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The complete asymptotic description of ultrashort Gaussian-pulse propagation in a single-resonance
Lorentz medium in the mature-dispersion regime is presented and compared with the results of two in-

dependent numerical experiments of the propagated-field evolution. The nonuniform asymptotic
method of Olver [Stud. Appl. Math. Rev. 12, 228 (1970)] (an extension of the method of steepest des-

cents) is first applied to obtain the standard asymptotic description of the propagated field that is due to
the given input Gaussian-modulated field. The description afforded by this asymptotic method, although
nonuniform in certain space-time regions, is found to be in excellent agreement with purely numerical
results, especially when exact, numerically determined saddle-point locations, and exact expressions for
the derivatives of the phase function are used in the implementation of the theoretical approach.
Modern uniform asymptotic techniques, which generalize Olver s nonuniform description, are then em-

ployed to obtain a rigorous description of ultrashort Gaussian-pulse propagation that is uniformly valid
for all space-time points in the mature-dispersion regime. This asymptotic description clearly shows that
the propagated field can be expressed solely in terms of a generalized Sommerfeld and a generalized Bril-
louin precursor field, the first of which dominates the total propagated field when the carrier frequency
co, is well above resonance while the second generalized precursor field dominates when co, is below or
near resonance. It is further shown that the pulse distortion is due solely to the manner in which the
precursor field amplitude is modified by the initial Gaussian-pulse envelope spectrum. Finally, the fre-

quency dependence of the signal velocity of the input ultrashort, Gaussian-modulated harmonic field in a
single-resonance Lorentz medium is discussed.

PACS number(s): 03.40.Kf

I. INTRODUCTION

The theory of optical pulse propagation in a locally
linear, homogeneous, isotropic, causally dispersive medi-
um originated with the classical work of Sommerfeld [1]
and Brillouin [2,3] concerning the propagation of an in-
stantaneous turn-on, semi-infinite signal with mono-
chromatic carrier wave into the half-space z ~ 0 occupied
by a single-resonance Lorentz medium. Recently, using
modern asymptotic techniques, Oughstun [4] and co-
workers were able to improve significantly both the quali-
tative and quantitative description of this classical prob-
lem in both a single-resonance [5—7] and a double-
resonance [8] Lorentz medium. Furthermore, they pro-
vided the first completely rigorous description of the
dynamical field evolution of an input 5-function pulse in a
single [5,6] and double-resonance [8] Lorentz medium
and, more importantly, of a rectangular envelope modu-
lated harmonic signal of fixed carrier frequency cu„hav-
ing an arbitrary initial pulse width [9]. This recent
analysis has focused on the complete precursor field evo-
lution and the precise definition of the signal arrival, and
was completely verified through precise numerical simu-
lations [10,11]. This modern asymptotic analysis has led
to a new physical description of dispersive pulse dynam-

ics [12] that supplants the previous group-velocity
description [13] in the mature-dispersion regime and
reduces to it in the absence of absorption. According to
this new physical description, in the mature-dispersion
regime, which was found [11] to include all propagation
distances z that are greater than a single absorption depth
in the medium at the signal frequency, each quasimono-
chromatic component of the field propagates with its own
characteristic velocity, which remains constant as the
propagation continues. The propagated wave form is
then dominated at each value of the space-time parame-
ter B=ctIz by a single real frequency coE that is the fre-
quency of the time-harmonic field with the least attenua-
tion that has an energy velocity [14,15] equal to z/t.

In this paper the modern asymptotic theory is applied
to obtain a rigorous, uniformly valid description of ul-
trashort (near femtosecond) Gaussian-pulse propagation
in a single-resonance Lorentz medium in the mature-
dispersion regime. This is a problem of considerable
practical importance due to the current experimental ca-
pability to generate ultrashort pulses approaching the
femtosecond regime [16]. Furthermore, this canonical
problem reduces to the previous description of an input
5-function pulse when the initial pulse width of the
Gaussian envelope tends to zero, thus generalizing previ-
ous work [5—7]. The proposed theoretical description
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does not rely upon any quasimonochromatic or slowly
varying envelope approximations, as may be found in
other descriptions [17—21], nor does it depend upon any
nth-order dispersion approximation, which is central to
other approaches [22,23,36], so that it rigorously main-
tains the causality relations [24] that are critical to the
proper analysis of linear dispersive pulse propagation
phenomena. These other approaches are, in a broad
sense, more general in that they are typically applicable
to inhomogeneous media. However, what they gain in
more general applicability they lose in rigor when consid-
ering the complicated effects of dispersion and absorption
on ultrashort-pulse dynamics [25—27].

The exact integral formulation describing the propaga-
tion of an arbitrary plane-wave pulse through a dispersive
medium occupying the half-space z ~ 0 is given by [5]

A(z, t)= Re f f(co)exp —P(co, O) dao .
2m C C

for all z ~ 0, where

f(co)= f f(t)e' 'dt (1.2)

[V +k (co)]A(z, co)=0, (1.3)

is the temporal Fourier spectrum of the initial pulse
f(t) = A(O, t) on the plane z=0. Here A (z, t) represents
either the scalar potential or any scalar component of the
electric field, magnetic field, Hertz vector, or vector po-
tential field. Its spectral amplitude A(z, co) satisfies the
dispersive Helmholtz equation

behavior of the field at z =0. The contour of integration
C appearing in Eq. (1.1) is then the straight line
co=co +ia with a being a fixed positive constant that is
greater than the abscissa of absolute convergence [28] for
the function f(t), and where co'=ReIco] ranges from
negative to positive infinity. The complex phase function
P(c0, 9) that appears in the integral representation (1.1) is
defined as

—P(co, 8)=i [k(co)z cot ]=—ic—o[n (co) —8],
C C

where

ct0=-
z

(1.7)

is a dimensionless space-time parameter such that for any
distance of propagation z the important properties of the
propagated field evolution occur when 8 ~ 1 since A (z, t)
identically vanishes for 9 (1 when f (t) =0 for all nega-
tive time [4,5].

A case of particular importance to this research is that
of an input pulse-modulated harmonic signal of applied
signal frequency m, that may be represented as

f(t) =u(t)sin(co, t+g), (1.8)

where u (t) is the real-valued initial envelope function of
the pulse and P is a constant phase term that is chosen to
be vr/2 for a cosine wave or zero for a sine wave. If u (co)
is the temporal Fourier transform of the initial pulse en-
velope, then the propagated field may be written [5] as

with complex wave number

k(co)= —n(co) .
c

(1.4)

A (z, t)= Re i exp[ ig] f — u(co —co, )2' l 0,'

Here c denotes the vacuum speed of light and
n(co)=e' (co) is the complex index of refraction (in cgs
units) of the dispersive medium occupying the half-space
z ~0 with complex-valued dielectric permittivity e(co)
and magnetic permeability p=1. The dispersive dielec-
tric medium is taken here as a single resonance Lorentz
medium with complex index of refraction

1/2
Q2

co cop+i 25co
(1.5)n(co) = 1—

Here b =4~Re /m is the square of the plasma frequency
of the medium, N is the number density of electrons of
charge e and mass m that are harmonically bound with
the undamped resonance frequency cop, and 5 is the asso-
ciated phenomenological damping constant. The Lorentz
model is appropriate because it is a causal model, the
complex index of refraction given in Eq. (1.5) satisfying
the Kramers-Kronig relations [24]. The medium param-
eters that were originally chosen by Brillouin [2,3] are
used for the examples considered in this paper, viz. ,
cop=4. QX10' /sec, b =2Q. QX10 /sec, and 6=0.28
X 10' /sec. The same set of medium parameters has also
been used in recent research [4—12].

If f(t)=0 for all t (0, then the integral appearing in
Eq. (1.2) is the Laplace transform of the initial time

X exp —P(co 8) den
C

u(t) =exp
tp

(1.10)

that is centered around the time tp )0 with a full width
at e maximum given by 2T. The spectrum of this ini-
tial pulse envelope is then

T cou(~)=~'"rexp. —
4 Iexp Ii nto]

The exact integral representation of the propagated pulse
in the dispersive medium is then given by

ia+ oo—
A(z, t)= Re. i f U(co —co, )

2& I A

Xexp ~ —P(co, 8') -dco .
c

(1.12)

for z ~ 0, where the spectral function

The initial field envelope for the canonical problem
treated in this paper is taken as the Gaussian envelope
function

2
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U(co —co, ) =exp [
—i (cot0+ g) ] u (co —co, )

=exp [
—i P] m' Texp( i c—o, t0 )

an input Gaussian pulse, and where, for the Lorentz-type
medium of interest here, the complex index of refraction
is now of the form

T (co co,—)
X exp ' — ' (1.13)

4

lS $2
k(is ) =—1+

s +25$ +c00

1/2

has been introduced here for notational convenience, and
where

Cta0'=0— (1.14)

1
A(z, t)=Re f A(0, s)exp[ik(is)z}e"ds . ,2&l C

(1.15)

where Cz, denotes the appropriate Bromwich contour for

Unlike the previous canonical problems [4—9] that have
been treated using the asymptotic theory, the present
field does not identically vanish for 0'(1. However, for
a suKciently short initial pulse width 2T one can always
choose t0 sufficiently large such that the physically im-
portant properties of the field evolution occur when 0') 1

(otherwise an analysis of the pulse dynamics for 8' ( 1 is
required).

It is clearly desirable to have two independent methods
of numerically evaluating the propagated field evolution
in the dispersive medium. Their agreement with each
other provides a high degree of assuredness in the accura-
cy of their results. This then provides a well-defined set
of results with which the asymptotic theory may be com-
pared. One such experimental approach is a numerical
evaluation of the integral representation (1.12) that is
based on the algorithm developed by Hosono [30] for the
inversion of Laplace transform-type integrals. In an im-
provement of this method, Wyns, Foty, and Oughstun
[10] and Oughstun, Wyns, and Foty [ll] were able to
completely verify the predictions of the asymptotic
theory concerning the propagation of an input 5-function
pulse as well as a unit-step-function modulated harmonic
signal through a Lorentz-type medium. For an input
unit amplitude, ultrashort Gaussian-modulated pulse that
is centered around a point t0 that is equal to only a few
initial pulse widths, the field is negligible for t (0 and
thus, to an excellent degree of approximation, the repre-
sentation (1.12) may be approximated as a Laplace
transform-type integral. If one replaces —i co by
s =o —iso in Eq. (1.1) it can be rewritten as

The numerical evaluation of the Laplace transform-type
integral representation (1.15), for the particular case of
Gaussian-pulse propagation treated in this paper, then
proceeds directly along the lines presented in Ref. [10].

