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Effect of viscosity on Rayleigh-Taylor and Richtmyer-Meshkov instabilities
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We consider the effect of viscosity on Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabili-
ties by deriving a moment equation for fluids with arbitrary density and viscosity profiles, including sur-
face tension. We apply our result to the classical case of two semi-infinite fluids with densities pl and p&

and viscosities p, and p2. Treating a shock as an instantaneous acceleration we find that perturbations at
the interface undergo damped oscillations when viscosity and surface tension are both present. For pure

—2k 2vgviscosity the amplitude q(t) evolves according to g(t)/g(0) =1+(EUA /2kv)(1 —e ') where hv is
the jump velocity imparted by the shock, A =(p2 —p&)/(p2+pl), v=(p&+p2)/(pi+p2), k =2m/A, is the
wave number of the perturbation, and t is time. We also consider the turbulent energy in accelerating
fluids and calculate the reduction in E,„,b„i,„, as a function of v, and propose experiments to measure the
effect of viscosity on RT and RM instabilities.

PACS number(s): 47.20.—k, 52.35.Py, 47.40.Nrn

I. INTRODUCTION

The damping effect of viscosity on the Rayleigh-Taylor
[1,2] (RT) instability is well known [3,4): the growth rate
y, instead of increasing indefinitely with k as in the invis-
cid classical case (y,i„„„&=gkA), reaches a peak value
given approximately by y /gkA =

—,
' and begins to de-

crease for larger k, approaching zero as k~ ~. In this
paper we investigate the effect of viscosity on the
Richtmyer-Meshkov [5,6] (RM) instability and, in addi-
tion, on the turbulent energy generated by the RT insta-
bility. Not surprisingly, we find that both are damped by
viscosity.

In a similar vein we have studied [7] the effect of sur-
face tension where the growth rate peaks at y /gkA =—',
and begins to decrease for larger k and actually vanishes
at a finite wave number k, . We found that surface ten-
sion causes the perturbation amplitude to oscillate in the
RM case. As for the turbulent energy generated by the
RT instability, we found that it was reduced from classi-
cal because surface tension reduces the range as well as
the magnitude of the growth rate, i.e., k is limited by
0~k ~k, and y is limited by y /gkA ~

—,
' as compared

with the classical case where 0 k ~ co and y /gkA =1
for all k. Although viscosity by itself does not affect the
range, it does reduce the growth rate below classical, par-
ticularly at large k, and therefore we expect (and find) re-
duced turbulent energy.

RT and RM instabilities are important in astrophysics,
geophysics, and technological applications such as iner-
tial confinement fusion (ICF) in which we are primarily
interested [8]. Physical viscosity plays practically no role
in ICF capsules [9], and therefore it cannot act as a sta-
bilizing mechanism. However, there may be other mech-
anisms, such as ablative stabilization, which act on ICF
plasmas to reduce y below classical [10], and one may
mock up such an effect with viscosity in ordinary Auids.
Another application is the direct numerical simulation of
RT and RM instabilities: many hydrocodes introduce an
"artificial viscosity" which, in addition to smoothing out
the physical shock, acts to slow down the subsequent How
in two- and three-dimensional simulations [11].

It is substantially more difficult to include the effect of
viscosity compared to that of surface tension. To find the
exponential growth rate y in incompressible Auids one
must solve the equation

D p —~(D —k ) DW Dp(D +k )W +—k— Dp gT '6(y ——y;) W
y . y V I

k—k p —~(D —k ) W'+2 DpDW=O,
y y

subject to appropriate boundary and jump conditions [4].
In this equation p(y) denotes density, p(y) is the viscosi-
ty, W'(y) is the perturbed velocity, and D is the operator
d/dy, while g denotes a constant acceleration taken to be
in the +y direction, k is the transverse wave number
( k„+k, )

'~ =2ir/A, , where A, is the wavelength of the per-

I

turbation, and T ' is the surface tension at interface y;.
Without viscosity Eq. (1) reduces to a second-order
differential equation; with viscosity it is a fourth order-
differential equation. Because of this added complexity a
moment equation approach, which we suggested earlier
[12] for the inviscid and tensionless case, becomes even

47 375 1993 The American Physical Society



376 KARNIG O. MIKAELIAN

p(y) =p„p(y) =p, for y (0
p(y)=pz, p(y)=pz for y &0

(2a)

(2b)

the solutions of Eq.(1) are quite complicated (see Refs.
[3,4]). After we derive the general moment equation we
will apply it to this particular density profile, but note
here that a variety of other profiles were considered in
our earlier work [12,13] with considerable success.

