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Spin-depolarization mechanisms due to overlapping
spin resonances in synchrotrons

S. Y. Lee
Department of Physics, Indiana University, Bloomington, Indiana $7/05

(Received 27 October 1992)

We studied depolarization mechanisms of polarized-proton acceleration in high-energy accelerators
with snakes and found that the perturbed spin tune due to the imperfection resonance plays an
important role in beam depolarization at snake resonances. We also found that even-order snake
resonances exist in the overlapping intrinsic and imperfection resonances. Due to the perturbed spin
tune of imperfection resonances, each snake resonance splits into two. Thus the available betatron
tune space becomes smaller. Some constraints on polarized-beam colliders were also examined.

PACS number(s): 41.75.—i, 03.20.+i, 05.45.+b, 29.20.Dh

I. INTRODUCTION

The spin equation of motion for a spin particle, gov-
erned by the magnetic interaction between the magnetic
dipole moment of the particle and the static magnetic
field in a synchrotron, is given by the Thomas-BMT equa-
tion [1] (where BMT denotes Bargmann-Michel- Telegdi),

S x [(1+Gp)Bi + (1+G)Bii],

K = n+ mv, + fv + kv, y„, (1.2)

where v„v and v,~„are, respectively, the vertical beta-
tron, the horizontal betatron, and the synchrotron tunes,
and k, 8, m, n are integers. The imperfection resonances,
due to the vertical closed orbit errors, are located at inte-
ger harmonics, K = n. The intrinsic resonances, due to
the vertical betatron motion, are located at K = nP+v„
where P is the superperiodicity of the accelerator. Other
depolarizing resonances arise from linear or nonlinear be-
tatron coupling, vertical dispersion, synchro-beta cou-

where B~ and B~I are the transverse and longitudinal
components of the magnetic fields with respect to the
velocity vector, P. In a planar synchrotron, vertical
magnetic fields are needed to guide the orbiting parti-
cle around a closed path. Thus the spin vector is pre-
cessing with respect to the vertical axis at a frequency
Gp fo, where fo is the revolution frequency, G = $ —1 is
the anomalous magnetic g factor, and p is the relativistic
Lorentz factor. The quantity Gp, representing the num-
ber of spin precessions per revolution, is called the spin
tune.

In a synchrotron, strong quadrupole fields are also
needed to focus the beam to a small size. Those par-
ticles moving off-center vertically in quadrupoles will ex-
perience horizontal fields, which will kick the spin vector
away from the vertical axis. Since quadrupole magnets
and the particle closed orbits are periodic in a circular ac-
celerator and the betatron and the synchrotron motions
are quasiperiodic, perturbing kicks to the spin vector can
be decomposed into harmonics, K, given by

v, + EK = integer, E = 1, 3, 5, 7, ... , (1.4)

where v, is the spin tune and K is the spin-depolarizing
resonant harmonic. For v, = 2, we expect that snake res-
onances occur at the following fractional betatron tunes:

5 1 3 7 9 1 3v ~ ~ ~2' 6' 6' 1P ~ 1P ~ 1P»P ~ 14~ 14& (1.5)

Here the lowest-order snake resonance has been observed
[5]. Other higher-order snake resonances have been iden-
tified in numerical simulation shown in Fig. 1, where the
final vertical spin vector, after passing through an iso-
lated intrinsic spin resonance in an accelerator with two
snakes, is plotted as a function of the vertical betatron
tune v, . Higher-order snake resonances become impor-
tant when the resonance strength is larger than e & 0.1.
At a larger resonance strength, e.g. , e —0.4, snake reso-
nances up to the E + 7 are important and e —0.5, 8 & 11
are also important.

From Fig. 1, it is interesting to note that the numeri-

pling, and random field errors. When the spin-precession
frequency is in phase with the harmonics of perturbing
kicks in a synchrotron, i.e.,

(1 3)

these spin perturbing kicks add up coherently every rev-
olution around the ring. Therefore the beam can be de-
polarized.

