, so that the averages carried out at time t',
( )z, reflect the underlying value of the coupling parame-
ter A,(t').

Kirkwood's coupling-parameter version of this rela-
tion,
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A, —A, =—f '((e, —@,))~dA, . (4.3)

This statistical technique has been used to study the free-
energy difference between solids, liquids, and gases, as
well as the free energy of defects which can be introduced
by coupling [1]. The 'quasistatic ensemble formulation
becomes equivalent to a dynamical one when A, is given a
specified, and sufficiently slow, time dependence A, =A, (t).
Then the integral over A, is equivalent to a time integral,
with d A, replaced by (d Aldt)dt =,X dt:

A, A, =—f &(e, e))—,„,dt'. (4.4)

The dynamics at the time t' depends upon the Hamiltoni-
an H(t') through the coupling parameter A, . We wish to
explore this dynamical method for Helmholtz free-energy
determination here, for a simple and well-understood
few-body problem with an analytically known free ener-

gy
The equations of motion, including the friction

coefficients [g; j or [z; j, with i = 1,2, . . . , M, can be used
to derive two alternative expressions for free energy
based on heat transfer. From the microscopic stand-
point, transferred heat corresponds to an energy change
made with fixed coordinates [q j. Because the friction
coefficients [gjM or [zjM transfer heat to the thermo-
dynamic system described by [q,p jd&, thermodynamics
establishes that, for a process sufficiently slow that the
quadratic dissipative contributions can be ignored, entro-
py changes can be expressed in terms of the time-
integrated friction coefficients.

To show this, we recall that the phase-space density
p( [x j ) now also contains M friction coefficients g, among
its variables: [xj = [q„,p„,g; j, n =1, . . . , dN,
i = 1, . . . , M. If the Liouville continuity equation (2.4) is
used for evaluating (2.6), one finds after insertion of the
thermostatted equations of motion (3.3) or (3.4):

computed with the coupling parameter A, (t'). The Kirk-
wood relation in turn follows from the definition of a
coupling-parameter-dependent canonical partition func-
tion Z (A, ), related in the usual way to a coupling-
parameter-dependent Helmholtz free energy A (A, ):

Z(N, V, T, A, ) —= g exp[ H(A—, ) IkT]
—:exp[ —A (N, V, T, A, ) /kT),

H(A, )—:Ho+A(Hi —Ko) —=Ho+A(&bi —@O) .

The ideal-gas-thermometer temperature T, in a classi-
cal dynamical simulation, is defined in terms of the mean
kinetic energy per Cartesian degree of freedom:
kT: (p /—m ). This definition is consistent with the col-
lisional mechanics of a thermometer [11], even in non-
equilibrium situations, where Gibbs s entropy is
undefined [12]. By separating the Hamiltonian into a
coordinate-dependent potential energy @(q) and a
momentum-dependent kinetic energy K(p), the free-
energy difference A1 A o can more simply be expressed
as a potential-energy integral over the coupling pararne-
ter k:

Hence, the isothermal entropy change is given by

&SIk = f (Q IkT)dt =f (S Ik)dt

= —f (dN pi+ g g, )ddt

f—xyt, (4.6)

which is the desired result. The notation ( )i reminds us
that the average of the friction-coefficient sum is affected
by the parameter A, , which is switched from 0 to l in the
time interval under consideration.

The isothermal entropy change may also be expressed
in terms of the heat added to the system through the ac-
tion of the reversible friction coefficient gi..

dN
kS/k= —

(jg, X (p2Imkridt
n=1

(4.7)

where the sum is over all dN system degrees of freedom.
The two expressions (4.6) and (4.7) are equivalent. This
follows from a computation of the time average

(dldt) ,' dN(, +—gg;i)1
For simplicity, we derive this relationship in the special
case that all the characteristic frequencies are equal,
[v; =v = 1/r j, i = 1, . . . , M. Thus, from (3.4) we find

0= —,
' dN ', +

=(dN(, + x); )

X g, (p'ImkT)v
)n

+[—(dNg, &,—&g, &,—(g, &,— . —&g &, ] ',
where all the terms that are cubic in the friction
coefficients cancel. This establishes (4.7). As a conse-
quence, the free-energy change can be written in either of
two (new) ways:

A, —AO=4, —No+ f grip /m dt'
n

C+kokT f X—pt' . (4.g)

The same derivation can be carried out using the dimen-
sionless friction coefficients [zjM. That approach gives
an equivalent result:

A, —Ao —=4, —kIio+ f gz, vip /m dt'
o

@0+kTfX„dt'—, (4.9)

where X„ indicates the time-averaged friction-coefficient
sum, with z1 occurring dN times, and with each friction

BXs/k= g = —(dN(i+(2+ +0M &~—= —~~ ~

Bx

(4.5)
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coefficient z,. multiplied by its characteristic frequency v;.
The analog of Liouville's theorem, for this dynamics in

which phase volume is not conserved, relates the time
average of the friction-coefficient sum to the sum of all
the Lyapunov exponents I A, ] for which we use the spe-
cial symbol A:

using, just for the sake of symmetry, six thermostatting
variables [gI g2 g3 g4 g5

—= (plm); =F(q) g@—. , n =1, . . . , 6dg dp
dt ' dt

=[g (p /mkT) —6]/r —
g2g, ,

We use a prime in this equation to indicate a long-time
average, over many periodic full cycles of the switching
parameter, rather than the one-way average, from 0 to 1,
indicated by the symbol X&, without the prime. The
Lyapunov exponents, one for each independent direction
in the phase space (including the friction coefficients and
the time), have been designated A, to avoid confusion
with the Kirkwood coupling parameter A, .

In Sec. V we introduce a simple harmonic-chain model,
for which the entropy and free energy can be calculated
analytically. In Sec. VI we apply both these entropy
methods, one based on time averaging the coupling-
dependent heat transfer gI+(p /m) and the other based
on integrating kTX&. We compare these results with the
Kirkwood, Watanabe, and Reinhardt free-energy calcula-
tion in the chain example described in Sec. V. We also
characterize the Lyapunov spectra for this simple model
system.

V. HARMONIC-CHAIN MODEL

Our simple one-dimensional (d = 1) chain model links
each of N atoms, with mass m, to its two nearest neigh-
bors with Hooke's-law springs of force constant ~. We
impose cyclic (periodic) boundary conditions, so that
atoms 1 and N are nearest neighbors, and keep the system
center of mass, as well as the momentum associated with
the center of mass, fixed. The canonical partition func-
tion for this system is a product of (N —1) normal-mode
partition functions with a coordinate probability density
depending on the potential energy 4( I q J ):

P ( [q ] ) ~ exp [ —4&( I q ] ) /k T] .

The temperature T can be maintained in the chain by us-
ing a variety of reversible thermostats. The simplest of
these is the Gaussian thermostat, which keeps the kinetic
energy constant. The Nose-Hoover thermostat intro-
duces a single additional thermostatting variable. Our
trials with both these thermostats strongly suggested, but
certainly did not prove, a lack of ergodicity. We there-
fore explored the relatively simple and elegant extension
of these thermostats discovered (or invented) by Martyna,
Klein, and Tuckerman [9]. These authors showed that
their equations of motion are consistent with an extended
Gibbsian canonical distribution. They also critically dis-
cuss several alternative approaches to isothermal dynam-
ics.

Martyna, Klein, and Tuckerman judged that ergodicity
was most efficiently promoted, for an oscillator system,
by using at least three thermostatting variables. For sim-
plicity we have applied the following version of their
equations of motion to a six-atom chain, arbitrarily also

k2 ( 1 /r) 0304dt
(5.1)

dks =
k4 (1/'r) as@

We have made the simplest choice for the relaxation time
~, ~—:1, in all of our simulations. We have likewise
chosen all of the Q's equal to kTH. Note that in the di-
mensionless thermostatting version, v&=6', v2= .
=v6= 1. As a supplement, we have also occasionally cal-
culated and included a small (of order 10 '

) correction
to the coordinates and momenta to prevent drift in the
center of mass. Here, the center-of-mass correction is
only aesthetic. Such a correction turned out to be abso-
lutely necessary in a related nonequilibrium problem in-
volving the transfer of heat between the therrnostatted
"cold" and "hot" ends of few-particle harmonic chains.
In that nonequilibrium simulation [13],roundoff errors in
the cold and hot centers of mass could be amplified catas-
trophically by Lyapunov instability.

A simple extension of the conventional Liouville's
theorem [9] (2.4) establishes that the stationary Gibbsian
probability density for these equations of motion,
p( [q,p, g] ), has the form

p ~ exp[ —(4&/kT) (KlkT)—
—(~/2)(PI+ 0Z+ 03+4+03+4) l .