The numerical experiment may also be based on a nu-
merical implementation of the more physically appealing
method of steepest descents [8,31]. At any given value of
the space-time parameter 0) 1 the dominant contribu-
tion to the integral appearing in Eq. (1.1) is due to the
dominant saddle point, which exhibits the last exponen-
tial decay, of the complex phase function P(co, 8) once the
original contour of integration C has been deformed to an
appropriate Olver-type path P(8) with respect to the sad-
dle points of $(co, 8). The original integral along C,
which gives A (z, t), is related to the path integral along
P(8) by the sum of the residues of any poles of f(co) that
are crossed in this deformation (a detailed description of
this procedure may be found in Sec. 4A of Ref. [5]). If
P(8) is chosen to be along a portion of the path of
steepest descents in some specified region about each ap-
propriate saddle point, then for a suKciently large value
of the propagation distance z the problem is reduced to a
numerical integration along only that portion of the path
of steepest descents in the vicinity of each appropriate
saddle point, the integration along the remainder of P(8)
being exponentially negligible [8]. Notice further that
exp[(z/c)P(co, 8)J is nonoscillatory along the path of
steepest descent so that the required numerical integra-
tion along each steepest-descent path component from
each relevant saddle point may be easily accomplished
with great accuracy. This numerical integration pro-
cedure is uniformly valid in the space-time parameter 0
for any physically realizable input pulse shape, and is ex-
tremely efticient when the propagation distance z is large
in comparison with the e absorption depth for the fre-
quency component considered. The only complexity in-
volved is the numerical evaluation of the steepest-descent
path segments through the relevant saddle points at each
value of 0. This minor difhculty is far outweighed by the
inherent accuracy of this numerical integration pro-
cedur e.

For Gaussian-pulse propagation the spectral function
U(co —co, ) given in Eq. (1.13) is an analytic function in
the complex co plane so that the integral representation of
the propagated field in Eq. (1.12) may be rewritten as

A(z, t)=, Re JT
7T'" P (0')

T [co +co~ ] T coco~
exp

4
cosh

2
z

i co, t0+g——— . exp —P(co, 8') -de
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where P+(0') is the appropriate Olver-type path in the
right half of the complex co plane, and where

P(r0, 0') =iro[n(ro) —0'], (1.18)

II. NONUNIFORM ASYMPTOTIC DESCRIPTION
OF THE PROPAGATED FIELD

In order to perform the asymptotic analysis of the in-
tegral representation given in Eq. (1.1) for the propagated
field in a single-resonance Lorentz medium, it is neces-
sary to determine the locations of the saddle points of the
complex phase function (t(co, 0) in the complex co plane,
as well as the value of P(co, O) =X(ro, 0)+iY(ro, 0') at each
of these critical points. Furthermore, it is essential to
determine the regions of the complex co plane wherein the
real part of the complex phase function
X(co, 0)=Re[/(co, 0) J is less than the value of X(co, 0) at
the dominant saddle point (i.e., the saddle point that ex-
hibits the least exponential decay) for a given value of 0.
For a single-resonance Lorentz medium both the complex
phase function (()(c0,0) and the complex index of refrac-
tion n(ro) are analytic functions everywhere in the com-
plex cu plane except for along the two branch cuts cu' co

and co+~+ in the lower half of the complex co plane,
where

with 0' given by Eq. (1.14). The asymptotic method of
steepest descents may now be applied (either analytically
or numerically) only with respect to the saddle points of
the complex phase function P(co, O') in the right half of
the complex co plane.

SP~
&8ÃliuuiPA

X
SPI&

SPi,
ZrxxzugNu

~+
X

SP2

—oo & 6)

below to the point —ao —i25 approached as 0' tends to
unity from above. The relative locations of the lower
saddle points before (0'(0/, ) and after (0'&0/, ) coales-
cence are clearly evident in Fig. 1. The other two first-
order saddle points always lie in the upper half of the
complex co plane for 0' & 1. They are symmetrically situ-
ated about the imaginary axis for 0'&0„, and approach
each other as 0' increases. They coalesce into a single
second-order saddle point on the imaginary axis at
0' =0„, ( —=0.945 14 for Brillouin's choice of the medium
parameters), after which they move away from each other
along the imaginary axis as 0' tends to unity from below.
Again, in order to be consistent with the notation used in
previous work [4—7] when 0' & 1, the upper saddle point
that is moving towards the origin after the coalescence is
called the upper near saddle point and is denoted by SP„
while the second upper saddle point that is approaching
+i ~ after the coalescence is called the upper distant

ru'+ =+(co] 5) ' —i 5, —

re+ =+(coo 5)'/— i5—
(2.1a)

(2. lb)

are the branch points of n (co), with ro, =ruo+ b .
Unlike previously treated cases [1—12], the propagated

field does not identically vanish for all 0' & 1 for
Gaussian-pulse propagation so that this case must now be
examined. The numerically determined saddle-point lo-
cations at several values of 0' & 1 are illustrated in Fig. 1.
As 0' increases from negative infinity two pairs of saddle
points are found to emanate from the branch points co+,
and these are the only saddle points of (()(cu, 0') for 0' ( l.
Two first-order saddle points always lie in the lower half
of the complex co plane for 0' & 1. They are symmetrical-
ly situated about the imaginary axis for 0' &0&, and ap-
proach each other as 0' increases. They coalesce into a
single second-order saddle point on the imaginary axis at
0'=0/, (-=0.931 82 for Brillouin's choice of the medium
parameters), after which they move away from each other
along the imaginary axis as 0' approaches unity from
below. In order to be consistent with the notation used in
previous work [4—7] when 0'& 1, the lower saddle point
that is moving towards the origin after the coalescence at
0'=0&, is called the lower near saddle point and is denot-
ed by SP2, while the lower saddle point that is moving to-
wards —i ~ after the coalescence at 0'=01, is called the
lower distant saddle point and is denoted by SPD. At
0'=1 the lower distant saddle-point location changes
discontinuously from 0—i ~ as 0' tends to unity from

al Contour of Integration

SP2)(
)i

SP~

(9i, & 6)' & e„,

SP2 )(

SPD )(
8„, & 6) & 1

FIG. 1. Dynamic behavior of the saddle points and the real
part of the complex phase function X(co,0') =Re[/(co, 8')] for—~ &6'&1. The dashed contours indicate the isotimic con-
tours of X(co, O') through the relevant saddle points, and the
shaded areas indicate the regions of the complex co plane
wherein X(co,8') is less than that at these points.
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saddle point and is denoted by SPD. The upper distant
saddle-point location changes discontinuously from the
point 0+i ~ as 0' tends to unity from below to the point
+ ~ —i25 approached as 0' tends to unity from above.
The relative locations of the upper saddle points before
(8'&8„,) and after (8') 8„,) coalescence are clearly evi-
dent in Fig. 1.

Upon turning attention to the saddle-point dominance
for 0' & 1, it is found from numerical calculations that the
two lower saddle points are dominant over the two upper
saddle points for all 0'& 1. In particular, for increasing
values of 0' from negative infinity and up until 0I„ the
two lower saddle points have the same dominance [i.e.,
the value of X(co, 8') is the same at both of them], after
which for increasing values of 0'&0I, up to unity the
lower near saddle point SP2 is dominant over the lower
distant saddle point SPD [i.e., X(cusp, 8') &X(ro,8')].2'

D

The two upper saddle points have the same dominance
up until 0„„after which and for increasing values of
0' & 0„, up to unity, the upper distance saddle point SPD
is dominant over the upper near saddle point SP&. A fur-
ther numerical study of the isotomic contours of the real
part of the phase function X(co, 8') for 8' & 1 revealed, as
shown in Fig. 1, that the original path of integration C
appearing in Eq. (1.1) cannot be deformed to an Olver-
type path P(8') with respect to the lower pair of saddle
points without crossing the branch cuts ~' co and
co+co+ and cannot be deformed to an Olver-type path
with respect to either of the upper pair of saddle points.
As a consequence, the asymptotic analysis of the integral
representation of the propagated field is not possible for
0' & 1. Although the solution to this portion of the prob-
lem would have provided a complete asymptotic descrip-
tion of Gaussian-pulse propagation, it is not essential to
this description if to is chosen sufficiently large. In that
case, all of the interesting physical phenomena occur for
0' & 1.

For every value of 0' ~ 1 except one there are again two
pairs of first-order saddle points of P(co, 8') that are
symmetrically situated with respect to the imaginary axis.
The two so-called distance saddle points always lie in the
lower half of the complex co plane in the region ~co~

~ co,
above the absorption band of the Lorentz medium and
move in symmetrically from +ao —i25 at 0'=1 and ap-
proach the respective branch points co'+ and co' as 0' in-
creases to infinity. The two so-called near saddle points
lie in the region ~ro~

& coo below the absorption band and
move along the imaginary axis symmetrically about the
point —i25/3a and approach that point as 8' approaches
8, from below, where they coalesce at 8'=8, (—= 1.501 for
Brillouin's choice of the medium parameters) into a
second-order saddle point, after which they move symme-
trically off the imaginary axis into the lower half of the
complex m plane and approach the branch points co+ and
co as 0' tends to infinity.

Since the original path of the integration for the in-
tegral of interest given in Eq. (1.1) is not deformable
through the lower near saddle point for 1 ~ 0' & 0,, it is ir-
relevant in the present analysis throughout this 0' range.
Here

25 b2
8~ 80+ 2 2 z80roo(3acoo —45 )

with
1/2

8o=n(0)= 1+
~o

(2.2a)

(2.2b)

and

5 (4ro +b )
(x=1

3C02C02
(2.2c)

Furthermore, it was found [4,5] that the two distant sad-
dle points SPD are equally dominant over the upper near

I!