A brief history will be illuminating. Equation (1) and a
variational principle derived from it were first published
by Chandrasekhar (surface tension was not considered in
his 1955 paper; the inviscid tensionless case goes back to
Rayleigh [1].) Equation (1) is quite general and applies to
any density profile. Earlier work by Bellman and Pen-
nington [3] was limited to the classical profile. They con-
sidered both viscosity and surface tension in the RT in-
stability. In addition to the exact result they wrote down
a simplified dispersion relation for the case of pure viscos-
ity:

y g
P2+P1

k
P2 P1

P2+P1 P2+P1

more attractive when viscosity is present. Much of the
work in this paper will be based on this approach, rather
than solving Eq. (1) directly. Even for the classical densi-
ty profile which is given by

very favorably with the exact, albeit numerical, results of
Chandrasekhar. Soon, however, Reid published a paper
[15] pointing out that Hide s derivation was in error —an
important term was left out. Since then any reference to
Hide s work [14] is invariably accompanied by a refer-
ence to Reid's work [15]pointing out Hide's error. Note
that the agreement with the exact results was not in ques-
tion. Indeed, a recent study [16] of Eq. (3) continues to
show extremely good agreement (within 11%) with the
exact results, so one wonders how Hide obtained a
"correct" equation using a "wrong" derivation.

We hope some light will be thrown in the next section
where we derive Eq. (3), generalized to include surface
tension, using our moment equation approach. In Sec.
III we apply it to the RM problem. Concluding remarks
make up Sec. IV.

II. RT INSTABILITY

To derive the moment equations we multiply Eq. (1) by
8' and integrate over y. Many terms can be integrated
by parts and the resulting "surface terms" set to zero.
Our earlier experience [12] indicates that the m =0 equa-
tion gives the best results and therefore we will consider
m =0 and 1 only, the latter corresponding to the varia-
tional principle mentioned in the Introduction.

For m =0 we obtain

y fPWdy+k g T,"W(y, )+y. fp(D. +k )Wdy

Apparently unaware of this work Hide [14] applied the
variational method of Chandrasekhar to the classical
problem, rederived Eq. (3), and found that it compared

I

For m = 1 one obtains [17]

—g fDpWdy=0 . '
(4)

y fp W + (DW) dy+yf p k W +2(DW) + (D W) dy
1 2 2 2 2 1

+k g T'[W(y;)] —g fDPW dy= —y f W D pdy . (5)

~classical =~ (6)

which is the solution to the inviscid classical profile, i.e.,
Eq. (2) with p, =pz=O. The presence of surface tension
does not afFect Eq. (6).

We should note that Eqs. (4) and (5), and indeed all mo-
ment equations, are exact and apply to arbitrary density
and viscosity profiles. They will produce the exact
growth rate y provided one uses the exact 8' and there is
the catch. Exact W's can be obtained by solving Eq. (1),
but to do so one must know y. This apparently circular
argument merely refiects the fact that Eq. (1) is in the
form of a fourth-order eigenvalue equation where 8'is an
eigenfunction associated with an eigenvalue y. As we
have stressed in previous applications of the moment
equations they are useful not for obtaining exact y's but
for obtaining explicit, analytic, albeit approximate y s by
using an approximate 8'. This is in fact the way Hide
used Eq. (5).