Martyna, Klein, and Tuckerman's results make it plausi-
ble that this dynamics is quasiergodic and chaotic, even
for a single harmonic oscillator. The results we find here,
for cyclic chains of six coupled harmonic oscillators, sup-
port that view. We also find that statistical averages ob-
tained by following a single dynamical system agree with
those obtained by integrating instead over an equilibrium
ensemble of initial conditions.

The "chain" of thermostat variables [g] controls the
external heat Aow in such a way as to stabilize the kinetic
energy. Energy is fed into and extracted from the system
[q,p]6 by the variable g, . To test the coupling-parameter
free-energy formulation, we have changed the force con-
stant v describing the six mechanical interactions
smoothly from 1 to 4. This results in a doubling of all the
chain frequencies and should therefore correspond to an
equilibrium increase in Helmholtz free energy of
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NkT ln2=6kT ln2. It is feasible to accumulate statistics
by carrying out thousands of cycles of increase and de-
crease of K. For convenience we have chosen m =1,
k = 1, and T =1 in all of our numerical work, where k is
Boltzmann's constant. The ideal-gas-temperature scale
establishes that the time-averaged squared momenta and
squared thermostat variables should all likewise be equal
to unity:

The Lyapunov exponents associated with a chaotic tra-
jectory describe its sensitivity to perturbations in initial
conditions. For the model system here the motion takes
place in a 19-dimensional phase space (six coordinates,
six momenta, six friction coefficients, and the time). The
additional time dimension must be introduced because
the equations of motion vary, periodically, with time.

We have solved the linearized motion equations, with the
linearized solution vectors necessary to evaluate the com-
plete spectrum [14]. The solution vectors were kept
orthonormal by applying Gram-Schmidt orthonormaliza-
tion after every few time steps.

Because there can be no exponential growth of pertur-
bations in the direction of trajectory propagation and be-
cause both the sums gq and gp are fixed, we would ex-
pect to find at least three vanishing Lyapunov exponents
for our model.

VI. RESULTS

We have studied three simple alternative representa-
tions of the rate-dependent time variation, between 1 and
4, Of the fOrCe COnStant Klinear& cosine~ and Kquad' TheSe ale
given by the following relations:

TABLE I. Free-energy changes b A,—„;„hfor a cyclic six-atom Martyna-Klein. -Tuckerman-thermostatted chain for which the oscil-
lator force constant varies periodically between 1 and 4 at a rate r, as described by (6.1) of the text. The total run time is t and the
fourth-order Runge-Kutta time step is 0.005 or 0.01. Linear, cosine, and quadratic force-constant switching data are included in the
table. The three different free-energy estimates (all of which agree at zero rate), indicated by ( g, gp ~ )~, ( b,4 )~, and

Xg—= (6g, +$2+$3+ (4+$5+$6)g are, respectively, based on heat transfer, Kirkwood's coupling parameter, and Liouville's theorem.
A is the sum of all the Lyapunov exponents. The exact analytic equilibrium free-energy change is AA —=6kT ln2=4. 159. The data
show that Kirkwood s A4 approach is best and that the individual estimates can be either too high or too low, depending upon both
the method and the rate. The time integrals of the Lyapunov-exponent sum and the friction-coe%cient sums are given for integrals
over a cycle. Thus, for the data in the fourth row, the average value of X& is 0.000 13, and the time integral, over a complete cycle of
time 2/0. 01 =200, is 200 X0.000 13=0.026, approximately equal to the difference 4.082 —4.058 =0.024.

Rate r

0.001
0.002
0.005
0.010
0.020
0.050
0.100
0.200

10 t

0.90
0.82
0.82
0.64
0.50
0.82
0.82
0.82

f (g, gp /m )ddt

4.452 —4.433
4.265 —4.254
4.021 —4.000
4.076—4.052
4.114—4.082
3.827 —3.758
3.690—3.538
6.822 —5.882

f (ae),dr

Linear
4.163—4. 153
4.163—4. 154
4.159—4. 138
4.164—4. 138
4.170—4. 137
4.189—4. 120
4.263 —4. 111
4.891—3.952

4.493—4.477
4.311—4.300
4.097—4.077
4.082 —4.058
4.191—4. 158
3.822 —3.752
3.681—3.529
6.871 —5.931

—0.000 01
—0.000 01
—0.000 05
—0.000 12
—0.000 32
—0.001 75
—0.007 60
—0.093 99

+0.000 01
+0.000 01
+0.000 05
+0.000 13
+0.000 32
+0.001 74
+0.007 60
+0.093 99

0.001
0.002
0.005
0.010
0.020
0.050
0.100
0.200

2.50
2.50
2.50
2.50
2.42
2.50
2.50
2.50

4.210—4. 196
4.137—4. 115
4.185—4. 149
4.144—4. 108
4.137—4. 103
4.137—4.097
4.240 —4. 187
5.459—5. 118