Orygiu «l Con toilr of Iu tcgr« t ion

PD

~SH & ~ & ~1

FIG. 2. Dynamic behavior of the saddle points and the real
part of the complex phase function X(c0,8')=Re[Piro, 8') j for
1&0 &+ ~. The dashed contours indicate the isotimic con-
tours of X(co,0') through the relevant saddle points, and the
shaded areas indicate the regions of the complex co plane
wherein X(co,0') is less than that at these points. The subpaths
PD (0') and P& (0') are Olver-type paths with respect to the sad-
dle points SPD and SP&, respectively, and the subpath Pl(0') is
an Olver-type path with respect to the upper saddle point SP l

for 1 ~ 0' ~ 0l.
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1
Re i U(co —co, )2' P(0')

X exp —P(co, 8') de .
c

(2.3)

for all z & 0. An application of Olver's method [32] to the
I

' 1/2

saddle point SP, for 1 & 8' ~ 8sB, where
8sn =—80 4—5 b l38ocoo= 1—. 334 for Brillouin's choice of
the medium parameters. At 8'=8sB all three saddle
points have the same dominance, after which and up un-
til 8'=81 the upper near saddle point is dominant over
the two distant saddle points. For all 8'&8, both near
saddle points SP& are dominant over both of the distant
saddle points SPD.

In order to perform the asymptotic analysis of the pro-
pagated field A(z, t) for large z, the integral representa-
tion of A (z, t) along the original contour of integration C,
as given in Eq. (1.1), must be expressed in terms of an in-
tegral I(z, 8') with the same integrand but with a new
contour of integration P(8') which is comprised of a set
of Olver-type paths with respect to each of the appropri-
ate saddle points of P(co, 8') to which the original contour
of integration may be deformed. The two integral repre-
sentations are then related by the sum of the residues of
any poles of the initial pulse spectrum f(co) that are
crossed in this deformation. An example of such a path
P(8') for several values of 8' & 1 is illustrated in Fig. 2.

For the particular case of Gaussian-pulse propagation
the spectral function U(co —co, ) appearing in the integral
representation (1.12) of the propagated field is an analytic
function in the entire complex co plane, so that

A (z, t) =I (z, 8')

above integral representation then leads to the following
general expression for the asymptotic approximation of
the integral representation of the propagated field:

A(z, t) = As(z, t)+ Az(z, t)+R(z, 8'), (2.4)

which is valid for all 8'& 1. By analogy with the expres-
sion for the unit-step-function signal [4—6], the term
As(z, t) is called the generalized Sommerfeld precursor
because it is due to the distant saddle-point contribution
and the term Az(z, t) is called the generalized Brillouin
precursor because it is due to the near saddle-point con-
tribution. An estimate of the remainder term R (z, 8') as z
tends to positive infinity is obtained by taking the largest
estimate of the remainder terms when the Olver-type ex-
pansions around the near and distant saddle points are
performed. The important feature of Eq. (2.4) is that the
asymptotic behavior of the propagated field A (z, r) is ex-
pressed as the sum of two terms which are uncoupled so
that they can be treated independently of one another.

A. Generalized Sommerfeld precursor

The contribution of the two distant saddle points to the
asymptotic behavior of the field A(z, t) for sufficiently
large values of the observation distance z yields the
dynamical evolution of the generalized Sommerfeld (or
first) precursor field As(z, t), which is the dominant con-
tribution to the asymptotic behavior of the total field for
all values of 8' in the range 1&8'&8s~. Application of
Olver's theorem [32] to the integral (2.3) over the Olver-
type path through each of the two distant saddle points
for 8'& 1 gives the general asymptotic expression for the
generalized Sommerfeld precursor field as

=1 z
As(z, t)= Re i 2exp —P(co +, 8') .

2~
I

C SPD'

+2 exp . —P(co,8' )
C SPD

KC

KC

ao(co + )[1+0(z ')]
D

1/2

ao(co )[1+0(z ')]
D

(2.5)

as zan+Do uniformly for 8'~1+9, where h&0. The
quantity cosp+(8') =+/(8') —i5(1+i)(8')) denotes the

right and left distant saddle-point locations, and the
coefficients ao(co ~) are given by

D

[4] and Oughstun and Sherman [5,6] as

1/2
Q 28&2

g(8') —= coo —5 + (2.7a)

ao(cps p)=
D

U( cosp~ co~ )
D

1
2 —— [P(co y, 8') ]

1/2 (2.6)

The proper value of the argument of the term in the
square root appearing in the denominator of Eq. (2.6), as
specified by the convention set forth in Olver's analysis
[32], is +m. /2 (plus for the right, and minus for the left
distant saddle point). The second-order approximations
to the functions g'(8') and g(8') appearing in the distant
saddle-point locations have been obtained by Oughstun

(5 /27)+(b /[8' 1])—
g'(8')

(2.7b)

and are reasonably accurate for all 8' & 1. Substitution of
these expressions into Eqs. (2.5) and (2.6) yields the ap-
proximate expression of the nonuniform asymptotic
behavior of the generalized Sommerfeld precursor field
for an input unit amplitude, ultrashort Gaussian-
modulated harmonic signal that is presented in Ref. [29].

It is important to note again here that as the parameter
8' approaches unity from above, the two distant saddle
points approach infinity and Giver's method fails. Thus



47 UNIFORM ASYMPTOTIC DESCRIPTION OF ULTRASHORT. . . 3651

the asymptotic expression (2.5) is valid only for values of
0' bounded away from unity from above.

B. Generalized Brillouin precursor

For suSciently large values of the observation distance
z, the contribution of the near saddle points to the asymp-
totic behavior of the field A (z, t) yields the dynamical
evolution of the generalized Brillouin (or second) precur-
sor field, denoted by Aii(z, t) in Eq. (2.4). This is the
dominant contribution to the total field evolution for
0'&0sa. Since the two near first-order saddle points
remain separate from each other for all 8'Agi, while they
coalesce into a single second-order saddle point at 0'=01,
Olver's theorem [32] must then be applied separately in
each of the three 0' ranges 1 & 0' & 01, 0'= 0„and 0' )0, .

For 1&0'&01 the general expression for the general-
ized Brillouin precursor is given by

1/2
1 . z

Aii(z, t)= Re i 2exP ~ P(ct)—sp 8 )
2& c 1

g(8') =

2b
3 8' —8+0

COp

23mb
0

C00

(2.10b)

1 . z
Aii(z t )= Re i exP —P(cusp gi) r(-,')

2m N

X[ao (hosp ) —ao (cosp

1/3

At 8'=c (t —to)/z =g„application of Olver's theorem
[32] at the second-order near saddle-point location yields
the following general expression for the generalized Bril-
louin precursor:

X ao(cusp ) I
1+O(z (2.8)

C [1+O(z '~ )] (2.1 1)

as z ~+ ~ uniformly for 1 & 0' & 01 —6 with
0 & b, & 8, —1. In Eq. (2.8) hosp (8')=i [ I%'(8')

I

—25/(8')/3] denotes the location of the upper near sad-
dle point, which is the only relevant saddle point in this
8' range, and the coefficient ao(hosp ) is given by

1

as z~+ co with fixed 8'=8, =(ct, /z), where
cusp -= —i(25/3a) denotes the location of the second-

N

order near saddle point, and where the coefBcients
ao (cusp ) are given by the expression

N

a (o2sp, )=
U(cusp, ~c )

1 d
2 —— [P(cusp, 8') ]

' 1/2 (2.9) U(cusp —co, )

3 —
6 3[4 (~sp gi)]
1 d

dc' N

] /3 (2.12)

~2( gl2 g2)

2
02+ 3ab

0
C00

—52

2
02 02+ 2b

0
Ct)p

23mb
0

C00

(2.10a)

The proper value of the argument of the term appearing
inside the square root in the denominator of relation (2.9)
as specified by the convention in Olver's analysis [32] is
equal to zero. The second approximate expressions for
the functions appearing in the near saddle-point locations
are given by [4—6]

2 1/2

The proper value of the argument of the term appearing
inside the cubic root in the denominator of relation (2.12)
is vr/2 [corr—esponding to the plus superscript in rela-
tions (2.11) and (2.12)] along the deformed contour lead-
ing away from SP& into the right half of the complex co

plane and —5n/2 [corresponding to the minus super-
script in relations (2.11) and (2.12)] along the deformed
contour leading away from SP& into the left half of the
complex cu plane.

Finally, for 8') 8i application of Olver's theorem [32]
at the two first-order near saddle-point locations yields
the following general expression for the generalized Bril-
louin precursor:

A2i(z, t) = Re i 2 exp —p(co +, 8')=1 '

z
277 C N

&C
1/2

ao(co +)[1+O(z ')]
N

+2 exp —$(co,g') .
C N

ETC

1/2

ao(co )[1+O(z ')]
N

(2.13)
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as z —+ + ~ uniformly for 0' ~ 0&+6 for positive 6 that is
arbitrarily small. In Eq. (2.13), cps +(8') =+'P(8')

N—i[25/(8')]/3 denotes the locations of the near saddle
points in the right and left half of the complex co plane,
and the coefficients aii(co g) are given by the expression

N

U(a) g —co, )
N

1/2 (2.14)

III. UNIFORM ASYMPTOTIC DESCRIPTION
OF THE PROPAGATED FIELD

For Gaussian-pulse propagation the general expression
for the asymptotic approximation of the integral repre-

The proper values of the argument of the term appearing
inside the square root in the denominator of Eq. (2.14)
are —~/2 (for the right near saddle point co +) and

+m /2 (for the left near saddle point co ).
N

Upon substitution of the analytic expressions found by
Oughstun [4] and Oughstun and Sherman [S,6] for the
near saddle-point locations as well as for the derivatives
of the phase function at them as a function of 0' in Eqs.
(2.8), (2.11), and (2.13), the approximate expressions of
the nonuniform asymptotic behavior of the generalized
Brillouin precursor field for an input unit amplitude, ul-
trashort Gaussian-modulated harmonic signal presented
in Ref. [29] are obtained. Notice that as the parameter 8'
approaches the value 0& where the order of the near sad-
dle points changes discontinuously, Olver's method [32]
fails and a uniform asymptotic analysis has to be per-
formed. This uniform expansion is described in the next
section.

sentation of the propagated field is found to be given in a
continuous manner by Eq. (2.4). When the uniform
asymptotic theory is invoked the resulting expressions for
As(z, t) and Aii(z, t) are uniformly valid for all 8' ~ 1 and
hence the general expression in Eq. (2.4) is also uniformly
valid for all 0' ~ 1. For most values of 0', only one of the
terms As(z, t) or Az(z, t) appearing in Eq. (2.4) is impor-
tant at a time. There is a short interval of 0' around the
value [4,5] 8sB=-8r, (45—b /38oco~) when the relevant
upper near and two distant saddle points have equal dom-
inance, so that both terms in Eq. (2.4) are significant for
fixed values of the propagation distance z. This 0' range
is the transition period in which the presence of both
terms in Eq. (2.4) leads to a continuous transition in the
behavior of the propagated field, as was shown in Appen-
dix D of Ref. [6].

