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Finite-size effects on long-range correlations:
Implications for analyzing DNA sequences
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We analyze the fluctuations in the correlation exponents obtained for noncoding DNA sequences.
We find. prominent sample-to-sample variations as well as variations within a single sample in the
scaling exponent. To determine if these fluctuations may result from finite system size, we generate
correlated random sequences of comparable length and study the fluctuations in this control system.
We find that the DNA exponent fluctuations are consistent with those obtained from the control
sequences having long-range power-law correlations. Finally, we compare our exponents for the
DNA sequences with the exponents obtained from power-spectrum analysis and correlation-function
techniques, and demonstrate that the original "DNA-walk" method is intrinsically more accurate
due to reduced noise.
PACS number(s): 87.10+e, 05.40.+j

I. INTRODUCTION II. FINITE-LENGTH DNA SEQUENCES

Recently, it was discovered that noncoding DNA se-
quences exhibit scale-invariant long-range correlations
quantitatively measured by a power-law decay [1]. The
exponent characterizing the power-law decay of the cor-
relations is well deBned for infinite sequences. However,
for DNA sequences the accuracy of the analysis is lim-
ited by the length of the available nucleotide chains (i.e. ,

there are only a few samples of published nucleotide se-
quences with length ) 10s base pairs). It is therefore
of importance to investigate the effect of finite length on
the exponents calculated. The purpose of this report is
threefold: (i) to demonstrate that there are prominent
Huctuations on the exponent characterizing long-range
correlations in finite-length DNA sequences; (ii) to in-
vestigate systematically the effect of B.nite sample size
on this exponent using control sequences for comparison
with actual DNA; and (iii) to compare and contrast three
different methods —DNA walk, correlation function, and
power-spectrum analysis —of measuring the correlation
exponent. While this work is motivated by recent studies
of nucleotide sequences, our endings can be generalized
to other problems involving finite-length sequences.

Applying the method of Ref. [1],we map a nucleotide
chain to a binary sequence u(i) such that u(i) = »f a
pyrimidine occurs at position i and u(i) = —1 if a purine
occurs at i [2]. We can then generate a DNA walk such
that the walker will step up or down depending on the
sign of u(i). The trace (landscape) of the DNA walk,
defined as y(l) = P,. i u(i), is plotted in Fig. 1(a) for rat
embryonic skeletal myosin-heavy-chain gene (GenBank
name: RATMHcG). The rms fluctuation for such a DNA
walk is defined as

where

Ay(E) = y(Ep + 8) —y(Ep)

and the bars indicate an average over all position Eo. Fig-
ure 1(b) shows the double-logarithmic plot of F(I) vs E,
the linearity of this plot indicates that

F(I.) I. .
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300 generate such artificial sequences, we apply the following
numerical method [3, 4]: A sequence of real numbers u(i)
is generated by inverse Fourier transforming a sequence
of complex numbers u(q), where
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u(q) = lql ~"n(q), (4)

and il(q) is Gaussian stoehastie noise of amplitude A, i.e. ,
random variables with a normal distribution of density,
such that
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il(q) = 0

il(q)g*(q') = A 6(q —q'),
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where the bars indicate an average over different realiza-
tions of the stochastic noise [5]. It is straightforward to
verify that u(i) thus obtained has the correct correlations
described in (3) with a. = (1 + P)/2 [6].

To compare the finite-size efFects for the control system
and the DNA sequence, we perform the following steps:

FIG. 1. (a) DNA walk for rat embryonic skeletal myosin-
heavy-chain gene (GenBank name: BATMHCG). (b) Double-
logarithmic plot of the rms fluctuation F(I) vs E, where F(I)
is defined in (1). The straight line, with slope a = 0.63,
represents the linear least-squares fit from f, = 1 to 512. (c)
The successive slopes for ai„,~(E) for the plot in (b) [7].

The linear least-squares flt (/ from 1 to 1000) for this plot
gives a. = 0.63. The exponent a. ) 1/2 indicates that
u(i) is not an uncorrelated random sequence or a short-
range correlated sequence (such as that associated with a
Markovian chain process), but instead the sequence has
long-range correlation with power-law decay [3].

However, we note that the log-log plot of F(E) vs E

clearly includes data points that deviate from a straight
line. Furthermore, the scaling behavior in Fig. 1(b) is less
than three decades (less than 1/10 of the whole sequence
studied). Such deviations can be more readily visualized
if one calculates the slopes of successive pairs of points in
Fig. 1(b). Such a plot of "local" slope (ai c ~) is shown
in Fig. 1(c). The fluctuations about the linear regression
are seen most dramatically for larger values of E. Quali-
tatively, these fiuctuations could arise from the fact that
we measure a finite sequence of length N = 25759 nu-
cleotides. The main goal of this study, therefore, is to
quantitatively calculate the magnitude of the expected
fluctuation in o, , in order to test if the Buctuations could
arise solely from finite-size efFects, or whether some other
mechanism must be invoked.

III. FINITE-LENGTH CONTROL SYSTEMS

To see how finite-size affects the scaling exponents of
DNA sequences, we next compare the scaling behavior of
the DNA sequences with that of a control system —an ar-
tificial sequence with known correlation exponent a. To

(i) Generate a correlated sequence of flnite length N
with a given exponent o..

(ii) Calculate the successive slopes of logip F(E) versus
logip l denoted n~ocai (E, N) [7].

(iii) Repeat the processes (i) and (ii) for many (M)
times and obtain the probability distribution of
a'local(&~ N).

(iv) Calculate the average (n~ocat) and the standard de-
viation of n~oca~(E, N). For M large enough, these
values are found to converge.

