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Evolution of slow magnetoacoustic perturbations is used to demonstrate a new mechanism of plane
Couette How shear energy transformation. The initial uniform magnetic field is considered to be direct-
ed along the unperturbed flow velocity. We find that the amplification of waves is nonordinary —it
occurs in a limited time interval and is anomalously strong. The unusual behavior is manifested also by
the fact that the characteristic length scale of perturbation diminishes down to the dissipative scales not
only due to nonlinear cascade processes, but due to a linear drift in the k space as well.

PACS number{s): 52.35.Bj

I. INTRODUCTION

As a rule, flows realized in Nature are sheared —i.e.,
the flow velocities have a shear in the direction perpen-
dicular to the velocity. For example, flows in accretion
disks, galaxies, and jets originated in some active galaxy
nuclei (AGN); those in solar corona, etc., are sheared.
This particularly explains the interest in the shear flows.
Moreover, in shear flows the directed motion energy, due
to the existence of shearing, may become transformed
into other kinds of energy that diversify noticeably the
phenomena picture. The growth of perturbations in
shear flows has been investigated before. However, prob-
ably due to incomplete analysis of equations, the anoma-
lously intensive transfer of shear flow energy to perturba-
tions energy has not been found. The phenomenon in the
absence of magnetic field is discussed in [l —3]. Herewith
we demonstrate the novelty that this transfer leads to in
the presence of magnetic field. In particular, here we
show the possibility of slow magnetoacoustic wave
amplification in infinite flows with constant velocity
shear. The initial uniform magnetic field is directed
along the flow velocity. The phenomenon we discuss
here has quite a universal character —it is inherent for
other types of plasma oscillations as well. Besides, the
behavior of the perturbed quantities in time is not ordi-
nary: at the beginning for certain wave-number values
the usual slow magnetoacoustic waves (here we consider
incompressible perturbations) with constant energy exist.
This is followed by "switching on" of phenomena, which
in the time scale, less than a wave period, effectively
transform the shear flow energy into a slow magne-
toacoustic wave. After this, the wave energy "is saturat-
ed" at a level which can exceed its initial value by several
orders of magnitude. It is important that during the per-
turbation evolution the change of wave number occurs in
the direction of the velocity shear (X), i.e., k„=k„(t).

The proposed amplification mechanism is effective for
moderate values of the ratio ~k, /k»~, where k» is the
wave number of the perturbation along the mean velocity
of motion Uo(0, U&, 0). Since k„(t) changes linearly in
time [Eq. (26)], it is clear that for large times the ratio
~k, (t)lk»~ becomes large. Therefore the efficiency of
wave amplification decreases and this leads to the satura-
tion of its energy. Amplification of density waves in a
shearing sheet has been thoroughly investigated in [4].
An essential difference between our model and the model
from [4] is that in the latter the density waves encounter
a barrier around the corotation radius and this barrier
acts as a wave amplifier. All unstable modes in this case
owe their origin ultimately to the corotation amplifier.

Section II presents the mathematical formalism and
the basic equations are obtained. The results from the
numerical solutions and the analysis of the processes are
considered in the third section. Detailed discussion of
the energy transformations is presented in the fourth sec-
tion.

II. MATHEMATICAL FORMALISM

aU + (UV)U= ——Vp—1

at p
aB =(BV)U—(UV)B,
at

VB + (BV)B,
Sap 4' (2)

(3)

divB=0, (4)

where all designations are standard. Let us assume that
the unperturbed flow velocity Uo is directed along the Y

Let us consider incompressible, unlimited, ideal flow in
the presence of magnetic field. It is described by the fol-
lowing system of equations:

divU=0,
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axis and has linear shearing along the X axis

Uo(0, Uo, 0), Uo = Ax,
where A is the velocity shear parameter, which is con-
sidered positive. Further, it is clear that A plays the
role of a time scale. Let us assume also that the unper-
turbed magnetic field is homogeneous and is directed
along the velocity of regular motion,

Boll Uo . (6)

P =So +P U =Uo+ u, 8=Bo+B', (7)

from Eqs. (1)—(4) and taking into account (5) and (6), in
linear approximation for perturbed quantities we get

Taking into account the incompressibility of the medium
(p =const), splitting other quantities into regular and per-
turbed parts

FICx. 1. Local Cartesian coordinate system XO Y and the sys-
tem with moving axes X& 0Y& are presented. The arrows show
the direction of the main How velocity Vo at different distances
from the Y axis. Vo(0, VO„O), Vo, = Ax, A & 0. The X, axis
moves together with the shear How.