In this section the discontinuities associated with the
nonuniform asymptotic method of Olver around the
space-time points 0'=1 and 0'=0, are removed through
use of uniform asymptotic expressions for the generalized
Sommerfeld and Brillouin precursor fields, which are de-
rived here for the case of an input unit amplitude, ul-
trashort Gaussian-modulated harmonic signal.

A. Generalized Sommerfeld precursor

The uniform asymptotic expansion resulting from two
first-order saddle points co+(8) with equal imaginary
parts and with real parts that approach +~, respective-
ly, as 0 approaches some critical value 0„was developed

S
by Handelsman and Bleistein [33]. In their application of
this asymptotic expansion, Oughstun and co-workers
[4,6,9] obtained a uniformly valid approximation of the
Sommerfeld or first precursor field for all 0 & 0„=1.

S
The general uniform asymptotic description of the

Sommerfeld precursor field is given by [4,6]

As(z, t) =Re . exp i —[2a(8)exp[ i m/2] ]'—(8)

za(8) za(8)X yoJ +2a(8)exp[ i+/2 j y,J +-,
C C

.+Bi(z, 8) (3.1)

u(co)=co "+ 'q(co) (3.2)

for large ~co~, with u(co) being the spectral function ap-
pearing in Eq. (1.9), and where q(co) has a Laurent series
expansion that is convergent for large ~co~ and is such
that

as z —++ ce, uniformly for all 8~ 1. Here J (g) is the
Bessel function of the first kind of order v. The real pa-
rameter v) 0 is determined from the expression

When v & 0 the uniform asymptotic description provided
by Eq. (3.1) may still be applicable provided that its limit-
ing value as 8 tends to unity from above is finite [33].
The remainder term Ri(z, 8) appearing in Eq. (3.1) is
found to satisfy the inequality (with K a positive real con-
stant independent of both 8 and z)

iZ ( 8)i~SCi
z C

lim [q (co) ]= lim [co'+'u (co) ]%0 .
fcof + ~ j~f~+ ~

(3.3)
za(8)

v+2 (3.4)
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for z ~ Z & 0 and 8~1, and is small for large z indepen-
dent of a(8).

For the case of gaussian-pulse propagation the spec-
tral function of interest is given as

in Eq. (3.2), where U(to —co, ) is given by Eq. (1.13), so
that the corresponding real parameter v is found to be

(3.6)

tt (co) =q(to) =exp[i(coto+ P) j U(co co—, ) (3.&)

I

The coefficients appearing in Eq. (3.1) are given by

a(8') = [P(—to +, 8') P(t—o,g') ]
D D

b2
=-g(8') (8' —1)+

2[/ (8')+5 [1—g(8')] j

P( 0') =—[P(hosp+, 0')+ P(tos —,0') ]
D D

(3.7a)

(3.7b)

(3.8a)

i 5 —[1+q(8') ](8'—1)+
2[(' (8')+5 [1—g(8')] j

(3.8b)

1 — 1yo(8')= —. U(to + —co, )spD ' 2a 8'

1+v
4a (8')

iP' '(to +, 0')
D

1/2 —1+ U(co —co, )
spD ' 2a 8'

' 1+v —4a (8')
i/' '(to, g')

1/2

pl/2 g~ b2
g(0') (0 —1)+

2{/ (8')+5 [1—q(0')] j

' 3/2
(3.9a)

X U(hosp+ co, )—g(8')+i [1—g(8') ] + U(hosp to, ) —g(8') —t [1—'l}(0')]. 35 (3.9b}

1 (gi) ~ sP+ c 2 (gi)

1+v
4a (8')

i/' '(to +, 0')
D

1/2

spD 2a(8 )

1+v —4a (0')
iP'2'(co p, g')

1/2

(3.10a)

~1/2 g~ b2
g(8') (8' —1)+

2b 2[/ (8')+5 [1—g(8')] j

1/2

X U(co + —to, ) g(8')+i [1—q(8') )
—U(co —co, ) g(8') i [1——g(8') ]

.35, —,. 35
D 2 D

(3.10b)

Substitution of these expressions into Eq. (3.1) then yields the uniform asymptotic approximation of the generalized
Somrnerfeld precursor as

1/2

As(z, t }- (8' —1)+(0') b

2b 2[/ (8')+5 [1—q(8')] j
r

X exp [1+g(8') ](8'—1)+
c 2[/ (8')+5 [1—g(8')] j

XRe i( U(co ~ to, ) jg'(8'—)+i—,'5[1—g(8')] j+ U(co —co, ) [g'( 8) i ', 5[1——g(—8')] j }
D D

XJ, —g(8') (8' —1)+I I
$2

c 2[/ (8')+5 [1—q(g')] j

+ ( U(co + —co, ) [g(8')+i ,'5[1—r}(8—')] j
—U(to» —co, ) [g(8') —i —,'5[1—r}(8')]j )

D D

XJo —(8') (8' —1)+
bz

2[$2(8')+52[1—ri(8') ]' j
(3.11)
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as z —++ oo uniformly for all 0' ~ 1. In Eqs. (3.7b), (3.8b), (3.9b), (3.10b), and (3.11) use was made of the approximate an-
alytic expressions [4—6] of the right (co +) and left (co ) distant saddle-point locations and of the derivatives of the

D D

phase function P(co, 0') at them.
Since v(0, the uniform asymptotic approximation given in Eq. (3.11) is valid for all 0 1 only if its limit as 0 tends

to unity from above is finite. In this limit the functions g(0') and il(0 ) attain the limiting forms

lim (0')]= b

e i+ [2(0' —1)]' '
lim [il(0')]=I,

e' 1+

(3.12a)

(3.12b)

so that the argument of the Bessel functions appearing in Eq. (3.11) reduces to Brillouin s first-order approximation
[2—5]

lim —g(0') (0' —1)+I
b2

g i+ c 2{((0')+Q [1—il(0')] I

=—b[2(0' —1)]'i' .
c

(3.13)

Consequently, for values of 0' very close to unity the argument of the Bessel functions is very small so that the small ar-
gument limiting form of the Bessel functions [35] appearing in Eq. (3.11) may be employed with the result

lim [As(z, t)]—
—,
' exp. —2 (0' —1) .Re. i —[U(e + —co, )+U(co —co, )]

gz, b2z
SPD SPD+,i~ [ U(cusp~ —co, )

—U(co —co, )]
b

[2(0'—1)]'n SPD ' sp (3.14)

lim [ U(co +—co, ) ]=0,
gi 1+ D

(3.15)

so that the limit in Eq. (3.14) becomes

lim [ A s(z, t ) ]= 0,
0'~1+

(3.16)

which is finite. The fact that the generalized Sommerfeld
precursor field vanishes for 0'=1 is not consistent with
our numerical results. This inconsistency is due to the
nonvanishing width 2T &0 of the initial Gaussian-pulse
envelope at z =0 and disappears in the limit as 2T~O, in
which case one obtains a 6-function pulse. As a conse-
quence, the expression given in Eq. (3.11) constitutes the
appropriate approximation of the uniform asymptotic
description of the generalized Sornmerfeld precursor field
for all 0 & 1, which is due to an input unit amplitude, ul-
trashort Gaussian-modulated harmonic field.

As 0' tends to unity from above the distant saddle points
tend to the limiting locations +~ —i26 and the values of
the spectral functions U(co + —to, ) given in Eq. (1.13)

D

become

B. Generalized Brillouin precursor

The uniform asymptotic expansion for two neighboring
first-order saddle points co,(0) and co2(0) that coalesce
into a single second-order saddle point co, as 0 ap-
proaches some critical value 0„was developed by Ches-

B
ter, Friedman, and Ursell [34]. In their application of
this uniform asymptotic theory Oughstun and co-workers
[4,6,9] derived an asymptotic approximation of the Bril-
louin or second precursor field that is uniformly valid for
all 0~ 1.

For the particular case of Gaussian-pulse propagation
that is of central interest here, this work is directly appli-
cable for all 0'~1. It is still necessary to treat the two
cases 1~0'&0, and 0'~0, separately because the ap-
proximate analytic expressions [4] for the locations of the
near saddle points differ in the two cases. Nonetheless,
the results for the two cases combined are continuous at
0'=0, and constitute an asymptotic approximation of the
second precursor field Aii(z, t) due to a unit amplitude,
ultrashort Gaussian-modulated harmonic signal, that is
uniformly valid for all 0' ~ 1.