We find that the standard deviation of o.~«a~(E, N), de-
noted by An~oca~(E, N), decreases with the length of N
but is not sensitive to the magnitude of the stochastic
noise [amplitude A of the noise il(q) in Fourier space, see
Eq. (6)].

Figure 2 shows n~oca~ vs E. The solid lines represent
a&o,a~(E, N) + 26n~oca~(E, N). Results from a typical real-
ization of an artificial correlated sequence are also plotted
(open squares) to demonstrate the large fluctuations of
o.~,~~ even in a single sample. Of note, the comparison
between the artiflcial control and actual DNA sequences
(both with the same length N) shows good agreement,
i.e. , the fluctuations of n~, ~ of the DNA sequence are
comparable to the typical Huctuations of a finite artifi-
cial correlated sequence of the same length [8].

A simple theoretical argument can be applied to derive
a sealing relation for Aa~, ~(E, N). A sequence of length
N can be divided into N/E independent subsequences
of length E. Hence n~ ca~(E, N) of a single sequence of
length N corresponds to the average (mean) value of N/E
independent samples. The fluctuation An~« ~(E, N) of a
mean value n~, ~(E, N) is inversely proportional to the
square root of the number of independent samples to be
averaged. Therefore, we conclude that [9]
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If we have only a single sequence of finite length N,
we can nevertheless estimate An&o, i(E, N/M) by divid-
ing it into M independent subsequences and calculate
ni«, i(E, N/M) for each subsequence (providing that N,
M, and N/M are large enough for statistical meaning-
ful results). Using Eq. (7) we can obtain the expected
fluctuations for ni, i(E, N) and compare them with the
sample we wish to study.

0 4 IV. ALTERNATIVE CORRELATION ANALYSES
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To compare the fluctuations of n in our DNA walk
method with those found in other methods, we also
present the results from two standard methods to study
the correlation property of sequences, namely the corre-
lation function and the power spectrum. For the DNA
sequences, we deBne the correlation function as

&(E) —= [u(E'+ E) —Gj [u(E') —Gj.

FIG. 2. The successive slope ni, ~(E, N) vs log, o E for the
artificial sequence with length N = 25759. The squares rep-
resent the results from a single realization. The circles are the
results of averaging over 1000 realizations, while the solid lines
are twice the standard deviation An~, i(E, N). The horizon-
tal dashed line is the exact exponent for an infinite sequence
(N = oo) [7j.

( E ) 1/2

Ani„, i(E, N)

The bar indicates an average over all positions E'. The
power spectrum density S(q) is obtained by (a) Fourier
transforming the sequence (u(i) ) and (b) taking the
square of the Fourier component. For a stationary se-
quence, the power spectrum is the Fourier transform of
the correlation function. If the correlation decays alge-
braically (not exponentially), i.e. , there is no character-
istic scale for the decay of the correlation, as we found in
the noncoding DNA sequences, then

10

Figure 3 confirms Eq. (7) numerically for the artificial
correlated sequence. Although we cannot derive the pref-
actor, i.e. , the proportionality constant, in Eq. (7) ana-
lytically, this scaling relation is of practical importance.
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FIG. 3. Double-logarithmic plot of Ani«~i(E, N) vs E/N
for three values of chain length, N = 1024 (Q), 8192 (&), and
65 536 (p). The solid line has slope 1/2, the value predicted
by Eq. (7).

FIG. 4. Double-logarithmic plots for (a) the correlation
function C(E) vs E and (b) power spectrum S(q) vs q for the
same DNA sequence shown in Fig. 1. The circles in (a) and (b)
are data obtained by averaging neighboring points, while the
dots represent raw data. The lines are a linear least-squares
fit with slopes (a) p = 0.70 and (b) P = 0.27.
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and

C(E)

S(q) q ~. (10)

The exponents cr, P, and p defined in (3), (9), and (10)
are not independent [3, 4], since

show larger fluctuations (even for the binned data) than
that observed in the DNA-walk method. The reason for
the smaller fluctuations of aip, ~(E, N) in the DNA-walk
method [(Fig. (1b)] is due to the fact that E2(E) js s,
double summation of C(E) [1] and, therefore, the noise is
dramatically reduced.

V. CONCLUSION

Figures 4(a) and 4(b) are log-log plots of C(E) vs E and
S(q) vs q for the same DNA sequence studied in Fig. 1.

For a typical DNA sequence of finite length, both the
correlation function and power spectrum are very noisy
(Fig. 4). In fact, it is very difficult to get a good esti-
mation of the scaling exponents directly from these two
methods. In order to reduce the noise in Fig. 4, we
have smoothed the data by simple averaging. The least-
squares fits for the scaling exponents from the correlation
and power spectrum are P = 0.27 and p = 0.70, which
correspond to cr = 0.64 and 0.65, respectively. We note
that for most of the DNA sequences we analyzed, the
discrepancies among these three methods are at least as
great as the results shown here.

For an artificial correlated sequence, similar noisy fluc-
tuations for C(E) and S(q) are observed. As is evident
from the scatter of points about the regression line in
Fig. 4, the local slope analyses for C(E) and S(q) will

In summary, we have demonstrated that the Huctua-
tions found in estimating the correlation exponent of a
6.nite-size sample may be quite prominent. Therefore, a
careful comparison of the estimated value for the expo-
nent (and its fluctuations) with that of a suitable control
model is crucial. To carry out this sort of comparison,
we provide a systematic procedure that may be relevant
not only to DNA correlations but to other sequences of
correlated random variables.
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