To avoid a spin-resonance condition, Derbenev and
Kondratenko [3] proposed to use a local spin rotator,
which rotates the spin vector 180' about an axis in the
horizontal plane. These spin rotators are called snakes.
Using snakes in an accelerator, the spin tune of the par-
ticle can become 2 and independent of energy. The res-
onance condition of Eq. (1.3) can therefore be avoided.

However, subsequent studies show that when the reso-
nance strength is large, new spin-depolarizing resonances
occur at some fractional betatron tunes. These reso-
nances are called snake resonances [4]. Snake resonances,
due to coherent higher-order spin-perturbing kicks, are
located at
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resonances? What are essential e8'ects of imperfection
resonances?

Without a detailed understanding of spin-
depolarization mechanisms, it would be dificult to design
hardware requirements for polarized colliders. This pa-
per is intended to investigate spin-depolarization mech-
anisms of overlapping intrinsic and imperfection reso-
nances. We organized the paper as follows. In Sec. II, we
will study the spin tracking equation and investigate de-
polarization mechanisms. EfFects of an imperfection res-
onance near an intrinsic resonance will also be studied.
The dynamics of possible even-order snake resonances
will be examined. Section III addresses the hardware
requirements for a polarized collider. The conclusion is
given in Sec. IV.

FIG. 1. The final vertical spin vector after passing
through an intrinsic depolarization resonance with strength
e;„~ ——0.5 of an accelerator with two snakes is plotted as a
function of the fractional part of the vertical betatron tune.

cal simulations show no apparent even-order snake reso-
nances at

v, + EK = integer, E = 2, 4, 6, 8, ... . (1.6)

where m and k are integers, P is the superperiodicity,
M is the number of FODO cells per superperiod, and v~
is the total accumulated betatron tune of those FODO
cells which contain dipole magnets [for an explanation of
FODO, see text after Eq. (3.1)]. Thus, important intrin-
sic resonances are well separated. On the other hand, an
important imperfection resonance will occur at the inte-
ger nearest to an important intrinsic resonance. There-
fore overlapping intrinsic and imperfection resonances
constitute the most important problem in the spin dy-
namics during polarized-proton acceleration.

Previous studies [7] of overlapping resonances indi-
cated that when the betatron tune is chosen properly,
i.e. , far away from low-order snake resonances, the toler-
able or critical intrinsic resonance strength is given by

(1.8)

where N, is number of snakes. However, these studies
leave many open questions. Where is the proper tune?
What is the depolarization mechanism for overlapping

Several reasons for the nonexistence of even-order snake
resonances were given in the past [4, 6]. However, the sit-
uation has never been tested in the case of overlapping
resonances. With overlapping resonances, the cancella-
tion of the depolarization perturbation is not guaranteed
and the coherent kicks due to the imperfection resonance
may induce strong perturbation to the spin vector. This
may lead to beam depolarization at even-order snake res-
onances; therefore, careful studies are needed.

Overlapping resonances are important in high-energy
accelerators. Important intrinsic spin-depolarizing reso-
nances are located at harmonics nearest to [6]

K = mP+v, = kPM+ v

II. SPIN-DEPOLARIZATION MECHANISMS
IN A SYNCHROTRON

In a synchrotron, the Thomas-BMT equation can be
cast into the equation for the two-component spinor [8],
4, as

de i (Gq —(
de 2 (—(*—G&

(2.1)

where components of the spin vector are given by S, =
(4[o., ~4), 0 is the orbital bending angle, and ( arises
from nonvertical magnetic fields in a synchrotron and
is the main source for the beam depolarization. In a
perfect circular accelerator, where ( = 0, the spinor is
transformed according to

@(g )
—

2 Gp(sf —eg)O'3 @(e ) (2.2)

( ) —iKH

K
(2.3)

The Fourier amplitude e~ is called the resonance
strength, and the corresponding frequency K of Eq. (1.2)
is called the resonance tune.