The approximate 8'is

Let us find y first by using the m =0 equation, Eq. (4).
Substituting the profile of Eq. (2) and W„„„.„~ of Eq. (6)
into Eq. (4) the integrations are easily carried out and we
get

k'T[ ~

y +2k vy+ —gkA =0,
P2+P1

where

(7)

= (Vz+Vi )~(pz+P» (8a)

~ =(Pz Pl)~(pz+Pi) . (8b)

It is clear that Eq. (7), after setting T"=0, is in complete
agreement with Eq. (3).

We now apply the same procedure to the m = 1 equa-
tion, i.e., substitute Eqs. (2) and (6) into Eq. (5). Several
terms in Eq. (5) can be collected together noting that
8' 1„„„1satisfies DR'=+k8'. The result is
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k'Z"
y +2k vy+ —gkA = — f W D pdy .

Pz+Pi Pz+P&

(9)

We have deliberately isolated the right-hand side of Eq.
(9) because this is the term neglected by Hide for this
problem, as criticized by Reid. Hide s result,
y +2k vy —gkA =0 (he did not include surface ten-
sion), follows immediately upon setting the right-hand
side of Eq. (9) equal to zero. This is, however, not
justified. Integrating it by parts twice the right-hand side
becomes —2k vy which combines with a similar term on
the left-hand side to give 4k vy. Clearly, this is wrong
because it overestimates the effect of viscosity by a factor
of 2 and consequently underestimates y.

Alternatively, one may integrate the right-hand side of
Eq. (9) by parts only once (Reid's criticism [15] appears
in this form):

f W D p dy = —2 f ( DIJ, ) WD W dy

= —2(p2 —p, )f 6(y)WDWdy

= —2(p2 —p, )W(0)DW(0) . (10)

This quantity again does not vanish unless one takes
DW(0)=0 (or p, =@~). The difficulty is associated with
the discontinuity of D8',&„„„& at y =0, where
DW„„„„,(0+)= + k. This is a refiection of the fact that
8;&„„„&is not an exact eigenfunction for the classical
viscous profile since 8' „„„in addition to being continu-
ous, would have to have a continuous first derivative [4].

The m =0 equation, Eq. (4), does not suffer from such
ambiguities. It is the generalization of the inviscid ten-
sionless case given earlier [Eq. (5) of Ref. [12]). Since we
found it to give better results when applied to density
gradient stabilization [12,13], we naturally propose Eq.
(4) as the preferred dispersion relation for the RT insta-
bility when density gradients and/or viscosity or surface
tension are present.

We end this section by discussing briefly the properties
of Eq. (7). Introducing the cutoff wave number k, associ-
ated with surface tension,

k, = [(p —p, )g /T")'

dependent of viscosity. If k, = ~ (no surface tension)
then y vanishes according to y ~g A /2k v as k ~~ .

Unfortunately the value of yp„k cannot be found
analytically when surface tension and viscosity are both
present: differentiating Eq. (12) with respect to k and set-
ting By /B k =0 we get

gA
y peak 4 peak

3(k „i,)

k,
(14)

This is simple enough, but k „k must be found by solving
a quintic equation

kk gA (15)
k 8v

3I 2
1—

k
C

=0,

obtained by substituting Eq. (14) back into Eq. (12). An
alternative expression for y„„k is

gka k'
p k (16)

but the main difficulty is still that of finding kp
Let us find kpeak and ypeak explicitly in two opposite

limits: (i) surface tension dominates with viscosity being a
small perturbation; and (ii) viscosity dominates with sur-
face tension being a small perturbation (of course if there
is neither surface tension nor viscosity then there is no
k „i,). We find (i)

k,
k „„— 1—

3
8

1/2

R 3/4 (17a)

ypeak

1/2

—gk, A [1—(2v'3) ' R ' ],3&3
(17b)

and (ii)

1
k peak

1
y peak 2

1/3
gA
vz

1/3
gz+ 2

7
12R

11—
6R

(18a)

(18b)

The dimensionless ratio R in Eqs. (17) and (18) is defined
by

Eq. (7) reads
R—:(p2+p, )(gAv )'~ /T", (19)

ky'+2k'-y-gkA 1- '
k

=0, (12)

and the two roots are

ky~= —k v+ k v +gkA 1—
k,

1/2

(13)

Of course, in the in viscid tensionless limit where
v= T"=0 we recover the classical result, y+ =+Vgk A .