The uniform asymptotic description of the generalized
Brillouin precursor field as z ~+ ~, for all values of 0' in
the domain 1 ~ 0' ~ 0„is then given by

' 1/3 2/3

A~(z, t)-exp. —ao(0') . —— Re{&'[U(&sp —&, )Ih, (0')I+ U(&sp —&, )Ih2(0')I]] Ai Ia, (0')I
C z

(3.17)

2/3

Re{t [ U(~sp —~, ) lh )(0')
I

—U(~sp —~, ) lh ~(0')
I ]]2 a, 0'

2/3

XAi"' la (0')I

where Ai( J) and Ai" '(J) denote [31], respectively, the Airy function and its first derivative and where the remainder
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term is O(1/z). The coefficients appearing in Eq. (3.17) are given by

ao(0') =
—,
' [P(cusp, 0')+ P(~sp, , 0') ]

( )(0 0 )
55 I+(0)I [ ~(0) 1]+ 45 ~(
00co0 9 3

aI '(0')= [ —,'[P(cusp, 0') —$(~sp, , 0')]I' '

$2= . Iy(0')I ', (0' —0 )+ [ —,'ale'(0')I +a5 g (0') —25 g(0')]
Opct)o

1/3

(3.18a)

(3.18b)

(3.19a)

(3.19b)

h, 2(0') =
1/2

2&1/2( 0i )

0"'(~sp„0')
3

20o~o

b 2(3~
I
+(0') I+25[1—~g(0') ] )

b2x lq'(0')
I

-', (0' —00)+, [-'.&I+(0')I'+~5%(0'
t9o~o

1/6

(3.20a)

(3.20b)

for values of 0' in the range 1 (0' (01, where the upper sign corresponds to h, (0') and the lower sign corresponds to
h (0') in Eqs. (3.20a) and (3.2()b). ln Eqs. (3.17)—(3.20) use was made of the approximate analytic expressions [4—6] of

(~ ) and lower (~sp ) near saddle-po|nt
1 2 1,2

=i[+I@{0')I—25$(0')/3], when 1(0'(0$).
ln the limit as 0' approaches the critical value 0, from below Eq. (3.17) reduces to

lim [ Az(z, t)]= A~(z, t i )

coo
r(-,')31/2

2~proc

ab z

1/3

«I i U(~sp
2gz 4g—~, ) I exp . (00—0»+3ec 9aOpcop

(3.21)

+ for 0'=0, =(ct, /z) when the two ffrst-order near saddle points have coalesced into a single second-order
saddle point at cusp —= —i(25/3a).

Finally, the uniform asymptotic description of the generalized Brillouin precursor field as z ~+ ~, for values of 0 in
the domain O' 0„is given by

1/3 2/3

A, (z, t) —exp —'~,(0') ——' «Ii[U(~ + —~, )lh '(0') I+ U(~ ——~, ) lh (0') l]I XAi —l~i(0')
Ic 2 z SPN SP C

2/3+,i2
— Re I [ U(co + —co, ) I

h +
( 0' ) I

—U(cg —
cg), ) I

h ( 0')
I ] j2 at(0') 'i z N N

2/3

x Ai'" —l~ (0')
I

C
L

where the remainder term is O(1/z). The coefficients appearing in Eq. (3.22) are given by

~0(0') =
—,
' [P(~sp+, 0')+P(~sp, 0')]

(3.22)

(3.23a)

25$(0 ) (0i 0
3 p [1 ~g(0 )]q/2(0 )+

Opt'() 9 3
(3.23b)

a I
i2(0') =

t
3 [P(co +, 0') —P(co, 0') ] ]

'i'

i ', %(0') —(0—' —0 )
— [435 g(0')[2 —ag(0')]+a%' (0')}

2o~o

1/3

(3.24a)

(3.24b)
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h —(0') = + 2a 1/2( 0I )

P' '(~sp+, 0')
N

20pcop

3ab %(0')

1/2

3 —i3%(0')
2

2
(0' —00) — P5 g(0')[2 —ag(0')]+a% (0')]

20pcop

' 1/6

(3.25a)

(3.25b)

for all 0' in the range 0'~0i. In Eqs. (3.22) —(3.25) use
was made of the approximate analytic expressions [4—6]
for the right (co +) and left (co ) near saddle-point loca-

N N

tions given in Sec. II B (viz. , co p+(0') =+0'(0')
—i[2@'(0')/3], when 0'~0i). Notice that as 0' ap-
proaches the critical value 0i from above, Eq. (3.22)
reduces to the limiting expression (3.21).

Taken together, Eqs. (3.17) and (3.22) constitute the
uniform asymptotic expression of the generalized Bril-
louin precursor for an input unit amplitude, ultrashort
Gaussian-modulated harmonic signal for all 0'~1 and
reduce to the nonuniform asymptotic expressions given in
Sec. II when 8' is bounded away from 0&.

IV. DISCUSSION

The numerical evaluation of the integral representation
given in Eq. (1.12) describing the propagation of an input
unit amplitude, ultrashort Gaussian-modulated harmonic
signal in a Lorentz medium that is based upon Hosono's
Laplace-transform method [30] (referred to here as the
Hosono code) constitutes the first numerical experiment
that is used as a comparison with our asymptotic descrip-
tion. A second, independent method of numerically
evaluating this same integral representation is based on
the numerical implementation of the method of steepest
descents [31], and is referred to here as the asymptotic
code. The results of this code constitute the second nu-
merical experiment and are used as a second independent
verification of our theoretical results. The agreement be-
tween the results of these two numerical experiments for
each of the cases we have considered, a sample of which
appears in this section, is remarkably exceptional and
provides a secure measure of the accuracy in the descrip-
tion of ultrashort Gaussian-pulse propagation that is
afforded by both the nonuniform and uniform theories.

When the modern asymptotic method of Olver [32] is
used to evaluate the integral representation in Eq. (1.12),
along with approximate analytic expressions for the
saddle-point locations and the derivatives of the phase
function at them, as determined by Oughstun [4], the ap-
proximate expressions appearing in Ref. [29] for the gen-
eralized Sommerfeld precursor As(z, t) and the general-
ized Brillouin precursor Az(z, t) are obtained. The re-
sults of a numerical implementation of these expressions
is depicted here for comparison and is referred to as the
analytical nonuniform theory. Its predictions of the gen-
eralized Sommerfeld precursor field amplitudes are found
to be greater than the respective results of the two nu-
merical experiments for this precursor field, while its pre-

dictions of the generalized Brillouin precursor fields are
of approximately the same amplitude but are found to os-
cillate at higher frequencies than the respective ones pre-
dicted by the two numerical experiments.

The primary source of these discrepancies is found to
be from the use of the approximate analytic expressions
for the saddle-point locations, and, to a lesser extent,
from the use of the approximate analytic expressions for
the derivatives of the phase function at the saddle-point
locations. Even though these approximate expressions
have been found [5—9] to be of sufficient accuracy when
used to describe the propagation of either an input 5-
function pulse, an input unit-step-function modulated
harmonic signal, or a rectangular-function modulated
harmonic signal of arbitrary initial pulse width in either a
single- or double-resonance Lorentz medium, such is not
the case here because of the exponential behavior of the
Gaussian envelope. Indeed, a close examination of the
general expression (1.13) for the Gaussian spectral ampli-
tude appearing in Eq. (1.12) reveals that any deviation of
the analytically determined approximate saddle-point lo-
cations from the exact locations (which can only be deter-
mined with sufticient accuracy using numerical tech-
niques) aFects the results exponentially, especially for
broad initial pulses. This should then be the primary
source of the observed differences between the predic-
tions of the analytical nonuniform theory and the results
of the two numerical experiments. It is further expected
that, to a smaller degree, the analytically determined ap-
proximate expressions for the derivatives of the phase
function at the saddle-point locations that are used in the
implementation of Olver's asymptotic method will fur-
ther aggravate these discrepancies.

In order to verify our assertions as well as to improve
the asymptotic description of ultrashort Gaussian-pulse
propagation in a Lorentz medium, a numerical evalua-
tion (referred to here as the numerical nonuniform
theory) of the general expressions (2.5) and (2.6) for the
generalized Sommerfeld precursor field, and (2.8), (2.9),
and (2.11)—(2.14) for the generalized Brillouin precursor
field, has been performed. In this implementation of the
asymptotic method of Olver, the exact, numerically
determined saddle-point locations and exact expressions
for the derivatives of the phase function were used. As
expected, the results are found to be in excellent agree-
ment with the results of the two numerical experiments,
thus proving the validity of the asymptotic description of
the propagation of the input unit amplitude, ultrashort
Gaussian-modulated harmonic signal in a Lorentz medi-
um. The tradeoff for the increased accuracy in the
description of the propagated field is the use of more gen-
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evolution due to an input
Gaussian-modulated cosine field
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=0.2 fsec and a carrier frequen-
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a propagation distance
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tal results of the asymptotic code
are shown in the bottom two di-
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FIG. 5. Evolution of the instantaneous angular frequency of
oscillation for the dynamical field evolution due to an input
Gaussian-modulated cosine field with initial pulse width
2T=0.2 fsec and a carrier frequency co, =3.1416X10' sec ' at
a propagation distance z =112.47zd, where zd is the absorption
depth at the carrier frequency cu, . The asterisks in the top and
bottom diagrams denote the frequency of oscillation values that
were determined from the asymptotic code, while the triangles
in the middle and bottom diagrams denote the frequency of os-
cillation values that were determined from the uniform theory.

eral expressions that, although entirely correct, depend
more on numerical techniques. Nevertheless, since the
sources of the discrepancies between the nonuniform
theory and the experiments have now been identified, we
can still cautiously use the analytic approximate expres-
sions for the saddle-point locations and the derivatives of
the phase function at them in Olver's method, to get the
only available, though in some cases rough, analytical
description of ultrashort Gaussian-pulse propagation in a
I.orentz medium.

The results of both the analytical and numerical
nonuniform theories are nonuniform when 0' tends to

unity from above and when 0' approaches 0I. In order to
overcome these two difficulties the uniform asymptotic
theory is used. Its numerical implementation (referred to
here as the uniform theory) using the derived expressions
(3.11) for the generalized Sommerfeld precursor field and
(3.17) and (3.22) for the generalized Brillouin precursor
field is uniformly valid for all 0'~ 1. The exact, numeri-
cally determined saddle-point locations are used here
only to evaluate the Gaussian spectral amplitude func-

(co + —co, ), U(~sp —~, ), and U(~sp+ —~, ) ap-
D 1,2 N

pearing in Eqs. (3.11), (3.17), and (3.22), respectively,
since use of analytic approximate expressions can serious-
ly degrade the performance of the uniform asymptotic
method. On the other hand, in order to have expressions
that are more tractable analytically than the respective
expressions used for the numerical nonuniform theory,
the approximate, analytically determined expressions for
the saddle-point locations and the derivatives of the
phase function at them were used everywhere else in the
uniform asymptotic description. It is then expected that
the uniform theory will improve the description afI'orded
both by the analytical nonuniform theory and the numer-
ical nonuniform theory when 0' tends to unity from
above and when 0' tends to 0I, but that it will not agree
with the two numerical experiments as well as the numer-
ical nonuniform theory.