In this section, we will study spin-depolarization mech-
anisms step by step by erst deriving the spin transfer
matrix for a single depolarization resonance without and
with snakes and the requirements of snake configurations
in accelerators. Using the evolution equation for the spin
transfer matrix, we will discuss eKects of the perturbed
spin tune and snake resonances. The eKects of overlap-
ping intrinsic and imperfection resonances are then ex-
amined. Finally imperfections related to snakes will be
discussed.

Thus the spin closed orbit is in the vertical axis for a
perfect planar circular accelerator. Any spin vector de-
viating from the vertical direction will precess about the
vertical axis at a rate of Gp turns per orbital revolution.

Due to periodic structure of a circular accelerator and
the quasiperiodicity of the betatron and synchrotron mo-
tions, ( can be expanded in Fourier harmonics as



47 SPIN-DEPOLARIZATION MECHANISMS DUE TO. . . 3633

A. Spin transfer matrix of a single spin resonance

where the spinor wave function in the resonance precess-
ing frame, 4K, is given by

@K(8) = e~K8"4(8). (2.4)

Here nco is the spin closed orbit in the resonance pre-
cessing frame given by

1
&co = —[«2 + ~Rei —~le2],

A

~ = (~2+ I~I2) "2
6=K —Gp.

(2.5)

with (ei, e2, es) as orthonormal bases corresponding to
radially outward, longitudinal, and vertical axes. Thus
the evolution of the spinor wave function is given by

@(8 i e
—

& K8f c'3e& %neo cr(8y —8i)e g K8i~3@(8

= t,(Hf, 8,)4'(8, ), (2 6)

where for an intrinsic resonance, the spin closed-orbit
vector, nco, of the resonance frame is precessing around
the vertical axis, e3. For an imperfection resonance, the
spin closed orbit is stationary at every azimuth position
in the ring.

At b = kIeI, the spin closed-orbit vector is tilted 45'
away from the vertical axis. The system has three eigen-
values, 0 and +iA, which correspond to three eigenso-
lutions describing the spin vector along the spin closed
orbit and the spin vectors precessing right or left with
respect to nco.

The matrix t(Hf, H, ) of Eq. (2.6) is the spin transfer
matrix, whose components are given by

(8 8 )
i[c K(8f —8—, )/2] (2.7)

(8 8 ) g i [d+K(8f+8, )/2] —
(2 8)

121(8f i 8i) — fr2(8f ) Hi) ~ f22(Hf ~ Hi) —fir (8f ~ Hi) ~

with

f '
I
=(1 —~2)

Hf —H, ic = arctan —tan
I

A
)

(2.9)

and d = arg(e*). The parameter b is the efFective res-

onance strength with a maximum amplitude ]—'[. The
parameter b is the distance between the spin tune and
the resonance tune. The off-diagonal matrix elements,

For a single resonance, i.e. , ((8) = ee ', the spinor
equation of motion can be solved analytically. Assum-
ing a slow or zero acceleration rate, the equation for the
spinor can be transformed to

i „= —&co
d0 2

tqq and t2y, are depolarization driving terms.
The spin closed orbit Aco of Eq. (2.5) is precessing at

a frequency K around the vertical axis in the laboratory
frame. If the proton spin vector is injected along the
vertical direction, the flnal spin vector will precess around
the spin closed orbit nco at a precession frequency A.
The net vertical spin vector is then given by

(~s) = I~»l' —I~»l' =1 —2t'

= 1 —2 sin —(8f —8,)A~ 2
(2.10)

6ih2+ IeI
f =

A A
i) (2.11)

where Pf and P, are the final and initial polarization,
bj ——Kg —Gp and 62 ——K2 —Gp with Kg) K2 as the
resonance harmonics before and after the jump and A, 's
are given by Eq. (2.5). For an optimal tune jump with
6'2 ———bi ——/i, the polarization becomes [8]

62 —IeI2Pf- 6+a (2.12)

To achieve a proper tune jump with 95%%uc polarization sur-
vival, Av, = 26'ssy; = 12Ie is needed. Since the betatron
tune jump is limited to Av, ( 0.3 by the betatron stop
bands [2], the maximum intrinsic spin-depolarization res-
onance strength, which can be effectively overcome by the
tune jump scheme, is e & 0.025. However, the actual po-
larization survival is the average of Eq. (2.12) over the
bunch distribution. The applicability of the tune jump
method may depend on the beam distribution.