We will refer to the larger root, y+, simply as y. As a
function of k, y(k) =0 at k =0, it increases to a peak
value yp„k at some k kpeak beyond which y decreases
and vanishes at k =k, . The vanishing point, k„ is in-

and is a measure of the strength of viscosity vis-a-vis sur-
face tension. The two opposite limits represented in Eqs.
(17) and (18) correspond to R « 1 and to R ))1, respec-
tively.

The leading terms of Eqs. (17) and (18) reproduce the
behavior of y described in the Introduction:
(y /gkA )~„i,= —,

' (pure surface tension) or —,
' (pure viscos-

ity). The four negative signs in front of the next-to-
leading terms in Eqs. (17) and (18) imply that the loca-
tions of the peaks as well as the values of the peaks are
reduced as either one of the stabilizing mechanisms,
viscosity or surface tension, is added to the other.

As far as we know no experiments have been carried
out to study quantitatively the effect of viscosity on the
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FIG. 1. The growth rate y as a function of perturbation
wavelength A. for experiment 85 of Ref. [19]. The parameters
are g=42go (go=980 cm/s ), p&=0.66 g/cm', p, =0.31 CP,
p2=1. 89 g/cm', p2=3. 3 CP, and T"=3 dyn/cm (a surfactant
was added to reduce the surface tension between the two fluids,
hexane and a NaI solution). The cutoff wavelength is A., =0.05
cm and peak y occurs at A,~„&=0.09 cm. The dashed line is

y, I„„„&=&gkA=353k, ' for y measured in s ' and A, in cm.

and therefore surface tension still dominates. The cutoff
wave number k, is 130 cm '; i.e., wavelengths shorter
than 0.05 cm are stable. From Eq. (17a) we find that the
growth rate peaks at k „k=67 cm ', with the effect of
viscosity being about 10%. Such very short wavelengths
(A,~„k=0.09 cm) quickly saturate in these experiments
where mixing widths of several centimeters are observed.
In Fig. 1 we plot y vs A. and compare it with the classical
growth rate &gk A .

III. RM INSTABILITY

To calculate the stabilizing effect of viscosity on the
RM instability we will follow Richtmyer's approach of
treating a shock as an instantaneous acceleration of in-
compressible fluids, i.e., let g ~bu5(t) In this approa. ch
the shock is viewed as an infinitely large acceleration act-
ing for an infinitesimally short period of time such that
the imparted jump velocity, b, v = g dt, is finite. We
have used the same approach before in treating density
gradients [20], shocks in spherical geometry [21], as well

RT instability (the qualitative effect is obviously a com-
mon experience. ) Experiments with air-water interfaces
[18] are dominated by surface tension. Similarly for
rocket-rig experiments to study turbulent mixing at Quid
interfaces [19]. This is no surprise because the fiuids were
purposely chosen to reduce the effect of viscosity and sur-
face tension (surfactants were added for the latter).

Let us illustrate with experiment 85 of Ref. [19] which
had the lowest surface tension. The Auids were hexane
and a NaI solution with the following properties:
p, =0.66 g/cm, p, =0.31 CP (centipoise), p2= 1.89
g/cm, F2=3.3 CP, T"=3 dyn/crn. The acceleration
was 42go (go =980 cm/s ). From Eq. (19) we find

R =0.08

as the effect of surface tension [7].
Richtmyer treated the classical inviscid tensionless

case for which d rt/dt =y g=gkAg~h u5(t)kAg,
hence g(t)=ri(0)[1+bukAt]. Here t is time and rl(t) is
the amplitude of the perturbation at the interface be-
tween the two fiuids. After the passage of a shock g =0
and perturbations grow linearly with time with a slope,
d g/dt, set by the shock.