Attention is now turned to the results of the two nu-
merical experiments and their comparison with both the
nonuniform and uniform asymptotic theories. Brillouin's
choice of the medium parameters are used throughout
this numerical comparison. The case of an input unit
amplitude, Gaussian-modulated cosine field is depicted in
Figs. 3—5 when the initial pulse width is 2T=0.2 fsec,
with carrier frequency co, =3.1416X10' /sec, which is
below the absorption band of the medium. This set of the
input field parameters corresponds to one oscillation of
the harmonic signal under the full width at e ' max-
imum points of the Gaussian envelope at z=0. The
propagation distance z=5.0 pm is equal to 112.47 ab-
sorption lengths zd at the signal frequency co, . The total
propagated field A (z, t) = As(z, t)+ A~(z, t) calculated us-
ing the Hosono code is depicted at the top of Fig. 3 and is
seen to be dominated by the generalized Sommerfeld pre-
cursor field for 1(0' & 0sa, while it is dominated by the
generalized Brillouin precursor field for 0'&0sB where
0sB-——1.334. Since the input carrier frequency co, is below
the medium absorption band, the peak amplitude of the
generalized Brillouin precursor field is many orders of
magnitude greater than the peak amplitude of the gen-
eralized Sommerfeld precursor field. The corresponding
results of the total propagated field calculated using the
asymptotic code are depicted at the bottom of Fig. 3.
Comparison of the respective wave forms in Fig. 3 shows
that the two independent numerical experiments describ-
ing the propagated field are in complete agreement. The
analytical predictions of the total propagated field due to
the same input field considered in Fig. 3, calculated using
the analytical nonuniform theory, the numerical nonuni-
form theory and the uniform theory, respectively, are de-
picted in Fig. 4. The observed discrepancies between the
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analytical nonuniform theory and the two numerical ex-
periments are due to the use of the approximate analytic
expressions for the saddle-point locations and the deriva-
tives of the phase function at them. When exact, numeri-
cally determined saddle-point locations and exact expres-
sions for the derivatives of the phase function at them are
used, the results of the numerical nonuniform theory are
found to be in excellent agreement with the two numeri-
cal experiments for all 0' except for the two small 0'
neighborhoods about the space-time points 0'=1 and
0' = 0& when the nonuniform asymptotic theory breaks
down. The results of the uniform asymptotic theory,
presented at the bottom of Fig. 4, overcome this di%culty
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and are uniformly valid for all 0' ~ 1. It is to be remem-
bered that several approximations have been introduced
in the uniform asymptotic description so that the resul-
tant expressions are more tractable analytically. Hence,
as expected, the uniform asymptotic description does not
completely agree with the two numerical experiments as
well as does the numerical nonuniform theory, but it
clearly describes the propagated field structure better
than the analytical nonuniform theory.

The numerically determined instantaneous frequencies
of oscillation for this propagated field are depicted in Fig.
5. In the upper diagram the asterisks mark the oscilla-
tion frequency values determined from the asymptotic
code, while in the middle diagram the triangles mark the
oscillation frequency values determined from the uniform
theory. A comparison of these two results for the oscilla-
tion frequency of the generalized Brillouin precursor is
presented in the bottom diagram of the figure, where
again the asterisks and triangles denote frequencies of os-
cillation evaluated numerically from the asymptotic code
and the uniform asymptotic theory, respectively. The ob-
served difference between the two results is due primarily
to the inaccuracy inherent in the analytic description of
the near saddle-point locations.

Similar degrees of accuracy are obtained when the in-
put carrier frequency of the pulse is increased through
and above the medium absorption band that is defined
over the real frequency range (coo —5 )

2 2 1/2

~co, &(co&—52)'~ . Figures 6—8 depict the results when
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FIG. 8. Evolution of the instantaneous angular frequency of
oscillation for the dynamical field evolution due to an input
Gaussian-modulated cosine field with initial pulse width
2T=0.314 fsec and a carrier frequency co, =4.0X 10 sec ' at a
propagation distance z=1332.97zd, where zd is the absorption
depth at the carrier frequency cu, . The asterisks in the top and
bottom diagrams denote the frequency of oscillation values that
were determined from the asymptotic code, while the triangles
in the middle and bottom diagrams denote the frequency of os-
cillation values that were determined from the uniform theory.
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FIG. 9. The dynamical field evolution due to an input
Gaussian-modulated cosine field with initial pulse width
2T=0.2 fsec and a carrier frequency ~, =5.75 X 10' sec ' at a
propagation distance z=41.96zd, where zd is the absorption
depth at the carrier frequency co, . The experimental result of
the Hosono code is shown in the top diagram while the respec-
tive experimental result of the asymptotic code is shown in the
bottom diagram.
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A(z, t)- As(z, t)+ A~(z, t) (4.1)

as z —++ Do for all 0'&1 in a single-resonance Lorentz

cu, =coo, the undamped resonance frequency of the medi-
um, which is near the lower end of the absorption band.
Figures 9—11 depict the results when
co, =5.75 X 10' /sec, which is near the upper end of the
absorption band, while Figs. 12—14 depict the results
when co, =10.0X 10' /sec, which is well above the upper
end of the absorption band. These results clearly show
the accuracy that the asymptotic description possesses
over the entire frequency range co, E [0, oo ). Again, the
only major inaccuracy in the analytic theory arises from
the approximations made in describing the saddle-point
dynamics analytically [5]; this inaccuracy is clearly re-
moved by using numerically determined saddle-point lo-
cations.

The observed structure of the dynamical field evolution
depicted in Figs. 3—14 is easily understood from the
asymptotic representation

medium. Because of the initial Gaussian envelope spec-
trum (1.13), the asymptotic description of As(z, t) and
As(z, t) each contain a Gaussian factor of the form
expI —(T /4)[Re(cusp) co ] ], where cosp denotes the
distant saddle-point location in the right half of the com-
plex co plane for the generalized Sommerfeld precursor
As(z, t), while cusp denotes the relevant near saddle-point
location for the generalized Brillouin precursor Att(z, t)
The asymptotic description of each generalized precursor
field also contains an exponential attenuation factor that
is given by the product of the propagation distance z with
the attenuation that is characteristic of the real phase
behavior at the relevant saddle point. Finally, the instan-
taneous oscillation frequency of each precursor field in
the mature dispersion regime is approximately given by
Re[cosp(8')] for an ultrashort pulse.

In particular, the instantaneous frequency of the oscil-
lation of the generalized Sommerfeld precursor is ob-
tained from the derivative of the oscillatory phase term in
the uniform asymptotic expansion (3.11) as

b 0'
cos(8')= (8')+

2g(8')(8' —1)'
b [g (8') —55 (1—r)(8')) ]

[g (8')+5 (1—g(8')) ]

95cb 8'(1 —r)(8')) 95 (1—g(8'))1+
2zg (8')(8' —1) g (8')

T2 gb2c g+
2 z g (8')(8' —1)

[g(8')(3—g(8') )+2', (g(8') —1)] . (4.2)

(4.3)

b2c g
cos(8') —=co~(8')+

g (8')(8' —1)'
X [g(8')(3—g(8') )+ 2', (g(8') —1)]

(4.4)

The first term on the right-hand side of this expression is
just the real part of the distant saddle-point location
cusp+(8') =g( 8) i 5(1+—g(8') ), where g(8') monotonical-

D

ly decreases from infinity at 8' = 1 and approaches
(co&

—5 )'~ as 8'~+ oo. The first three terms on the
right-hand side of this expression give the instantaneous
oscillation frequency of the Sommerfeld precursor field
for the 5-function pulse [4—6], where, to a good approxi-
mation, cps—=g(8')-=co@. Here toz)(co, —5 )'~ is the
real frequency solution [12] of vE(toE ) =c/8', with uz(cu)
being the monochromatic energy transport velocity [14]
for a single-resonance Lorentz medium, given by

C
v~(cu) =

con; (cu)
n„(cu) +

where n„(co) and n;(co) are the real and imaginary parts,
respectively, of the complex index of refraction (1.5).
With this substitution the instantaneous frequency of os-
cillation of the generalized Sommerfeld precursor be-
comes

in the mature-dispersion regime.
Since g(8') monotonically decreases from 1 to 0 as 8'

increases from 1 to infinity, the second term on the right-
hand side in Eq. (4.4) is non-negative for all 8' 1.
Hence, the instantaneous oscillation frequency of the gen-
eralized Sommerfeld precursor due to an input ultrashort
Gaussian pulse is increased above that for an input 5-
function pulse and approaches it as z —++ao. Hence,
cos ) (co, —5 )' for all parameters of an input ultrashort
Gaussian pulse. If the input carrier frequency co, is
chosen to be above the medium absorption band so that
cu, ) (co&

—5 )', then the instantaneous oscillation fre-
quency of the generalized Sommerfeld precursor will
chirp downwards across co, at a sufficiently large, fixed
propagation distance z. In that particular case, let OE
denote the value of 0' at which ~E =co„' this space-time
point corresponds to that point in the field which travels
at the velocity uz(co, ) =c/8E given by the energy trans-
port velocity of a monochromatic plane-wave field with
frequency co, [12]. Let 8, denote the value of 8' at which
co+=co„ this space-time point corresponds to that point
in the generalized Sommerfeld precursor field evolution
when the instantaneous frequency of oscillation crosses
the value co, ) (cu&

—5 )'~ . It is then seen from Eq. (4.4)
that 8, =8E when T =0 (i.e., in the limit as the initial
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Gaussian pulse approaches a 5-function pulse). Further-
more, 0, is increased above HE when T)0 and ap-
proaches Oz with a z ' dependence as the propagation
d.istance increases.

