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Modification of the eikonal relation for chemical waves to include fiuid fiow
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Propagating wave fronts resulting from autocatalytic chemical reactions have been the focus of much
recent research. For the most part, the hydrodynamics resulting from such reactions has been neglected.
In this work, a relation is derived for the normal speed of a propagating wave front as a function of the
local curvature when fluid motion is allowed. This "eikonal" equation is a generalization of one which
was derived in the absence of fluid flow. It is also shown that small variations in the fluid density due to
the chemical reaction do not change the form of the relation.

PACS number(s): 03.40.Gc, 47.15.—x, 47.20.8p, 47.70.Fw

I. INTRODUCTION
ki

:U+P,

Traveling waves resulting from chemical reactions
have been observed in several chemical systems [1—6]
such as the Belousov-Zhabotinskii (BZ) and iodate-
arsenous-acid reactions. An important class of these
traveling fronts which has been of interest is the evolu-
tion of spiral waves. The propagation of waves in two-
dimensional excitable media has been studied by several
researchers. In particular, Tyson and Keener [7—9] de-
rived a relation for the normal velocity of the wave front
using singular perturbation theory. They applied this ap-
proach to the case of the Belousov-Zhabotinskii reaction.
In analyzing this system, the effects of Quid motion were
neglected. The result was an eikonal equation which ex-
plicitly shows the dependence of the normal velocity of
the wave front on the curvature of the front [7—9].

Recent theoretical work on the iodate —arsenous-acid
system [10—12] has shown that convective motion of the
Quid plays an important role in the propagation of the
front in this system. This importance is due to a small
density difference between the reacted and unreacted
Auids. This difference leads to buoyancy-driven convec-
tion, which is believed to result in the experimental obser-
vation of curved propagation fronts in cylinders when the
reaction is initiated at the bottom of a vertical tube
[13,14]. Also observed is an enhancement of the front ve-

locity: the velocity is greater under conditions such that
convection can take place. In attempting to model this
behavior, it is necessary to study the inhuence of Quid

motion on the system, since reaction-diffusion theory
alone cannot account for these observed characteristics.
Recent work has used a modified relation for the normal
velocity of the front which includes the effect of the un-

derlying fluid motion. It is the purpose of this work to
derive this relation in a more formal manner in order to
justify its use.

In deriving the modified eikonal relation we shall use
the same model for the BZ reaction as that used by
Keener and Tyson [7]:
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where A = [Br03 ], B = [bromomalonic acid]+ [malonic
acid], P=[HOBr], U=[HBrOz], V=[Ce +],
R = [Br ], the k s are rate constants, and h is a
stoichiometric parameter. With the assumptions that 3
and B remain constant, and that R is in quasiequilibrium,
the system is reduced to involving only two variables, U
and V. One can now write the mass action kinetic equa-
tions for these variables, and include diffusive and hydro-
dynamic effects. We shall first consider a case where the
Quid density is constant in both space and time, and then
consider one in which the density varies as a result of the
chemical reaction.

II. CONSTANT FLUID DENSITY
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where u =(2k&/k3A)U; u =[kzk&B/(k&A) ]V;
w=(k3AD) 'i X(ll id uvelocity); x =(ksB/Qk3AD )
X (space); t =k5B X (time); p„=pk3 AD X (reduced

After nondimensionalization, one arrives at a system of
partial differential equations for the above model of the
form
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pressure); f=2h, q =2k1k4Ik2k3', a=k5B/k3 A (which
is 0.01 using the parameters of Tyson and Keener and
therefore assumed small) with D being the difFusion
coefficient for the reacting species; p is the density of the
fluid, and A, is the nondimensional viscosity of the fluid
given by A, =vk~B/'p(k3AD) /, which would have a
value of 6.07 for water with the above model. Note that
the pressure is written as a reduced pressure meaning
that we have used V (reduced pressure) =V
(pressure)+constXgg, where g is the acceleration of
gravity, and g is the direction opposite to that in which
gravity acts. For simplicity, we shall assume that the
direction of propagation of the front and g are aligned
(i.e., g=x).