Bu~ Buy
(8)
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By,
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By
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Bux 1

Bt& p Bx&
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(10)
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47Tp Bx,
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By &

Bu 1 Bp'+ Au„= ——
Bt& p By&

Ba„' Bu.

(16)
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(18)
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(12) B B—At

Bx, 1
By,

BB'
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By,
(19)

x& =x, y& =y —Axt, t, =t, (13)

or

B

Bt

B B

Bx,
'

By,
'

By By,

B B
(14)

i.e., we discuss two-dimensional perturbations and con-
sider them to be homogeneous over the z coordinate. The
set of equations (8)—(12) is homogeneous in time. But,
as discussed in [5], the Fourier expansion of the perturba-
tions over time in the shear Aows leads to obstacles.
Therefore we will try to solve the problem without
Fourier expansion in time. For this purpose, let us intro-
duce the system of coordinates with sheared axis X~ 0Y&,
with the origin and the Y, axis coinciding with those
used in Eqs. (8)—(12) of the Cartesian system and X&
moving with the unperturbed flow (see Fig. 1) [3,6]. It is
equivalent to substitution of variables

u

uy

p' = Jdk, dk,
8'
B'

u„(k,„,k, , t, )

u (k,„,k, , t, )

p(k, , k, , t, )

B (k, , k, , t, )

B (k, , k, , t, )

X exp(ik, x, +ik, y, ) . (20)

Substituting expansion (20) into Eqs. (15)—(19) we obtain

The transformation of the variables described in (13) is
not a physical transition to the new frame, because in
Eqs. (15)—(19) the quantities u„, u, B„', B' are com-
ponents of the velocity and magnetic field perturbation in
the Cartesian coordinate system. The coefficients of the
initial linear equation system (8)—(12) depend on the
space coordinate x. After our transformations, this inho-
mogeneity was changed into time inhomogeneity. So we
can perform Fourier analysis of Eqs. ( 15 ) —( 19 ) with
respect to the variables x

&
and y &

..

With the new variables, Eqs. (8)—(12) take the form (k,„—k, At, )u„+k, u =0, (21)
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au. l Bo-= ——(k, —k,y At, )P+ik, y 8„
P 27TP

Bo-
i—(k, —k, At, ) 8

27Tp

BQy + Au„= —ik, +,
at, " 'yp '

BB —lk
&

BOQ

(22)

(23)

(24)

tion of a mechanical motion in Lagrangian coordinates
(when the physical system is described by an observer
moving together with it). In other words, Eqs. (21)—(25)
describe the perturbation Fourier harmonics in the frame
drifting with them in the wave-number space. In the k,
space this drift does not exist.

After simplifying Eqs. (21)—(25) and defining the di-
mensionless quantities

Q~ gy

(k,„—k, At, )8 +k,yB =0 . (25)

Using Eqs. (21)—(25) the evolution of the Fourier har-
monic amplitudes represented by Eq. (20) may be traced.
What does happen with these Fourier harmonics in the
Cartesian coordinate system (XOY)'7 From (13), (14), and
(20) the following relation may be obtained for the wave
numbers in the direction X and Y at any time moment:

B
X

0

B
y B

V~k
co —= , w= At,

(27)

k„(t)=k,„—k,y At, , k =k, (26)

i.e., the wave number of each Fourier harmonic along the
X axis changes in time. In other words, in the shear Aow
each Fourier harmonic drifts along the k„direction.

This phenomenon may be traced by description of a
Fourier harmonics package dynamics in the k space (Fig.
2). As it may be seen from Fig. 2 besides the package en-
ergy change, a drift in the k space takes place. As a re-
sult the energy density at a fixed point of the k space may
increase from zero (at the initial moment) to some posi-
tive value (after certain time interval) (see point 1 in Fig.
2).