In a similar fashion, the instantaneous frequency of os-
cillation of the generalized Brillouin precursor is obtained
from the derivative of the oscillatory phase term in the
uniform asymptotic expansion (3.22) as

T 5b gl 45 ~~ 0' 3a —2
~, g )=~ (g )—, , %(0')[%(0')—~, ](3a—2)+g(0') 3aco', —

%(0')cooz
@&2 g2+

Ct)0

(4.5)
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negative for all 0' 0, when co, ~ (coo—5 )'~ . Hence, the
instantaneous oscillation frequency of the oscillatory por-
tion of the generalized Brillouin precursor due to an in-

put ultrashort Gaussian pulse is decreased below that for
an input 5-function pulse and approaches it as z~+ ~.
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FIG. 10. The dynamical field evolution due to an input
Gaussian-modulated cosine field with initial pulse width
2T=0.2 fsec and a carrier frequency co, =5.75 X 10' sec ' at a
propagation distance z=41.96zd, where zd is the absorption
depth at the carrier frequency co, . The result of the analytical
nonuniform theory is shown in the top diagram, the respective
result of the numerical nonuniform theory is shown in the mid-
dle diagram, and the respective uniform theory result is shown
in the bottom diagram.

FIG. 11. Evolution of the instantaneous angular frequency of
oscillation for the dynamical field evolution due to an input
Gaussian-modulated cosine field with initial pulse width
2T=0.2 fsec and a carrier frequency co, =5.75 X 10' sec ' at a
propagation distance z=41.96zd, where zd is the absorption
depth at the carrier frequency co, . The asterisks in the top dia-
gram denote the frequency of oscillation values that were deter-
mined from the asymptotic code, while the triangles in the bot-
tom diagram denote the frequency of oscillation values that
were determined from the uniform theory.
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( (~ —5 )' for all parameters of an input ul-Hence co@ ~o— ( ( 2 52 )
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creased above OE when T & 0 and approaches OE with a
z ' dependence as the propagation distance increases.

When the input carrier frequency co, lies in the a sorp-

(
—5 )' then co (8'), as given by Eq. (4.4) witKN~ + co)

(8') now replaced by g(8'), is bounded e ow ycoE now
(~ —5 )' However, roti(8'), as given by Eq. . wi

COE (8') now replaced by %(8'), is no longer bounded
in theabove yb (

—5 )' since the quantity appearing in
large square rac e s inb k t '

that expression may now become
so for allnegative for some value 0'& 0& and remain so for a

1 s of I9'. The maximum frequency attained by
2 2 1/2co (8') is then increased above (coo— y a ac

that increases as the square of the initia p
COg

' '
1 ulse width and

decreases as z . o ice,'. N t e however that this behavior has
been obtained here for the case of ultrashort pulses whose
ini ia pu't 1 lse rise time is either less than or on the order of
1/5. Nevertheless, these results clearly show that e

'

stantaneous oscillation frequency o gf the eneralized Bril-
1

'
recursor can enter the absorpt'oi n band of theouin p

is in the ab-medium when the input carrier frequency co, is in
b d 'ded that the observation distance z is

not too large. As z increases, the propagated field charac-
teristics approac ah th t due to an input 6-function pulse
[29]. —5 )' the generalized Brillouin pre-For O~m, ( coo-

ted fieldcursor field As(z, t) dominates the entire propagated e
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~
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~

)0, the peak in the propagated field is shifted to-
ward this earlier space-time point. s p

p

distance increases, the location of the peak amplitude in
the propaga e et d field approaches the space-time point
ct/z=80 rom a ove0 f b for an input Gaussian-modula e
cosine wave as consi ere'd d here' for an input Gaussian-
modulated sine wave &29] the initial field has a zero at the

ion of thek
'

th
'

itial envelope so that the location o t e
theeak amplitude in the propagated field just follows e

/ =8 . Notice that the Sommerfeld
1 ro a ated-recursor is virtually absent from the total propagate-precursor is vir u

field structure, as the initial spectrum in i
11 zero in the region of the distant saddle points.tically zero in e

I d d the peak amplitude in the Sommer e pmerfeld recur sornee, e
b —10 " fromat this propagation distance is reduce y-

thepeakampitu eo e1' d f th Brillouin precursor. As the ini-
1 idth 2T is decreased from the value con-tial pu se wi

or the cosine-d here the spectrum broadens and, or t esidere ere e
the Sommerfeld precursor become p-smorea-wave case, e

a roachesarent as the total propagated-field structure appparent as e
4—6 for the sine-wavethat for an input 5-function pu se 4—;or e

case the field vanishes as T~Q. On the other hand, as
the initial pu se wi1 'dth 2T is increased the spectrum nar-
rows and the pea in ek

'
th Gaussian factor begins to dom-
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inate the total field evolution A(z, t)-A&(z, t) as the
spectral amplitude at 8'=8O (the zero attenuation point
in the Brillouin precursor) decreases. Nevertheless, as
the propagation distance is increased (i.e., as the disper-
sion becomes more mature), the attenuation will cause
the peak amplitude to shift towards 0'=Ho. As the initial
pulse width is increased well above I/6, the total field
A (z, t) —Att(z, t) is dominated by the Gaussian factor in
the Brillouin precursor as the spectral amplitude is prac-
tically zero everywhere except in a small neighborhood of
co, . In that case, it is more appropriate to expand the in-
tegral representation about co, rather than about the
dominant saddle point. In the ultrashort T~ 1/5 case,
the point in the field evolution at which the oscillation
frequency passes through co, is given by the value

0, =—OE, so that the signal velocity of an ultrashort
Gaussian pulse is (approximately) the same as that ob-
tained for the unit-step-function modulated signal for
0 co, coo and is given by the energy transport velocity
[14] for a time-harmonic field. For such an ultrashort
Gaussian pulse this point in the field evolution may not
correspond to the space-time point at which the peak am-
plitude in the propagated fields occurs (=8o), as seen in
Fig. 3, which propagates with a velocity vs —=c /8o that is
nearly independent of the carrier frequency co, . Finally,
in the extremely ultrashort-pulse hmit when the Sommer-
feld precursor field As(z, t) is also excited with sufficient
amplitude, a separate peak amplitude will also appear at
a very high oscillation frequency (well above the medium
resonance frequency), and this point will propagate at a
velocity UsF that is just below the vacuum speed of light
C.

& ) &tv, (~i —5 ), so that the input
signal frequency is within the absorption band of the
medium, the same general dynamical field evolution is
obtained as in the below resonance case with two impor-
tant modifications. First of all, the Sommerfeld precursor
As(z, t) becomes more pronounced as tv, increases from
~o to co&, as seen from a comparison of Figs. 6 and 9.
Second, the instantaneous frequency of oscillation of the
propagated field in the mature-dispersion regime only ap-
proaches the input signal frequency co, for an ultrashort
pulse, as seen in Figs. 8 and 11, and as it does, the field
amplitude rapidly attenuates from the peak amplitude at-
tained at either a lower oscillation frequency in the Bril-
louin precursor or a higher oscillation frequency in the
Sommerfeld precursor. Because the input signal frequen-
cy co, for the case illustrated in Figs. 6—8 is at the lower
end of the absorption band, the Brillouin precursor dom-
inates the Sommerfeld precursor at all propagation dis-
tances. The peak amplitude in the propagated field then
occurs immediately following the point t =Oo z /c, at
which point the oscillation frequency is zero, after which
the field amplitude rapidly diminishes as the oscillation
frequency approaches ~o from below. The total field evo-
lution when the input signal frequency is near the upper
end of the absorption band is illustrated in Figs. 9—11 for
an initial Gaussian-pulse width 2T=2.0X10 ' sec and
carrier frequency co, =5.75 X 10' /sec. The dynamical
field evolution for this case is illustrated in Figs. 15—20 at
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FIG. 20. Evolution of the instantaneous angular frequency of
oscillation for the dynamical field evolution due to an input
Gaussian-modulated cosine field with initial pulse width
21=0.2 fsec and a carrier frequency cu, =5.75 X 10' sec ' at a
propagation distance z=419.60zz, where zz is the absorption
depth at the carrier frequency co, . The asterisks in the top dia-
gram denote the frequency of oscillation values that were deter-
mined from the asymptotic code, while the triangles in the bot-
tom diagram denote the frequency of oscillation values that
were determined from the uniform theory.

several values of the propagation distance in the mature-
dispersion regime. This case is of particular interest since
the group velocity at this signal frequency is very nearly
equal to the vacuum speed of light c. At a small propaga-
tion distance the peak amplitude in the temporal field
evolution occurs during the generalized Sommerfeld pre-
cursor evolution as seen in Fig. 9, and this point propa-
gates with a velocity just below c. However, the frequen-
cy of oscillation about this point is much larger than co, .
As the propagation distance increases, as shown in Figs.
15—20, the total field evolution becomes increasingly
dominated by the generalized Brillouin precursor whose
peak amplitude point propagates with a velocity approxi-
mately equal to c/8o=c/n(0); however, the oscillation
frequency of the field about this point is much less than
the initial signal frequency co, . It may, perhaps, be a
moot point that the oscillation frequency of the propagat-
ed field due to an ultrashort Gaussian pulse in the
mature-dispersion regime of the medium absorption band
never reaches the input signal frequency
to, H [(too —5 )', (co, —5 )' ] since the field amplitude is
exponentially negligible as the oscillation frequency ap-
proaches either (coo —6 )' from below (due to the Bril-
louin precursor) or (tv, —5 )' from above (due to the
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vs =vE(K~ ) (4.6)

for 0~co, ((coo—5 )'~ and co, &(co,—5 )' . This is the
same as the signal velocity for both the unit-step-function
modulated and rectangular-function modulated signals
below resonance and is an upper envelope to the signal
velocity above the absorption band [4,5]. The signal ve-
locity of an ultrashort Gaussian pulse with signal fre-
quency co, within the medium absorption band is not
defined since the oscillation frequency of the propagated
field only approaches co, in the mature-dispersion regime.
As the initial pulse width is broadened into the quasi-
monochromatic regime where the initial pulse spectrum
is sharply defined about the signal frequency m„ it is ex-
pected that the signal velocity will remain to be given ap-
proximately by the monochromatic energy transport ve-
locity vE(co, ), even for frequencies in the medium absorp-
tion band. This transition between the ultrashort and

Sommerfeld precursor). Finally, if one only considered
the propagated envelope of this field evolution it would
easily be concluded that the input Gaussian pulse has,
under propagation, separated into two distinct pulses, the
first pulse having a peak amplitude that propagates just
below c and the second pulse having a peak amplitude
that propagates at the velocity v~ =c /Oo.