Quadratic
4.169—4. 156
4.175—4. 151
4.177—4. 142
4.177—4. 140
4.176—4. 142
4.168—4. 128
4.164—4. 112
4.294—3.952

4.304—4.289
4.110—4.089
4.154—4. 118
4.128—4.091
4.146—4. 112
4.148—4. 108
4.261 —4.209
5.424 —5.083

—0.00002
—0.000 02
—0.000 07
—0.000 18
—0.000 35
—0.001 04
—0.002 60
—0.034 10

+0.000 01
+0.000 02
+0.000 08
+0.000 18
+0.000 34
+0.001 00
+0.002 62
+0.034 10

0.001
0.002
0.005
0.010
0.020
0.050
0.100
0.200

0.75
0.75
0.82
0.82
0.82
0.82
0.82
0.82

4.413—4.368
4.138—4. 132
4.206—4. 180
4.213—4. 186
4.128—4.093
4.167—4. 126
4.269 —4.212
6.344 —5.714

Cosine
4.167—4. 146
4.162—4. 153
4.171—4. 146
4.170—4. 141
4.173—4. 138
4.168—4. 127
4.159—4. 102
4.453 —3.823

4.307—4.270
4.249 —4.240
4.129—4. 103
4.213—4. 186
4.104—4.070
4.211—4. 170
4.283 —4.226
6.354—5.724

—0.00003
—0.000 00
—0.000 07
—0.000 14
—0.000 31
—0.001 00
—0.002 82
—0.62 95

+0.000 02
+0.00001
+0.000 07
+0.000 14
+0.000 33
+0.001 00
+0.002 84
+0.063 00
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tr„„„,=[4.0—3.Gart —1.0~], 0&rt &2

tr„„„,= [2.5 —1.5 cos(m. rt) ], 0 & rt & 2

tr „,4=[1.5 —0.5cos(vrrt)] ' 0&rt &2 .

(6.1)

In all three cases we characterize the time rate of change
of the force constant by the rate r. Also, in every case,
the switching parameter k, which varies between 0 and 1,
is equal to (tr —1)/3.

Results for all three switching methods are given in
Tables I and II. The results in Table I were generated by
following a single long trajectory. At low rates, hundreds
of millions of time steps, corresponding to thousands of
hysteresis cycles of the force constant K, were necessary
in order to achieve three-digit accuracy. These accurate,
relatively long single-trajectory simulations established
that switching times ranging from ten to one hundred os-
cillation times are required in order for the transforma-
tion to be effectively quasistatic, with a free-energy
change within 0.01NkT of the equilibrium value. If the
increasing and decreasing portions of the coupling-
parameter variations are averaged, then a time on the or-
der of ten oscillation times suffices for a free-energy-
change estimate valid within a few percent.

It was somewhat disturbing to find that the results for
higher frequencies, r =0.2 or 0.5, were not only sensitive
to initial conditions, but also clearly not ergodic. Thus,
at these high rates, two simulations diQering only in the
16th digit of m; led to quite different (30%%uo discrepancies)
predictions for the free-energy di6'erence. Evidently,
sufficiently strong deviations from equilibrium partition
the phase space into disjoint parts.

In addition to the long-trajectory simulations of Table

I, we have carried out ensemble-averaged simulations, in
which many (16384) different initial conditions, chosen
from a canonical distribution, but with the friction
coefficients all 0, are first allowed to equilibrate, and are
then followed in time for one or more hysteresis cycles.
The ensemble data are shown in Table II. The data for
the highest rate, shown there, can be roughly described
by a power-law dependence on the number of cycles c:

b, A, =b A „—5A/c~,

where p is a fractional power, approximately equal to —,'.
For the lower rates, up to 0.10, the extrapolated en-

semble averages agree nicely with the single-trajectory
values of Table I. The good agreement between the en-
semble and single-trajectory results is independent evi-
dence that the Martyna-Klein-Tuckerman thermostats do
sample the complete phase space.

The correct numerical value for the free-energy change
using the Kirkwood-Watanabe-Reinhardt approach,

AA ikT =N ln4' =4.159,

lies within about 0.01 of the numerical evaluations for the
lower frequencies. The heat-based methods, using
(g&g(p /m) )z and X&, display noticeably larger ffuctua-
tions, suggesting that Kirkwood's approach is the best
approach.