We present first a general formalism which can be used
to find how Richtmyer's result is affected by stabilizing
(or destabilizing?) mechanisms. We start with the RT
case. In general, there are two exponential growth rates
which we denote by y+ (they need not be given by Eq.
(13), although in our specific application they will):

g(t)=a+e + +a e
t

(20a)

Expressing the constants a+ in terms of the initial condi-
tions go and go we get

g(t) =go
y t

y+e —y e e —e
YfO

y+ y—
(20b)

This equation describes g(t) for a constant acceleration g
(g appears in the growth rates y+). The postshock evolu-
tion is also given by Eq. (20) with g =0 now, assuming
that the shocked system is coasting and there are no
postshock accelerating or decelerating external forces. In
this approach the classical case appears as a singular case
with y+=+&gkA ~0.

Assuming that g(0 ), the preshock value of rI, is zero
or very small compared to that imparted by the shock,
we find that go in Eq. (20b) is given by b.uk A i?o, so that

r)(t)/go=
V+7+

+ V

g=0 . (21)

k v+l co
2 (22)

where

3 (s) 1/2
k T' k42
P2+P)

(23)

Substituting Eq. (22) into Eq. (21) we get

The reason for jo=hvkA go is that in the limit g ~ ~ we
get y+~gkA at a sharp interface so that Richtmyer's
evaluation of go is still valid.

If the interface is diffuse, (i.e., has a continuous density
gradient characterized by some finite length p ' (see, for
example, Ref. [13]), then density gradient stabilization
survives the limit g ~~ so that

2 gkA
1+AkP

and b, uk A in Eq. (21) must be replaced by
b, uk A /( 1+ Ak p '). Density gradient stabilization of
the RM instability is discussed in more detail in Ref. [22].

Setting g=0 in Eq. (13) we find
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sincot
g(t)/go=e " ' cosset+(k v+6.ukA ) (24}

r)(t)/go =costi + Auk A
sincot

(25)

which agrees with our earlier result [7].
For pure viscosity ( T"=0) we get

g(t)/go= 1+ (1 —e " ') .AvA
(26)

Finally, if both T"=0 and v=0 then we recover the
classical result

This is the generalization of Richtmyer's result to include
both surface tension and viscosity.

For pure surface tension we have v=O,
co =k T'"/(p2+p, ), and Eq. (24) reduces to

the range ko ~ k ~ 10ko have real co's.

In Fig. 2 we show how an initially flat spectrum [which
means g(t =0,k) =go for all k] changes with time under
the combined effect of viscosity and surface tension. The
spectra are shown at t=0, 1/4t, „, 1/2t, „, 3/4t, „,
and t,„A. t t=t,„(there is no need to stop at this
time, but we did so to compare directly with the results of
ref. [7]) the longest wavelength having k =ko has (al-
most) reached its maximum, approximately a fivefold
growth, while the shorter wavelengths with k =(5—10)ko
have already damped out. In other words, as time goes
by the spectrum shifts towards longer and longer wave-
lengths because these are less and less damped by viscosi-
ty, although the initial "kick" of the shock, hvkA, tends
to shorter wavelength, i.e., large k's.

The evolution of individual components with k=ko,
5ko, and 10ko as a function of time is shown in Fig. 3,

il(t)/go= 1+6,vkAt . (27)

so that

T(s)

(~2+Oi)v'
(28)

' 1/2k*
Qj —k v 1

k
(29}

For k &k* co is real and the perturbations exhibit
damped oscillations. For k) k* cu is imaginary and
there are no oscillations. We chose our last parameter by
setting k*/k0=50, so that the perturbations with k in

In the case of pure viscosity Eq. (26) indicates that r1(t)
increases or decreases (depending on the sign of b UA) un-
til it reaches the asymptotic limit of go(1+6.vA/2kv).
It is interesting that if the shock satisfies Eve = —2kv
then this asymptote is zero —i.e., the shock completely
flattens out perturbations of wavelength 4n v/~ hv A ~.

Wavelengths twice as long, 8mv/~buA~, undergo com-
plete phase reversal, i.e., g(t) goes to —

rio asymptotically.
Longer-wavelength perturbations overshoot this value
before coming to rest.

