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We consider a network of X globally coupled nonlinear overdamped oscillators subject to Langevin
noise and a weak periodic modulation. Assuming that one of the oscillators relaxes to its steady state on

a time scale far slower than the remaining oscillators in the network, we obtain its dynamics from the
coupled stochastic differential equations describing the system, via adiabatic elimination. The bifurca-
tion properties of this "reduced oscillator" model are discussed, together with cooperative stochastic
effects {e.g. , stochastic resonance) that result from the presence of the modulation.

PACS number(s): 87.10.+e

Recently, there has been an upsurge of interest in
cooperative effects arising in networks of nonlinear oscil-
lators interacting via mean-field-type couplings [1]. The
interest has spread to applications in biophysics and
neural networks where a recent interest in single or few
neuron dynamics has led to a derivation of an effective
single neuron model [2] starting from the connectionist
neural network model of Hopfield [3], in the presence of
Langevin and multiplicative fluctuations. The presence
of a weak periodic signal in the noisy nonlinear dynamic
system can lead to cooperative effects, e.g. , "stochastic
resonance" wherein small amounts of noise can actually
enhance the fiow of information through the system [4,5].
In a network of nonlinear oscillators with a linear mean-
field interaction, the stochastic resonance effect is
enhanced [6] over what would be expected for a single
isolated element of the network.

In this work, we consider the inAuence of a large num-
ber of weakly nonlinear oscillators on the dynamics of a
single (reference) nonlinear oscillator. The elements of
the noisy network are assumed to include a priori, self-
coupling terms as well as a weak, low-frequency periodic
modulation:

N Ql.

C, u, = g J,"tanhu — +F, (t)+q sincot .
j=1

An equation of this form describes a set of X nonlinear
coupled bistable oscillators (the coupling is also non-
linear). The i =1 index is taken to denote the reference
oscillator and the indices i =2, . . . , X (where X is large)
denote the "bath" oscillators. Systems of the form (1)
have been used to describe connectionist-type electronic

neural networks [7]. In such networks, u; denotes the ac-
tivation function (analogous to the membrane potential of
a neurophysiological neuron) of the ith element, C, and
R; denoting the input capacitance and transmembrane
resistance. The coupling coefficients J; are usually deter-
mined via a learning rule. We assume the noise F;(t) to
be Gaussian, 5-function correlated with zero mean and
variance cr; (the noise sources for different indices i are
assumed to be uncorrelated).

We now assume that the time scale for relaxation of
the reference oscillator is much longer than that for the
bath:

C, R, «C, R, (i & I) .

This assumption allows us to adiabatically eliminate the
bath variables from (1) and write down an equation for
the variable u& in terms of the bath variables. The pro-
cedure for doing this has been described in [2].
Specifically, an N-body Fokker-Planck equation is con-
structed from (1). Haken's slaving principle [8] then per-
mits us to factorize the X-body probability density func-
tion describing the system (1) into a product of a single-
body density function for the slow variable u

&
and a con-

ditional density function for the remainder of the system.
This, in turn, leads to a separation of the X-body
Fokker-Planck equation (FPE) into a FPE for the proba-
bility density function of u& (which contains the bath
variables u, ») and a FPE for the bath variables. The
latter is solved in the long-time limit, after invoking a lo-
cal equilibrium assumption for the bath variables (this is
tantamount to a quasilinearization of the bath dynamics).
We are ultimately led [9] to a closed FPE for the slow
variable u

&
whence a stochastic differential equation may
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be readily written down by inspection:

u, = —au, +ptanhu, +5 singlet+(o, )'/ F(t),
where

a=(R, C, )

(3)
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10.1

P=Ci ' J„+gR, G, 'J„J;,

o. .R;1+ yR, G,-'J„

o.
, R,

2C;
(4)
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and F(t) is now Gaussian 5-function-correlated noise
having zero mean and unit variance. In carrying out the
procedure leading to (3) we have assumed further that the
modulation frequency is smaller than the Kramers fre-
quency of the unmodulated system. This assumption is a
cornerstone of the adiabatic theory of stochastic reso-
nance [5] on which our subsequent results are based.
Further, we assume that

9.8
0.0 1.0 2.0

R,
FIG. 1. Effective nonlinearity parameter P/a vs R2 for

X= 10, R
&

= 10, J» = 1. Solid curves represent Jl = 1 =J
&

and
bath noise variance o.z =0, 1,2, reading from the top curve
downward. Dotted curves correspond to J;&= —1 with the
same values of o.z, reading from the bottom curve upward.
J;;=0,J;;=1 fori ) 1.

o,'R, & 2C, (i ) 1) .