Due to the continually changing equations of motion,
these systems are not equilibrium systems, but instead oc-
cupy nonequilibrium phase-space distributions. The
Lyapunov spectra which characterize these nonequilibri-
um states have negative sums, rejecting the hysteresis
and dissipation associated with any irreversible process

TABLE II. Ensemble-averaged free-energy changes AA,—„;„h for cyclic six-atom Martyna-Klein-
Tuckerman six-thermostat harmonic chains, with the cosine switching function
lr„„„,=[2.5 —1.5cos(vrrt)]. The cycle time is 2/r. Both the Kirkwood integrals and the friction-
coefBcient sums are displayed. The single-trajectory results from Table I are given in parentheses. The
ensemble results refer to 16 384 initial conditions [with both displacements and momenta chosen from
the equilibrium Maxwell-Boltzmann distribution (kT = 1) but with friction coefficients initially zero].
The first 40 time units were discarded. Stormer integration, with dt =0.005 for rates of 0.1 and 0.2, and
dt =0.01 otherwise, was used. The ensemble data for the highest rate, 0.2, show that the long-time
average corresponds to a power-law saturation, hA —hA, =c ~, where c is the number of cycles and
the power p is approximately —'.

Rate r

0.020
0.020
0.050
0.050
0.100
0.100
0.200
0.200
0.200
0.200
0.200
0.200

Cycles

1

(8200)
1

(20 500)
1

(41 000)
1

2
6

16
36

(82000)

f (ac &,dt

4.166—4. 128
(4.173—4. 138)
4.176—4. 120

(4.168—4. 127)
4.200—4.094

(4.159—4. 102)
4.349—3.946
4.422 —3.912
4.465 —3.885
4.452 —3.880
4.447 —3.879

(4.453 —3.823 )

4.127—4.076
(4.104—4.070)
4.163—4. 119

(4.211—4. 170)
4.313—4.355

(4.283 —4.226)
4.125—4. 181
4.672 —4.456
5.358—4.890
5.608 —5.079
5.685 —5. 135

(6.354—5.724)
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+0.25—

+0.15—

+0.05—

—0.05

—0.15

LYAPUNOV SPECTRUM P )

ponents, the second largest and second smallest, etc. , are
shown as "Smale pairs" of exponents. In addition to the
three vanishing exponents to be expected from fixing the
center of mass, its momentum, and the lack of exponen-
tial growth in the phase-fiow direction, we have found
two more, so that a total of 5 of the 19 exponents vanish.

It should be noted that the apparent accuracy of the
results in Ref. [3], 0.003XkT, is literally "too good to be
true. " Even in the case where those authors compared
their own 108-atom results with earlier 32-atom data [4]
(for which free-energy differences of order kT can
confidently be expected), they reported near-perfect
agreement. In fact, our own results are not at all miracu-
lous, and appear at best only to be competitive with the
(relatively many) other means for determining free ener-
gies.

—0.25

(PAIRS OF LYAPUNOV EXPONENTS)

FIG. 1. Lyapunov spectrum for a thermostatted six-atom
chain, with sinusoidally varying force constants, at a rate
r =0.1. Despite the nonequilibrium nature of the system, the
spectrum is nearly identical to the equilibrium one. There are
19 Lyapunov exponents in the nonequilibrium spectrum corre-
sponding to the six coordinates, six momenta, and six friction
coefticients, and the time used in our phase-space description of
the motion. In the figure we show nine Smale pairs of ex-
ponents. The vanishing exponent corresponding to the time
variation of the switching parameter is not included.

(and indicating the collapse of the probability density
onto a multifractal strange attractor [12]),but are never-
theless very similar because the extent of the nonequili-
brium behavior is so small. The loss in phase-space
dimensionality, for the problems studied here, is never
greater than 0.01.

As a sample we show, in Fig. 1, the Lyapunov spec-
trum generated using the sinusoidal switching method at
a rate of r =0.1. All the exponents, averaged over the
entire run of length 820000, are shown in the Figure, ar-
ranged according to size. The largest and smallest ex-

VII. CONCLUSIONS

Though the present isothermal scheme loses its ergodic
properties at very high driving frequencies, it behaves
well at frequencies well below the particle-collision fre-
quency. At sufficiently low frequencies all three compu-
tational routes to the free energy appear to yield
equivalent results, but with a clear advantage to
Kirkwood's original work-based formulation relative to
the present alternative methods. The spectacular agree-
ment obtained previously appears to be "too good to be
true. "
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