The combined effect of viscosity and surface tension,
Eq. (24), can be qualitatively described as follows: the os-
cillations come from surface tension; the damping comes
from viscosity. When both are present the general
motion is that of damped oscillations. Short-wavelength
perturbations oscillate faster but are more damped;
longer-wavelength perturbations oscillate slower and are
less damped.

As in the case of pure surface tension we will illustrate
Eq. (24) with two figures. Using the same parameters as
in Ref. [7] we let ko =2m/A, o represents a wave number
corresponding to the longest wavelength A,o, and consider
wave numbers in the range ko ~ k ~ 10ko. Similarly, we
set the time scale by Avt, „=A,o, let 3 = 1, and
copr = 1, where coo is given by Eq. (23) with k =ko. We
need one more parameter here to specify the strength of
viscosity relative to surface tension [we cannot use R, Eq.
(19), because it involves g]. The natural parameter, we
believe, is defined be setting co =0; i.e., define k * by

I
I

I I I I I I I I I
I

I I I I I I I I I
I

I I I I I I I I I
I

I I I I ~ I I I C
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FIG. 2. Snapshots of the spectrum for a multiwavelength
perturbation which is initially flat, i.e., g(k)=g(0) for all k at
t =0, immediately before a shock. We consider wave numbers
in the range given by 1 ~ k/kp 10, where kp serves as a scale.
The postshock snapshots at t=1/4t, „, 1/2t, „, 3/4t, „, andt,„are calculated using Eq. (24) with the following parameters:
A = 1 EUt =kp= 277/kp &opt,„=1, and k /kp =50. The
spectrum shifts towards longer wavelengths, i.e., smaller k, be-
cause viscosity damps the shorter wavelengths. See Fig. 3 for
the time evolution of representative components.



380 KARNIG O. MIKAELIAN 47

2

'o,o'
pcs

10k
~so ~ oos oeosoo «Q «o ooeoooe

rr
rr

~ ooooeooooo ~ o«ooe ~IAog gooses'

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0.2 0.4 0.6 0.8 1.0
tjtmax

FIG. 3. The time evolution of q/go for k/k0=1, 5, and 10o

The conditions are the same as in Fig. 2. Longer- (shorter-)
wavelength perturbations oscillate slower (faster), achieve larger
(smaller) maxima, and are less (more) damped by viscosity.

confirming the qualitative description given above: short-
er (longer) wavelengths oscillate faster (slower}, but are
damped more (less). We see in Fig. 3 that at very early
times the shorter wavelengths are indeed more magnified
than the longer wavelengths.

This phenomenon, viz. , viscosity damping perturba-
tions at a shocked interface, must not be confused with
the effect of viscosity on a rippled shock [23]. The latter
is a well-known phenomenon occurring in rippled shocks
passing through a IInifarm fiuid and in fact the damping
of the oscillations on the shock front is used to measure
the viscosity of the fluid [23,24]. A fully compressible
treatment of the RM instability in viscous fluids would
have to take into account the effect of viscosity on the
shock itself as well as on the motion of the interface per-
turbations. Our incompressible approach describes only
the latter.

IV. CONCLUDING REMARKS

In this paper we generalized the m =0 moment equa-
tion to include the effects of surface tension and viscosity,
and compared it with the m = 1 equation corresponding
to Chandrasekhar s variational principle. As in our ear-
lier work we find that the m =0 equation, Eq. (4), when
used with 8' &„„„& as an approximate eigenfunction,
yields better results than the m = 1 equation, Eq. (5). It is
interesting that the latter equation underestimates the
growth rate y in the presence of viscosity just as it did in
the presence of density gradients, where we first made a
comparison among the various moment equations [12].