So, the usage of the variables xi and y, may be
clarified. The description of a process using the Fourier
harmonics which are obtained after an expression with
respect to x

&
and yi coordinates resembles the descrip-

k„(~):—k, —k,yr,

where V„=(80/4n.p)' is the Alfven velocity, we get at
last

BV

a~

2k, (r)/k
vx+~bx ~

[k, (~)/k j +1 (28)

Bb
COV~

a~
(29)

Our aim is to trace along the temporal evolution of the
perturbation energy spectral density:

t= 0, E= 11.6084 t=3, E=109.758

ky

3—
ky

-15 -10

4=6, E=25.8623

10 15
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-15 -10

t=9, E= 2.94614

10

FIG. 2. Evolution of a package of perturba-

15
tion Fourier harmonics is presented. The
package accumulates energy in the region
k /k~ & 0 and drifts in the wave-number plane.
After a certain time interval the package is in
the k /k~ (0 region and there it completely
returns its energy to the equilibrium How.
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B2
Wtot ( k tx ~ ly ~ r ) tot
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(
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B
8~

k„(r)
k

+ 1 (Iv I
+ Ib

I
)

(30)

where W«t(k, „,k, , r) is the spectral density of the slow
magnetoacoustic waves energy at the moment ~ and in
the point (k,„,k, ) of the k, space. But from above it is
clear that W„,(k,„,k, , r) is the perturbation energy den-
sity at the moment r in the point (k„(r),k ) of the k
space.

Using (21), (25), (28), (29), and (30) an equation for the
evolution of W„, (or E„,) may be obtained:

Br k

k
(

I vy I

X

(31)

III. NUMERICAL RESULTS AND DISCUSSION

It is clear that the Fourier harmonic energy increases for
k„(r)/ky )0 and lv I

) lb„l and for k„(r)/k &0 and
lv I

& lb„l . In other words, in the k (r)/k )0 case the
shear flow energy is transferred to perturbation energy
due to the perturbed motion of the media; in the
k„(r)/k &0 case the transfer is realized by the perturbed
magnetic field.

this term becomes important and if the value of co is
moderate, then the named influence is essential. For
&~ac, lk l~+ 00 so a~0 and again we get the usual
magnetoacoustic waves. As it was shown by numerical
solution, in the above-mentioned intermediate time inter-
val, during which the deviation from the usual oscillation
regime occurs, the energy of the wave increases anoma-
lously. That is why from now on we will call it the
amplification interval. Figures 3 —8 represent the results
of the numerical solution of the coupled equations (28)
and (29). Figures 3 and 4 clearly show the amplitude
growth of slow magnetoacoustic waves in the
amplification interval for two values of the parameter co:
0.1 and 0.01. In both cases P(0)=100. From these two
figures it can be seen that the normalized spectral energy
of wave E„, in the amplification interval increases by
several orders of magnitude, and the less the frequency co,
the bigger this increase (this conclusion is confirmed also
by numerical simulations for other values of parameter co,
for example, ru= 1 and 0.001). The details of the wave
evolution in the amplification interval are traced down on
Figs. 5 —8. From Fig. 7 it is seen that around the point
&= 100 (when the sign of k (r)/k» is changed) a consid-
erable growth of b may be observed. On this fact the
amplification of slow magnetoacoustic perturbations is
based for the case k„(r)/k & 0.

The behavior of incompressible perturbations in free
shear flows without magnetic field (Bc=0) has been in-
vestigated in [2,3]. There the analytical time dependence
of u, vy, and u =(u„+v )'~ for Bo=0 is obtained:

[k, (0)/k )] +1
v =u, (0) (33)

[k (~)/k ] +1

Equations (28) and (29) without the first term on the
right-hand side (rhs) in Eq. (28), describe ordinary slow
magnetoacoustic oscillations with frequency m in in-
compressible limit. It is known [7], that the slow magne-
toacoustic waves do not affect the medium density when
the Alfven velocity is much less than the sound velocity
( V„«C, ). Hence, all our calculations are related to the
case of relatively weak magnetic fields. The first term of
the right-hand side of Eq. (28) describes the energy
transfer between the shear flow to the slow magne-
toacoustic wave and therefore just this term brings quali-
tative novelty in the evolution of magnetoacoustic pertur-
bations. The maximum value of the coefficient, multiply-
ing u„ in the first term at the right-hand side in (28)