This assumption (quantified in [5]) guarantees the conver-
gence of the steepest-descent techniques used to evaluate
the coefficient /3 in (3) and places an upper limit on the
noise strengths (with very large amounts of noise, the in-
teresting cooperative behavior is lost). Note also the ab-
sence of terms involving coupling between pairs of bath
oscillators; these terms are O(R;R ) (i,j) 1) or higher
and are assumed to be negligible.

A detailed analysis of the full dynamics described by
(3) is beyond the scope of this Brief Report and will be
presented elsewhere [9]. In the following, we first discuss
the cooperative effects that arise as a result of the interac-
tion with the bath, as embodied in the renormalized
coefficients p and 5 in (3). The bifurcation properties of
the reduced system (3) may be studied (in the absence of
the noise and modulation terms) via the potential func-
tion.

U( u, ) =—u, —P ln coshu, .CX

(6)

For positive a and p, the potential is bimodal (for
p/a) 1) with minima located at c =(/3/a)tanh(p/a). It
is instructive to consider the effects of the bath dynamics
on the transition to bimodality in the potential. To this
end, we plot, in Fig. 1, the ratio p/a as a function of the
resistance R2, for different values of the variance az of
the bath noise source. Throughout the remainder of this
work, we assume that o.; —=o2 and R; =Rz for the bath
variables i & 1; also, we set C; =1 for all i. Figure 1 is a
plot of /3/a versus the resistance R2. For this figure we
have drawn the diagonal elements J;; of the coupling ma-
trix from a Gaussian set having mean zero and unit vari-
ance. The elements JI; are drawn from a Gaussian set
having unit mean and variance, and the back-coupling
elements J;I are drawn from a Gaussian set having unit
mean and variance as well as from a Gaussian set having

a mean of —1 and unit variance. In a neurophysiological
or neural network context, these selections would respec-
tively correspond to the couplings being (almost) purely
excitatory or a mixture of excitatory and inhibitory.
Since in general N can be quite large, we must scale the
coupling matrix by N to assure that the second term in (6)
does not become inordinately large. Henceforth, all the
elements J;. will be taken to be the scaled quantities
J, /N. From the expressions (4) we may obtain, approxi-
mately, the threshold value of R2 at which the potential
becomes bimodal (all other parameters being fixed). In
Fig. 1 we have arbitrarily set J» =1, i.e., we assume an
excitatory self-feedback in the slow oscillator in the ab-
sence of any coupling to the bath. We also set R I =10 so
that in the absence of any coupling to the bath, the single
(i.e. , isolated) oscillator potential is bimodal. In the pres-
ence of a preponderance of excitatory couplings
(J„=l=J,, and Ji,. =1=J;, ) the ratio/3/a increases (for
nonzero o 2) up to a maximum value, after which it de-
creases. The opposite effect is seen to occur for the case
of a mix of excitatory and inhibitory couplings
(J„=1=—J;, ). The curves corresponding to these two
realizations of the off-diagonal elements for a given value
of o z (for the cases in which an extremum exists) cross at
the values R2=0 and 2/o. 2, yielding the JI~=O result
(p/a=J»R, =10.0). Beyond this intersection, the in-
equality (5) is violated and we do not expect the theory to
yield accurate results.