A. One-dimensional waves

It is useful to first consider the case of one-dimensional
waves. This case allows one to solve the problem with lit-
tle effort, and shows the basic ideas behind the singular
perturbation theory. Following the method of Keener
and Tyson [7] we can define two regions: one in which
the variables are slowly varying spatially, and one in
which they vary rapidly. In the slowly varying region we
have [setting e=O in (2)]
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where w is the fluid velocity. For the BZ reaction, there
are three solutions of (3a). Since one of these is unstable,
there are two solutions denoted by u = U+ ( v ) which are
valid far away from the front. Substitution of these solu-
tions into (3b) allows for the solution of the remaining
equations. The resulting solution for v will be referred to
as the outer solution. Discontinuities in u which are per-
mitted by this outer solution for U must be patched up by
using a moving boundary layer of the form g=(x ct) IE, —
with u =u (g). This leads to equations in the boundary
layer of the form

u~~+(c — )uw~+ f (u, u) =0,
u++(c —w)u&+eg (u, u) =0,

(4a)

(4b)

(4c)w4 =0
As /~+ca, the solution of (4) must match the outer
solution discussed above. If we examine (4b), set e=O,
and require v to remain bounded as g'~+ ~, it is easily
seen that v (g') = up

——const, w (g) =wp =const. Equation
(4a) then represents an eigenvalue problem for the speed
of propagation c as a function of v0 and w0, the fixed
values of v and w in the boundary layer. If we let
d =c —w0 we arrive at exactly the equation derived by
Keener and Tyson. Thus, for any given fluid velocity w0,
it is easily seen that the speed of the front in the presence

B. Two-dimensional waves

This case can also be examined by considering the
slowly varying region and a thin boundary layer. To ac-
commodate nonplanar fronts a change of variables is
made to a coordinate system moving with the boundary
layer such that x =X(eg, 2l, r), y = Y(eg, rl, r), t =r. As
discussed by Keener and Tyson, we now seek solutions
for which the g coordinate gives level surfaces of u, with
wave front motion entirely depicted by movement of the
coordinate system. Thus, we want solutions such that
u = u (g) with /=0 locating the wave front. Without loss
of generality, the g coordinate can be scaled such that
X

&
+ Y]

= 1, where the subscript 1 denotes partial
differentiation with respect to the first argument. Also
note that in this traveling coordinate system, u is in-
dependent of q and ~. This transformation leads to much
more complicated equations in the boundary layer than
the one-dimensional case, and so we shall only write
down the leading-order terms in e since only these are
needed for the analysis to be done here. The leading-
order terms are of the form
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where w, and w2 are the components of the fluid veloci-
ty, and X and K are the normal velocity of the front and
its curvature, respectively, and are given by

X Y„—YX„N=
(X2 + y2 )1/2

K= (X+Y)

(6a)
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If w is to remain bounded as g~+ ~, then (5c) implies
that both components of the fluid velocity are indepen-
dent of the normal coordinate g. Even though N and K
depend on g in general, it has been shown that [8]

N —eK =(N —eK)~&=p+O(e2) .

Similar arguments lead to the conclusion that
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Thus, to order e we can consider the coefficients of u&

of fluid flow can be related to that without the fluid flow
by

with without + 0

as one would have expected in this simple case.
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and u& in Eqs. (5a) and (5b) to be independent of g. Using
this along with (5b) leads to the conclusion that v is not
independent of g to order e. Thus, we have

M
Vo+( Uo —U)5V„

M 1

Vo 5 V„1+ ( Uo —U)
Vo

W —Wo('g, T)

v =vo(7), 7)
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(Xz + y2 )1j2 (10)

Recognizing that the third term on the left-hand side is
the component of the fluid velocity in the direction of the
normal to the wave front, and ignoring terms of order e,
we arrive at a condition for the wave front given by

N=c(uo)+n wo+eK,

where n is the normal to the wave front and c(vo)
represents the velocity of the front in the absence of fluid
motion and curvature effects. As done by Keener and
Tyson, we retain the term involving the curvature since it
may become appreciable in some applications.

III. NONCQNSTANT FLUID DENSITY

Recent theoretical work on the iodate —arsenous-acid
system has shown that in that problem convection is
driven by a smaH density difference between the reacted
and unreacted fluids [10—12]. Since similar considera-
tions may be necessary for other systems as well if one
wishes to study the hydrodynamic stability of the fronts
produced by these chemical reactions, we shall now con-
sider a Quid which undergoes a change in density as the
reaction takes place. When we allow for a varying fluid
density, the fluid equations in dimensioned form become

a(pw)
BT

+(W V)(pW)= —pgx —VP+vV W,

Bp
BT

+V (pW)=0,

(12a)
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where W is the fluid velocity, P the pressure, v the viscos-
ity of the fluid, g the acceleration of gravity, and T the
dimensioned time. In this problem we are thinking of the
change in density as a result of the chemical reaction.
Since the total mass of the solution remains constant, the
density change must be a result of a volume change due
to the reaction. Thus, we can write

V(U)= Vo+(Uo —U)5V„, (13)

where V( U) is the volume of the solution with concentra-
tion U resulting from a reaction where the solution ini-
tially had a concentration Uo and volume Vo, and where
5V„represents the molar volume change due to the reac-
tion. Using this we can write the density as

Since we are interested in how the velocity of the front is
affected by the curvature of the front as well as the fluid
fiow, let us compare (5a) to the case when there are no
curvature effects or fiuid flow, i.e., (4a) with w =0. This
results in the relation