[k (0)/k ] +1
u =u (0)

[k„(r)/k ] +1
k

k„(0)

@t,ot
«ot(o)

500--
P(0) = 100, tv = 0.1

400--

[k (0)/k ] +1
v =u(0)

[k (r)/k ] +1

(34)

(3&)

k„(v )/k
a(~) =

[k„(r)/k ] +1 (32) 300--

is reached when P(r) —=k (r)/k =1 and it is equal to 1.
Therefore, the influence of this term is significant at
co ( 1. The lower the frequency m, the stronger the
influence, and it is essential only in a limited time inter-
val. For example, if at the initial moment of time
lk„(0)/ky I

)&1, then a(0) « 1. Then if the value of ru is
not too small, we have usual magnetoacoustic waves. Ac-
cording to Eqs. (26) and (32), a(r) increases in time and
reaches its maximum value. Therefore, the influence of

200--

100--

0
0 50 100 150 200 250 300 7

FICs. 3. Time dependence of E„,/E„, (0) for P(0)=100,
co=0. 1, U (0)=1, b {0)=0. The graph shows the result of the
numerical solution of Eqs. (28}and (29).
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FIG. 4. Time dependence of E„,/E„, (0) for P(0)=100,
co=0.01, v (0)=1, b„(0)=0. The graph shows the result of the
numerical solution of Eqs. (28) and (29).

FIG. 7. Time dependence of b„ for P(0)=100, co=0. 1,
v (0)=1,b (0)=0.
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FIG. 5. u„vs time for P(0)=100, ru=0. 1, u„(0)=1, b, (0)=0.

The results for Bo =0 are also plotted for comparison (see
Figs. 9—11).

From the Figs. 9—11 and Eqs. (33) and (34) it is clear
that in the absence of the magnetic field, for k„(r) /k» )0
(considering that 3 )0) the amplification of v„occurs as
well as that of the average energy of perturbations.
Amplification happens at the expense of the unperturbed
shear fIow energy. In the course of time, when ~ becomes
more than k (0)/k [i.e., k (r)/k (0], increase of the
Fourier harmonic amplitude is replaced by weakening-
perturbations return completely their energy to the equi-
librium fields [for the case b =0 this is in agreement with
(32)]. That is, if nonlinear phenomena do not switch on
[1,2], perturbations disappear without leaving any traces.
Amplification described just above is observed also in the
presence of the magnetic field (small peak at time r= 100
in Fig. 3). But unlike the case Bo =0, when Bo&0, as it is
clear from Figs. 5 —8, Fourier harmonics (in the frames of
the linear theory approach) do not vanish without any
traces. For k /k» (0 the energy exchange between the
shear Aow and the perturbations due to the perturbed
magnetic field switches on. As a result the perturbation
energy is accumulated in the forms of oscillational kinetic
energy (u ) and magnetic energy (b ). In the course of

2000--
P(0) = 100, tv = 0.1 2000--

P(0) = 100, tv = 0.1

1000--
1000--

0---

-1000--
-1000--

-2000
0 50 100 150 200 250

-2000
0 100

I

150 200 250

FIG. 6. u vs time for P(0) = 100, co =0.1, u„(0)= 1, b, (0)=0.
FIG. 8. Time dependence of b for P(0)=100, to=0. 1

v (0)= 1, b (0)=0.
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FIG. 9. Time dependence of u„ for P{0)= 100, 80 ==0
U„(0)= 1.