We digress briefly to consider the case in which the po-
tential is monomodal in the absence of any coupling to
the dendritic bath (this can be achieved by setting
JiiRi & 1). Then, one readily calculates [9] the value of
Rz (for given noise variance o z and configuration of the
matrix J) above which the effective potential is bimodal.
Increasing R2 leads to a transition to bimodality only for
the case in which the sum g;»Ji, J, i is positive [keeping
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in mind the constraint imposed by the inequality (5)].
This may be realized by imposing the same sign on the
vast majority of the off-diagonal elements J&; and J;&. In-
creasing the noise variance O.

z degrades the effect. It is
apparent that the coupling to the bath may actually in-
troduce a phase-transition-like behavior into the neuron
dynamics. Effects such as this coupling-induced bimodal-
ity are a hallmark of multiplicative noise [10] and have
earlier been examined [11] in simple models of the form
(3). The opposite effect can also occur: depending on the
magnitude and sign of each element J;, a potential that is
bistable in the absence of the bath coupling can be ren-
dered monostable by the bath.

%"e now consider the effects of the deterministic modu-
lation, specifically stochastic resonance, wherein a small
amount of noise can introduce correlated switching
events in the dynamics (3), corresponding to the system
described by the effective potential (6). An adiabatic
theory, valid for very low frequency co and weak ampli-
tude q (such that there is no switching in the absence of
noise) has been developed by McNamara and Wiesenfeld
[5]. The central result of this theory is that if one com-
putes the signal-to-noise ratio (SNR) of a bistable system
of the form (3) as a function of the noise variance, then
the SNR passes through a maximum at a noise variance
approximately equal to the potential barrier height. Sto-
chastic resonance has been investigated [12] for a single
(isolated) oscillator of the form (3), with arbitrary o; and
P. In the current context, we define the deterministic
switching threshold as the critical value 5, of the scaled
modulation amplitude 5, above which one would obtain
deterministic switching in the o.

&

=0=o.
z case. This criti-

cal value can be easily found to be given by 5, =—au, +ptanhu„where u, =—In[v'p/a+ v'(p/a) —1]
and P—:(P) & . Then, in order to satisfactorily explain2—
stochastic resonance using adiabatic theory we must en-
sure that 5 & 5, and co & cox. , the Kramers rate for the un-

modulated system. The adiabatic conditions can be
satisfied in the reduced dynamics (3) if we ensure that
there is no deterministic switching in the isolated
(J, =0) case and we operate within the realm of validity
[defined by (5)] of the theory.

In Fig. 2 we show the SNR, obtained via the adiabatic
theory [5], for the reduced Eq. (3). The bottom curve
shows the SNR that would be obtained for the isolated
case (Ji;=0, i ) 1) with the remaining curves showing
the effects, of including the bath coupling with different
values of the bath noise strength o.z. The maximum
enhancement is seen to occur for o.~=O; increasing o.

z de-
grades this enhancement. The important result is that
the coupling to the bath enhances the SNR even in the
presence of noise [recall that the inequality (5) imposes an

upper limit on the noise]. Similar effects have been ob-
served recently in a mean-field model of linearly coupled
bistable oscillators [6]. The enhancement of the SNR
may be explained by observing (see Fig. 1) that increasing
Rz from zero causes the ratio P/a (and therefore, the po-
tential barrier height Uo), for this configuration of J, to
initially decrease and then increase. The renormalized
modulation amplitude 6, however, can only increase since

9.0

6.0

3.0

0.0
0.0 5.0

Q 2
1

1 0.0 15.0

FIG. 2. SNR vs variance cr& for (J»,R &,Rz, q, co,X)
=(1,10,0.6,0. 1,0. 1, 100). J&;=1=—J;), J;) =1=J&;. J;;=0,
J;;= 1, (i & 1). Bottom curve: J&; =0 (isolated case). Remaining
curves: o.&=0 (top), 1 (middle), and 2 (lower).
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FIG. 3. Peak SNR (normalized to its value for J&; =0 case) vs
R, for (J»,R„q,co,N):—(1,10,0. 1,0. 1, 100) and a,'=0 (top
curve}, 1 (middle curve), 2 (bottom curve). J;;=0, J;;= 1