(14)

where M is the mass. Since (5V„/Vo)( Uo —U) is a small
quantity (for the iodate —arsenous-acid system, for exam-
ple, the relative density change is on the order of 10 ),
we can expand this as

p= 1 — (Uo —U)
Vo Vo

(15a)

5V„
=p0 1 (UQ U)

Vo
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where p+ and U+ are constants in space and time. Using
this in (12) and nondimensionalizing in a manner analo-
gous to that used above yields

w, +(w V)w+e +(w V)(uw)B(uw)
at

= —Vp„+A, V w, —'Mu x, (17a)

V w+Z B(u) +V (uw) =0,
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where 8=5V„k, A /2Vok4 = (0.0012)5V„ /Vo (e, 6
=g/k~B+k3AD. The second equality for e is a result
of using the parameters given in the work of Keener and
Tyson [7]. The nondimensionalization is the same as that
used above except p is replaced by p+.

Since Z «e, to first order in e we can neglect the terms
in (17) which are on the order of e, resulting in

w, +(w V)w= —Vp„+XV w —eGux,

V.w=0,
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where we have kept the last term on the right-hand side
of' (18a) because of the largeness of 6 which causes eG not
to be small (using the parameter values for this model we
find 6 =2. 1 X 10 ). The equations involving the concen-
trations of the species are not changed when we consider
a varying density, and so we have not restated them. If
we now transform the equations as was done above, we
find that in the boundary layer, the variables satisfy

(w, 1'„—wzX„)
u++ (N —eK) — z" »" u&+f (u, u)=0,

(X2 + y2 )1/2
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Since we are considering the case of a front moving verti-
cally, with the concentration being U+ and the fluid den-

sity p+ far in front of the traveling wave, we can let this
be our reference state yielding

5V„
p=p+ 1 — ( U+ —U)

Vo
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where k=g when the g component of (19c) is considered,
and is g when the g component is considered. Equation
(19d) is the transform of (18b) which was not stated in the
previous section since it was not needed [since (5c) led to
the conclusion that both components of the Quid velocity
were constants in g]. Note that Fe G —1; if we expect a
relative density difference on the order of 10 (as it is for
such systems as the iodate —arsenous-acid reaction), with
a change in concentration on the order of 5X10 M
[14], (16) predicts fi V„ / Vo =2. Using this gives

Ze G =0.5. While these values would change slightly
with the experimental conditions considered, we can see
that this quantity will roughly be —1. Thus, we can no
longer conclude that the fiuid density is a constant in g as
it was in the previous section.

While for the previous case the Auid velocity was in-

dependent of g to first order in e, this is no longer true.
Thus, we must look more closely at the behavior of the
coefficient of u& in (19a). We already know that N —eX
is independent of g to second order in e, and so all we
need to show is that the third term in this coeKcient is in-

dependent of g at least to first order in e and then we will

be able to draw the association between the coe%cient of
u& in (19a) and the speed of the front as was done previ-

ously. If we expand this third term in a power series in (
about /=0 we find

where the prime denotes difFerentiation with respect to g.
If we examine the second term on the right-hand side of
(20), we see that it is zero due to (19d). This results in all
of the terms on the right-hand side of (20) other than the
first being O(e). Thus, even though the fiuid velocity is
now a function of g, the coefficient of u~ in (19a) is still
independent of g to first order in e, and we arrive at the
same relation for the normal speed of the front as was
found in the previous section, namely the relation given
in (11).

IV. CONCLUSIONS

Using singular perturbation theory, an eikonal equa-
tion has been derived for the case of a propagating wave
front in the presence of Quid motion. This represents a
generalization of the relation which had previously been
derived which neglected the effects of fiuid motion. The
modification of the relation made necessary by the pres-
ence of Auid Aow is of the form expected, namely the
speed of the front is modified by the addition of the nor-
mal component of the Quid velocity at the front, as was
expected. The use of this modified form in previous work
based on the assumption that this would be the form of
the new equation is thus justified. It has also been shown
that the form of this relation is not altered by allowing
for small density changes due to the chemical reaction.
Recent research on the iodate —arsenous-acid system
made these calculations necessary in that they show that
hydrodynamic effects must be considered in order to ade-
quately explain the experimentally observed phenomena.
While the work presented here has used the BZ reaction
as a prototype, the results are applicable to other systems.
For example, if one is interested in the iodate —arsenous-
acid system, one merely needs to change the form of
f (u, u) and g (u, u) as well as use the appropriate rate con-
stants to obtain the analogous front equation for this re-
action. Now that the relation involving Auid motion has
been derived, it shall be used in further studies concerned
with the propagation of reaction-diffusion fronts where
fluid Aow is important.
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