FIG. 11. Time dependence of u =(u„+u»)'~' for P{0)=100,
a, =o, U„(0)=1.

t' together with the increase of ~k„/k» ~, the amphfy-irne o
ing ac ion otion of the first term in the right-hand side o q.

f the(28) approaches zero, so the oscillational action o t e
second term becomes dominant. But this occurs later for
smaller ~. This circumstance may explain the fact that
(as it was noted above) with the decrease of cu an increase
of the accumulated energy of Fourier harmonics occurs.
After this, as the second term at the right-hand side o
Eq. (28) becomes predominant, the accumulation of ener-

t d only magnetoacoustic oscillations with ener-
ofgy, considerably exceeding (depending on the value o

:—k V /A) the initial energy of the magnetoacousticCO=
y

wave remains.
The level of the wave amplification also strongly de-

pends on the phase with which the wave enters the
amplification interval. The latter, in its turn, is deter-
mined by the phase of the wave y0 at the initial moment
of time t =0. For slow magnetoacoustic waves the initial
conditions can be assumed in the form u„(t =0)= cosqrc
and b (t=0)= —sinyo. (Figures 3—8 correspond to the
pc=0 case). The dependence of the wave-energy growth
on y0 for co=0. 1 is presented in Fig. 12. The calculations
show that for different values of yo (i.e., different phases
with which the wave enters the amplification interval) the
rate of the energy growth of a slow rnagnetoacoustic
wave for co=0. 1 varies in the interval:

E„,(t +Do )—= 1-900E„,(t =0)

and for co=0.01

(36)

(37)

The energy of the Fourier harmonic is accumulate in
the components u» and b» (see Figs. 5 —8).

IV. PHYSICS OF THK PROCESSES

Et,ot, (&~~)
Eral({))

1000--

To explain the energy transfer from the shear to the
perturbations first we will describe the energy exchange
between the shear flow and the perturbations in t e
B =0 case. We will consider Fourier harmonics, for0
which k (0)/k» &0.

For that purpose let us examine a separate Fourier har-
monic in the YOX plane and the planes of the fixed

6000--
p(o) = 100, Bo ——0

800--

4000--

2000--
400--

-2000-- 200--

-4000--

-6000
0 40 80 120 160 200

0
0 go

FIG. 10. Time dependence of u for P{0)= 100, Bo =0,
U (0)=1.

FICx. 12. Dependence of the amplification
E, ,{r~~ )/E„,(0) on the initial phase yo for P(0)=100,tot
co=0. 1.
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phases at a given moment of time: k„(r)x+k~y=2m. m
and k„(t)x+k y=m(2m+I), where m =0, +1,+2, . . .
(see Fig. 13). Since we consider two-dimensional distur-
bances (k, =0, k„k~%0), it is clear that the fixed phases
planes are orthogonal to the plane YOX. As it follows
from the incompressibility condition (k.v=O) the vectors
of the velocity perturbation are parallel to the fixed
phases planes. Their directions, as well as those of the
disturbance pressure forces can be seen from the same
figure. The fixed phase planes shown in the figure are, at
the same time, planes of the disturbance pressure max-
imums and minimums: The —Vp forces are orthogonal
to the planes. Accordingly, the planes of p =max can be
conceived as walls elastically reQecting the Quid particles
that run onto them. So, how is the shear Qow energy
converted into disturbance energy?

Let us single out a virtual element of the fiuid (circle 1

in Fig. 13), located at a height x from the Y axis with the
disturbance velocity 0; The unperturbed velocity of this
element is Uo = Ax. Because of the disturbance velocity
v during some short time interval the chosen element
drifts at the height at which the unperturbed Qow veloci-
ty is given by the formula Uo = A (x —5x ). Thus the ve-
locity of our element is greater than that of the unper-
turbed Qow at the same height by 6UO = A5x. So this is
the velocity of its collision with the p =max wall. As a
result of the elastic reQection from the wall, the total ve-
1ocity of the element becomes

k (t)T + k„y = 2(m + 1)w

.(t)x+ k„y = (2m+1)~
= min

(t)x+ k„y = 2m. m
= max

FIG. 13. Qualitative representation of energy transfer from
the shear to the perturbations. The lines k (t)++kacy=2~m,
(2m + 1)m, (2m+2)~ represent the cross sections between the
corresponding planes and the Z =0 plane. 1, 1', and 1" denote
the same Quid element at diferent moments of time.