(i & 1),J;& =1=Jl;. Solid curves: J„.=1=J;&. Dotted curves:

we have taken the set J&; to be mainly excitatory in na-
ture. Hence, one obtains a marked increase in the SNR
as the potential barrier height decreases. Past the ex-
tremum of P/a in Fig. 1, the opposite effect occurs. A
similar enhancement of the SNR occurs for the case of all
the off-diagonal elements of J being excitatory (i.e.,
Ji; =1=J;i). However, the enhancement will not be as
great as that obtained for the case when the elements of J
describe a mix of excitatory and inhibitory couplings. As
the barrier height increases the SNR will decrease since
there are fewer switching events. Figure 3 shows the
peak SNR (normalized to its value for the isolated, i.e.,
Ji =0 case) as a function of Rz for different bath noise
strengths. This figure clearly shows that increasing the
bath noise leads to a lower enhancement in the SNR.
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Note that the curves in Fig. 3 are peaked (for nonzero o.2)
at the same values of R2 for which the critical curves of
Fig. 1 display their extrema. The effects outlined here are
described in greater detail in [9]. Before concluding, we
must point out that the enhancement of the SNR through
the bath coupling will not be as striking as depicted in
Fig. 2 if the set J&; is purely inhibitory. This is evident
from (4). If most of the terms in the summation are nega-
tive, the net eff'ect is to decrease 6 while P may increase
or decrease depending on the relative magnitudes and
signs of the product terms in the summation. This situa-
tion is qualitatively similar to that encountered for the
case of mainly excitatory J; . . It is also important to point
out that the bath may actually induce stochastic reso-
nance through the coupling-induced bimodality (for the
case when the slow oscillator is monostable in the ab-
sence of the bath) described in the preceding paragraph.

The above analysis underscores the importance of the
magnitudes as well as the signs of the interactions J; .
This is also obvious from the definitions (3) wherein we
observe that P (and hence the potential barrier height) de-
pends on the product J& J &, whereas the effective modu-
lation term 5 depends only on J& . In neurophysiological
terms, we could argue that having a statistical mix of ex-
citatory and inhibitory couplings provides superior per-
formance to having all the couplings of the same sign.
The latter situation is unlikely to occur in neurophysiolo-
gy, although it could certainly be realized in electronic
neural networks and in more general oscillators governed
by dynamics of the form (3) (note that for a general net-
work of nonlinear oscillators, such as that considered in
this work, the coefficients J, . could take on any values, as
long as the system remains stable, i.e., a ~ 0).

In conclusion, it is important to reiterate the beneficial
effects of coupling the reference oscillator to the bath
with a faster time constant. The coupling clearly

enhances the information flow (measured by the SNR) to
the system output. Clearly, in order to achieve the best
possible SNR (in the context of the adiabatic theory em-
ployed here) the barrier height should be decreased and
the effective modulation increased via the coupling to the
bath. If the noise strength o.

2 is approximately known,
then the optimum SNR can be achieved by setting
R2, =cr2 (1+h), where h satisfies the quadratic (taking
the negative square root),

(1 o2—Hi+ ', o2 H— z)h +(2o.2 H~ —1)h

+—'cr 2 H2 + —,
' o.

2 Ho —0,
with the definitions H i

=—g;»J„J;,J;;, Hz
—:g;&iJi;J;iJ;;, and Ho ——g;&iJi;J;i. The critical value

R2, corresponds to the location of the maxima of the
solid curves in Fig. 1 (in the large N limit, the scaling of
the coupling matrix J yields R2, =o.

2 ). If the external
noise cr, and/or the signal amplitude q are approximately
known, then further optimization can be achieved by ad-
justing the coupling parameters J;. such that the poten-
tial barrier height is roughly equal to cr, and, the effective
signal amplitude 5, in the reduced (3), is very close to the
deterministic switching threshold 5, . When suitably op-
timized, a network of oscillators such as (3) may well pro-
vide signal processing or detection capabilities that are
far beyond the purview of the single (i.e., isolated) oscilla-
tor defined by J&, =0.
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