We hope to have clarified Hide's derivation of Eq. (3)
and Reid's comment on it: the m = 1 equation indeed has
an extra term which cannot be neglected [Hide's deriva-
tion was somewhat different: he applied Eq. (5) first to
finite-thickness fluids then took the limit of semi-infinite
fluids. ] Hide s suggestion of using inviscid W's as an ap-

t =1/2k v (30)

and the asymptotic value of g is

i)( ~ )/i)(0) =1+ Ave
2kv

(31)

As an example consider v=0. 1 cm /s, which is typical of
some oils or glycerine (v depends on temperature), and
take A, =0. 1 cm. Then the exponential damping time is
t =1.3 ms. If in addition b, vA = —100 cm/s, a rather
weak shock, then the asymptote is found to be
il(~ )/ii(0)= —7, i.e., such perturbations come to rest
with a final amplitude seven times larger than the initial
amplitude and, of course, in opposite phase. Clearly, less
viscous Auids would have much longer damping times
and much larger final amplitudes, quite possibly entering
the nonlinear regime, i.e., gk)&1. This is beyond our
calculational capabilities and Eq. (26) is no longer valid.

To assess the effect of compressibility which is neglect-
ed in our analytic work we carried out two-dimensional
simulations of shock tubes, with and without viscosity,
on Livermore's hydrocode LAsNEx. Figure 4 shows an
example of our calculations: a Mach 1.3 shock passes
from air into a helium test section 10 cm wide and 56 cm
long, dimensions similar to the CalTech shock tube [25].
The transmitted shock, after travelling the 56 cm of He,
rejects off the bottom of the shock tube and reshocks the
air-He interface about 1 ms after the first shock. Figure 4
shows 10X10 cm snapshots of the LAsNEx mesh (which
extends much farther} at t=0.0, 0.6, 1.0, and 1.4 ms,
with the first shock arriving at t =0.2 ms. The absolute
value of the perturbation amplitude ~ri(t)~ is plotted in
Fig. 5 as a function of time with viscosity (lower curve)
and without viscosity (upper curve). To highlight the
effect of viscosity an artificially large value of v, 2.2 cm. /
ms, was used in the viscous case, some four orders of

proximation is entirely reasonable and we also adopt it,
except that we recommend using it in the m =0 equation
rather than the m = 1 equation.

In the absence of viscosity Eqs. (4) and (5) and indeed
all of the higher moment equations give identical results
for the classical profile (two semi-infinite inviscid fluids)
because in this case 8',&„„„&is the exact eigenfunction,
even in the presence of surface tension. For other density
or viscosity profiles we would suggest using Eq. (4) with
8'=e ~ . Here y* denotes the location of peak 8'
and must be chosen judiciously [12,13].

Turning to the RM instability Figs. 2 and 3 illustrate
the combined effect of surface tension and viscosity on
the evolution of perturbations, as given by Eq. (24). The
simple result for pure viscosity, Eq. (26), suggest that one
may use this equation to measure viscosity. This may be
more attractive than the standard way [23,24] because
measuring an interface perturbation is perhaps easier
than following the ripples on a shock front. Only the
combination v=(IM2+p, )/(p2+p, ) is available in such
experiments where the measured quantity is ri(t), the
time-dependent perturbation amplitude at the interface
between the two fluids. From Eq. (26) the viscous ex-
ponential damping time is
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FIG. 4. Snapshots of a two-dimensional
LAsNEx simulation of a shock tube problem
with an initial perturbation g(0)=0.2 cm at
the interface between air and helium gases
The dimensions are in centimeters thwl

OX IOcm frames taken at t=0.0, 0.6, 1.0,
and 1.4 ms. The incident and reQected shocks
hit the interface at t =0.2 and 1.1an . ms, respec-
tively. There is no viscosity in this run. The
perturbation amplitude g(t) with and without
viscosity is plotted in Fig. 5.
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magnitude larger than the physical viscosities of air and
elium.
Figure 4 shows the expected phase reversal of the per-

and therefore A = —4. We find that hv =20 cm/ms so
that the incompressible inviscid growth rate g =gpAvk A

is about 1.9 cm/ms, a value larger than the numerical
growth rate of 1.3 cm/ms seen in Fig. 5 between t =0.5
and 1.1 ms. This is consistent with Richtmyer's finding,
viz. , the effect of compressibility is to reduce the growth
rate below its incompressible value. Similarly for the
viscous case: the asymptotic value g( ee ) from Eq. (31) is
about —0.8 cm i. .,