U=UO„+v+v (38)

where ~v
~

= A fix. That is, the disturbance velocity of the
considered element becomes V+ v' (see Fig. 13). So, as a
result of the processes just described the element's veloci-
ty changes by v'( U ', U

' ). In the case considered by us
(k /k~ )0), the angle between v and v' is less than tr/2.
That is why ~v+v']) ~v~, i.e., the energy of the con-
sidered element increases due to its transfer from the
main Qow. This means that an amplification of the
respective Fourier harmonic takes place. The variation
of the disturbance velocity of the element 2 in the same
figure may be described likewise.

The thorough consideration of the above scheme leads
to the understanding that the elastically reQecting wall
that we introduced into the picture acts, in fact, as an in-
termediary in the exchange of momenta between ele-
ments from the opposite sides of the wall for p at a max-
imum. For instance, we can treat the above case as an
elastic collision of elements 1 and 2 shown in Fig. I 3. It
is clear from the above that the momentum exchange
takes a place only when Vp&0.

As can be seen from the process described above, the
perturbation velocity of the considered element changes.
This due to the incompressibility of the perturbations
(k v=O) leading to change in the direction of the wave
vector k of the considered Fourier harmonic. This is
equivalent to a rotation of the fixed phases planes around
an axis, perpendicular to the YOX plane. At the moment
when the fixed phases planes of the Fourier harmonics
become perpendicular to the Y axis the energy increase of
the harmonic is interrupted. As the rotation continues,
when k /k (0 the angle between v and v' becomes more
than rl/2 So, in th. e ~v+v'( ( ~v~ case the perturbation
energy starts to decrease.

Let us now describe the physical mechanism of the en-
ergy transfer from the shear Qow to the perturbation.

In the case which is investigated here, the energy
transfer is realized not only by means of the perturbed
motion of the medium but by means of the perturbed
magnetic field as well. This process competes with those
described above and instead of weakening [as in the
Bo =0, k„(r)/k» (0 case] it leads to a considerable ener-
gy arnplification of the slow magnetoacoustic perturba-
tions (Figs. 3 and 4). But after, when the second term on
the rhs of (28) becomes significant, the energy exchange
between the shear Qow and the perturbation is dominated
alternatively by the perturbed motion and the perturbed
magnetic field. In the ~k„(r)/k

~
)) I case the first term

on the rhs of (28) vanishes and a slow magnetoacoustic
wave with constant energy propagates (see Figs. 3 and 4).

The degree of the perturbation spatial Fourier harmon-
ic amplification obviously strongly depends on the length
of the interval [r„~2] which in turn is determined by the
normalized frequency co. On the other hand, the
amplification degree significantly depends on the position
of ~=~& over the time axis.

From Fig. 5 one sees that at the moment ~„v changes
its sign (also unlike the Bo=0 case) and its value remains
almost constant during a rather long time =[~&rz]. Al-
though the value of v is small, in this case, v becomes
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rather large due to the increase of ~k„(r)/k» ~
(see Fig. 6).

As seen from Figs. 7 and 8, b becomes large also. So, in-
stead of decrease of Fourier harmonics energy, which
occurs when B0=0, in our case the character of the
motion changes in such a way that the energy is accumu-
lated in the forms of (U ) and (b ) of slow magnetoacous-
tic waves. The magnetic energy, mainly connected with
the b component of the magnetic field perturbation, ap-
pears due to distortion of field lines of the unperturbed
magnetic field by perturbed motion. The described accu-
mulation of energy goes on until the oscillational action
of the second term on the right-hand side of Eq. (28) be-
comes comparable (and dominant) with the
amplificational action of the first term of the right-hand
side of the same equation.