Finally, for co, ) (cubi
—5 )'~ the Sommerfeld precursor

As(z, t) will dominate the propagated-field behavior in
the mature-dispersion regime, as illustrated in Figs.
12—14 for an input Gaussian-pulse width
2T =2.0 X 10 ' sec with signal frequency
rv, = 10.0 X 10' /sec at the propagation distance
z=15.09zd. The value 0, =—1.2002 in Fig. 14 indicates
the point in the field evolution at which the oscillation
frequency equals co„ for I9' (0, the instantaneous oscilla-
tion frequency of A(z, t) is greater than co„while for
0') 0, it is less than co, . It is about this point that the
Gaussian factor peaks to its maximum value. However,
because the attenuation of the Sommerfeld precursor
identically vanishes at 0 =1 while it monotonically in-
creases for all 0') 1, the peak in the propagated field is
shifted toward this space-time point. Notice that the
peak amplitude of the generalized Brillouin precursor
that is present in the propagated-field structure is re-
duced by a factor of 10 from that of the Sommerfeld
precursor in this case. As the initial pulse width is de-
creased the relative amplitude of the Brillouin precursor
field increases with respect to that of the Sommerfeld pre-
cursor and in the limit the entire field evolution ap-
proaches that due to an input 5-function pulse. On the
other hand, as the initial pulse width is increased the am-
plitude of the Brillouin precursor field decreases and only
the generalized Sommerfeld precursor remains as the
spectral amplitude approaches zero everywhere except in
a small neighborhood of co, . In each case, the point in
the field evolution of a short Gaussian pulse at which the
oscillation frequency passes through co, is given by the
value 0.=HE.

The signal velocity for a short Gaussian pulse is then
seen to be given approximately by the energy velocity for
a time-harmonic field in the dispersive medium

quasimonochromatic regimes needs to be carefully con-
sidered in future research.

V. CONCLUSIONS

The results presented here clearly show that the
asymptotic theory provides a complete, accurate descrip-
tion of ultrashort Gaussian-pulse propagation in a causal-
ly dispersive dielectric as described by the Lorentz model.
The only significant source of error in the asymptotic
theory arises from the analytic approximations to the
relevant saddle-point dynamics. Although these algebra-
ic approximations were sufficiently accurate for the
asymptotic description of the propagated-pulse evolution
due to either an input step-function modulated signal, a
rectangular envelope pulse, or a 5-function pulse [4—6],
they were found here to be inadequate for the case of an
input Gaussian pulse due to the exponential behavior of
the initial pulse envelope spectrum. Nevertheless, the
analytical asymptotic theory was found to be qualitative-
ly correct in its description of Gaussian-pulse propaga-
tion [29]. The inclusion of the correct, numerically deter-
mined saddle-point dynamics then brings the asymptotic
theory into complete quantitative agreement with the nu-
merical experiments, as has been clearly shown here.

When combined with previously published results
[5—11], the results presented here clearly show that the
precursor fields are critical for the complete understand-
ing of the dispersive pulse dynamics in a causal medium.
For a single-resonance Lorentz medium, as considered
here, these are the classical Sommerfeld and Brillouin
precursors [1—3], whose complete dynamics [5] and uni-
form asymptotic description [6] have only recently been
obtained and provided with a proper physical interpreta-
tion [12]. For a multiple-resonance Lorentz medium ad-
ditional precursor fields may also be present [8], which
will further enrich the observed pulse evolution. For an
instantaneous rise-time pulse of arbitrary initial width
(such as that given by a rectangular envelope) the resul-
tant pulse distortion was found [9] to be primarily due to
the interference between the precursor fields associated
with the leading and trailing edges of the input pulse.
For a more continuous initial pulse envelope whose spec-
trum is an entire function of complex co, such as that
presented by a Gaussian envelope as considered here, the
entire propagated field is found to be given by the super-
position of the so-called generalized precursor fields,
whose evolution is dictated by the saddle-point dynamics.
For an ultrashort pulse with initial rise time T 1/5, the
saddle-point dynamics depend primarily on the proper-
ties of the dispersive medium. An input Gaussian pulse
can then evolve into a pair of pulses in a single-resonance
Lorentz medium for a sufFiciently short initial pulse
width. In a double-resonance Lorentz medium a max-
imum of three pulses is possible.

Finally, the signal velocity v, (co, ) of an ultrashort
Gaussian pulse in a single-resonance Lorentz medium is
found to be given approximately by the monochromatic
energy transport velocity vE(co, ) due to London [14].
The signal velocity U, marks the point in the field evolu-
tion that oscillates at the input carrier frequency. The
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signal velocity for an ultrashort Gaussian pulse differs, in
general, from the velocity of the peak amplitude point ap-
pearing in the propagated field in the mature-dispersion
regime, which propagates either very near to the vacuum
speed of light c if the generalized Somrnerfeld precursor
dominates the field or near c!n (0) if the generalized Bril-
louin precursor dominates the propagated-field structure.
As the initial pulse width is initially broadened, the signal
velocity U, is found to decrease away from uE(co, ) so that
UE is an upper envelope to the signal velocity for the ul-
trashort Gaussian pulse, just as it is an upper envelope
for the unit-step-function signal and the rectangular en-

velope pulse. As the initial pulse rise time T is
significantly increased above 1/5, it is expected that the
signal velocity will approach vz(co, ) from below. This
transition from the ultrashort to the quasimonochromatic
pulse regime is a critical topic for future research.

ACKNG%'LED GMENT

The research presented in this paper was supported by
the Applied Mathematics Group of the United States Air
Force Of5ce of Scientific Research under Contract No.
F49620-89-C-0057 and Grant No. F49620-92-J-0206.

[1]A. Sommerfeld, Ann. Phys. 44, 177 (1914).
[2] L. Brillouin, Ann. Phys. 44, 203 (1914).
[3] L. Brillouin, Waue Propagation and Group Velocity

(Academic, New York, 1960).
[4] K. E. Oughstun, Ph. D. dissertation, University of Roches-

ter, 1978, available from University Microfilms Interna-
tional, Ann Arbor, MI.

[5] K. E. Oughstun and G. C. Sherman, J. Opt. Soc. Am. 8 5,
817 (1988).

[6] K. E. Oughstun and G. C. Sherman, J. Opt. Soc. Am. A 6,
1394 (1989).

[7] K. E. Oughstun, Proc. IEEE 79, 1379 (1991).
[8] S. Shen and K. E. Oughstun, J. Opt. Soc. Am. 8 6, 948

(1989).
[9] K. E. Oughstun and G. C. Sherman, Phys. Rev. A 41,

6090 (1990).
[10]P. Wyns, D. P. Foty, and K. E. Oughstun, J. Opt. Soc.

Am. A 6, 1421 (1989).
[11]K. E. Oughstun, P. Wyns, and D. P. Foty, J. Opt. Soc.

Am. A 6, 1430 (1989).
[12] G. C. Sherman and K. E. Oughstun, Phys. Rev. Lett. 47,

1451 {1981)~
[13]I. Tolstoy, Wave Propagation (McGraw-Hill, New York,

1973), Chaps. 1 and 2.
[14] R. Loudon, J. Phys. 3, 233 (1970).
[15]K. E. Oughstun and S. Shen, J. Opt. Soc. Am. 8 5, 2395

(1988).
[16]R. L. Fork, C. H. Brito Cruz, P. C. Becker, and C. V.

Shank, Opt. Lett. 12, 483 (1987).
[17]C. G. B. Garrett and D. E. McCumber, Phys. Rev. A 1,

305 (1970).
[18]J. Jones, Am. J. Phys. 42, 43 (1974).
[19]D. G. Anderson and J. H. Askne, Proc. IEEE 62, 1518

(1974).

[20] D. Anderson, J. Askne, and M. Lisak, Phys. Rev. A 12,
1546 (1975).

[21]D. Anderson and M. Lisak, Phys. Rev. A 35, 184 (1987).
[22] N. D. Hoc, I. M. Besieris, and M. E. Sockell, IEEE Trans.

Antennas Propag. AP-33, 1237 (1985).
[23] I. P. Christov, IEEE J. Quantum Electron. QE-24, 1548

(1988).
[24] H. M. Nussenzveig, Causality and Dispersion Relations

(Academic, New York, 1972), Chap. 1.
[25] M. D. Crisp, Phys. Rev. A 1, 1604 (1970).
[26] R. Barakat, J. Opt. Soc. Am. 8 3, 1602 (1986).
[27] D. B.Trizna and T. A. Weber, Radio Sci. 17, 1169 (1982).
[28] J. A. Stratton, Electromagnetic Theory (McGraw-Hill,

New York, 1941),Sec. 5-18.
[29] K. E. Oughstun and J. E. K. Laurens, Radio Sci. 26, 245

(1991).
[30]T. Hosono, in Proceedings of the 1980 International URSI

Symposium on Electromagnetic 8'aves (International
Union of Radio Science, Munich, 1980), paper 112, pp.
C1-C4.

[31]E. T. Copson, Asymptotic Expansions (Cambridge Univer-

sity Press, Cambridge, England, 1965), Chaps. 7—9.
[32] F. W. J. Olver, Stud. Appl. Math. Rev. 12, 228 (1970).
[33] R. A. Handelsman and N. Bleistein, Arch. Ration. Mech.

Anal. 35, 267 (1969).
[34] C. Chester, B. Friedman, and F. Ursell, Proc. Cambridge

Philos. Soc. 53, 599 (1957).
[35] Handbook of Mathematical Functions, Natl. Bur. Stand.

Appl. Math. Ser. No. 55, edited by M. Abramowitz and I.
A. Stegun {U.S. GPO, Washington, D.C., 1972).

[36] I. P. Christov, in Generation and Propagation of Ultrashort
Optical I'ulses, edited by E. Wolf, Progress in Optics Vol.
XXIX (Elsevier, Amsterdam, 1991),Chap. 3.