'.e., —4'(0). The compressible simula-
tion suggests a smaller value: in Fig. 5 (t) = —0.3 cm by

The large growth in g(t) seen in Fig. 5 after t = 1. 1 ms
is of course induced by the above-mentioned reflected
shock which, travelling now from H

' t
throu h a osi

'
e in o air, passes

t rough a positive Atwood number and causes growth

4
but no phase reversal, as seen in the last snapshot f F' .0 ig.

Despite the large viscosities used in the viscous case
pair pHe 1 5 mg cm ' ms '

) Fig. 5 shows that the
or wi out vtseosity.s oc arrival times are the same with o 'th

early, then, viscosity cannot be measured by the one-
dirnensional, i.e., average motion of the shocked gases
since neither shock speed nor interface velocity is affected
by it, which explains why the timing seen in Fig. 5 is the
same with or without viscosity: the incident shock arrives
at t =0.2 ms and the reAected shock arrives at t = 1. l ms
in both casecases. However, though one cannot tell them

apart based on timing, one can clearly distinguish be-
tween viscous and inviscid Auids based on the evolution
of the interface perturbation q(t).

Our final remark concerns the turbulent ener in
viscous Aui~uids undergoing a constant acceleration. We ex-

n energy in

pect that certain aspects of the inviscid exp
'

texperiments
~ will continue to be valid, at least qualitativel .

For example, starting with random initial perturbations a
dominant scale A,0=2m. /k will develo

'
thop in e mixing lay-

er and, as in the inviscid case, will continue to grow with
time. In all likelihood the transition from the li
the full tu y urbulent regime will take somewhat ion er in

m e inear to

viscous Aui~s.uids. However, as the mixing width and the
w a onger in

dominant scales continue to grow the effect of viscosity
wi decrease so that in the fully turbulent regime the

iy y o~ maymixing width h, which is controlled primaril b A, ,
not deviate too much from the inviscid case. The small
scales, on the other hand, will continue to sense the effect
of viscosity and since E ~ ~

E«,„„&,„, is an integral over all
scales one naturally expects it to remain below its inviscid
limit.

There are no experimental results on A,p or Et b J

even for inviscid tensionless Auids Th ke roc et-rig experi-
ments [19,26] report h, the mixing width into the heavier
Quid, as given by

h =0.07 Agt (32)

Considering the potential energy lost by a "falling" Quid
we estimated [27]
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E,„„b„t,„,=&gh/6=('O7)A g2t2 (33) 2.0

An alternative approach is to apply the turbulence model
of Ref. [28] which involves the growth rate y. Using
y =&gk A we derived [27]

1.6

1 56
turbulent 3 9

(34)

which agrees with Eq. (33) if

2

h =0.40h .
2 56

(35)

The advantage of this approach is that one can link
directly the reduction in y to a reduction in Et b f f as
we did earlier for surface tension [7] and for ablative sta-
bilization [29]. Just as adding viscosity to surface tension
further reduces the growth rate y, we find that adding
viscosity causes further reduction in Et„,b„],„„which can
be understood as viscous heat draining away some of the
potential energy and thereby making less energy available
to appear as turbulent kinetic motion in the mixing layer.
Therefore Eqs. (33) and (34) must be viewed as upper
bounds.

Plans to measure Et„,b„&,„t in the Boussinesq limit,
p&-p2, are in progress [30]. Although the scaling with g
cannot be tested (go, the Earth's gravitational accelera-
tion, is used in these experiments), the scaling
E«rbu&ent

—3 t and A,o-h may SOOn be teSted eXperi-
mentally.

0.4

0.0
0.0 0.5

t (ms)

FIG. 5. ~g(t)~ vs t for the shock tube problem discussed in
the text. The upper curve is the inviscid case, p&=p2=0; the
lower curve is the same problem with p &

=p2 = 1.5
mgcm 'ms
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