As shown here in free (unlimited) flows with constant
shear (Uo = Ax) the process of slow magnetoacoustic
wave amplification occurs in an unusual way. The nonor-
dinary results are obtained also due to the fact that the
wave number along the shearing of the perturbations of
the Fourier harmonics depends on time
[k (r)=k, —k,»r]. In particular in the course of time
the characteristic length scale of an inhomogeneity along
the X axis of the Fourier harmonics becomes smaller and
smaller (for r~~, I =2~/~k„~~0). Usually the split-
ting of the perturbations length scale occurs due to the
action of nonlinear (decay) processes [8,9). But in our
case the decrease of the length scale takes place in the
linear theory as well. Hence, if after the amplification the
level of slow magnetoacoustic waves becomes
insufticiently high and nonlinear effects do not switch on,
then the transition of perturbations energy to small
length scales still will be ensured by linear processes. At
small length scales the action of the dissipation effect be-
comes significant [8,9], so that ultimately all the energy
of slow magnetoacoustic waves is transformed into heat.
If we follow the main events, we may conclude that slow
magnetic sound gains energy from the shear Bow, accu-
mulates it and transforms it to the small scales, convert-
ing it thus finally into heat due to the viscosity. This pro-
cess can be described schematically in the k Ok plane
(see Fig. 14). We will consider here only the k )0 plane.
This process can be reconstructed easily in the k &0
plane as well. Without taking into account the nonlinear-
ity, the dynamics of magnetic sound, considered here, is
governed by the following three processes: the Fourier
harmonics drift in the k space, which is described by Eq.
(26); the transfer of the shear flow energy to the perturba-
tions, which is described by the first term on the right-
hand side of the Eq. (28); viscous and Ohmic dissipation,
which is not included in our equations, but the action of
which can be easily understood. All these phenomena
take place for any values of k. But to clarify the discus-
sion, the range of action of these phenomena in the k
space can be differentiated. Let us assume that the
viscous dissipation becomes essential for harmonics with
wave numbers satisfying the inequality ~k~ ) k (the re-
gion hatched by vertical lines outside the half circle in
Fig. 14), where the value of k depends on the viscosity.
Let us assume also that the transfer of the shear Bow en-

FIG. 14. Qualitative representation of the evolution of a slow
magnetoacoustic perturbations in the k Ok~ plane. In the hor-
izontally hatched region the perturbations are amplified (Figs. 3
and 4). Outside, in the vertically hatched region, the perturba-
tion energy is thermalized due to the viscosity and resistivity.

ergy to the energy of magnetic sound happens in the re-
gion dashed by the horizontal lines in Fig. 14 (the
amplification region). On the level of thermal fluctua-
tions in the medium there always exist perturbations of
slow magnetic sound with arbitrary k.

What is the way of the evolution of the Fourier har-
monic which at the initial moment of time is at point 1 in
Fig. 14? The wave number along the X axis of this har-
monic changes in time and this leads to a drift in the
direction marked by arrows. At some moment t when
the harmonic appears at point 2, its anomalous energy
growth starts and this lasts until it leaves the region of
amplification (point 3 in Fig. 14). The level of increase in
the region of amplification is defined by Eqs. (36) and
(37). Then, the Fourier harmonic continuing its drift
reaches point 4, where the dissipative processes switch on
and convert the perturbation energy into heat. Other
Fourier harmonics, which correspond to other points of
the k plane evolve in a similar manner. After the Fourier
harmonic leaves point 1, this point does not stay empty;
due to the thermal effects new fluctuations appear which
in turn evolve as described above. Thus, the transforma-
tion of the shear How energy to perturbations together
with the following dissipation is permanent and this natu-
rally has to lead to a strong heating of the medium. It is
clear that the heating intensity will depend on the leve1 of
the initial fluctuations and on the shear Aow parame-
ter A.

V. CONCLUSION

In the present paper, considering the slow magne-
toacoustic perturbations in plasma, a new impressively
strong mechanism of transformation of shear How energy
into perturbation energy and finally to heat is demon-
strated. This may initiate a study of how the described
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mechanism acts for other waves in magnetoactive plas-
ma. At the same time it must be taken into account that
the incompressibility (div v=O) of the perturbations is
one of the necessary conditions for the effectiveness of the
mechanism.

Finally we would like to note that the proposed mecha-

nism of heating may be effective for AGN jets and solar
corona, as long as the presence of the magnetic field there
is doubtless. It may act efficiently also in some galactic
and accretion disks, where toroidal magnetic fields, i.e.,
fields directed along the velocity of regular Aow, also ex-
ist.
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