On the other hand, when the beam is accelerated adia;
batically through a spin resonance, the polarization vec-
tor follows the spin closed orbit and flips. Depending on
the acceleration rate, the degree of spin fiip (or degree of
adiabaticity) is given by the Froissart-Stora formula [9],

Pf —~
I
e I dGP=26 2 —l) 0! =

P, '
d6I

' (2.13)

If all particles in the bunch have identical spin tunes, Gp,
then the polarization vector will precess around the spin
closed orbit nco without depolarization. On the other
hand, if there are spin tunes spread in the bunch, the
spin vectors of the bunch will decohere and the remain-
ing polarization is the projection of the spin vectors of
particles in the bunch onto the spin closed orbit nco.
The measurable polarization in the accelerator will be
the projection of the spin closed orbit onto the vertical
axis.

Equation (2.10) indicates that the depolarization will
occur at a spin-resonance condition Gp = K, where A =
IeI. To avoid the spin-resonance condition, the betatron
tune can be changed suddenly during the acceleration.
Note here that the e3 component of the spin closed-orbit
vector, nco, changes sign in passing through a resonance.
A sudden tune jump will cause a nonadiabatic transition
of the spin closed-orbit vector. The polarization, which
survives in the tune jump, is the projection of the initial
spin closed-orbit vector onto the final spin closed-orbit
vector, i.e. ,
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where o, is the acceleration rate. The tune jump method
and the adiabatic spin flip method were used successfully
in overcoming spin-depolarization resonances during the
polarized-proton acceleration in low- to medium-energy
synchrotrons. For high-energy synchrotrons, snakes are
needed.

B. Effects of snakes on spin motion

(2.14)

where P is spin-rotation angle and n, = (cos P„sin $„0)
denotes the snake axis with respect to radially outward
direction, e1. 8+ depict azimuthal orbit rotation angles
just before and after the snake. More specifically, at P =
n, or the 100% snake, the spinor wave function can be
transformed as

(2.15)

where T, (P, ) = in, cr is the sp—in transfer matrix for a
100% snake.

Let us consider a perfect circular accelerator with two
snakes, —2o1, —2o2, separated by x orbital angle apart.
The one-turn spin transfer matrix is given by

Gym Gym

[
—io2]e ' 3 '[—ioi]e ' 3 ' = ios. (2.16)

Thus the spin tune, obtained from the trace of the one-
turn spin transfer matrix, is 2 and the stable spin closed
orbit is vertical. Now we introduce a small constant local
spin angular precessing kick, y, about an axis nI, in the
horizontal plane, and the spin transfer matrix becomes

T1 = 6 2 203. (2.17)

Because nI, is in the horizontal plane, the evolution of
the spin transfer matrix at the nth revolution becomes

When snakes are inserted into an accelerator, the spin-
perturbation parameter, b in Eq. (2.9) becomes smaller
due to a small orbital angle difference, 8f —8, , between
snakes. Snakes are local spin rotators, which rotate parti-
cle spin by 7t. radians about a horizontal axis locally with-
out perturbing particle orbits outside a snake region. A
partial snake differs only in the amount of spin-rotation
angle, e.g. , a 10% snake rotates spin by O. lx rad. Thus
a snake is characterized by the amount of spin rotati-on
angle, P, and the snake axis angle, P„with respect to
ei (radially outward direction). The spin rotator which
rotates the spin 180' about the ei axis is usually called
the type-II snake and the snake which rotates the spin
about the e2 axis is called the type-I snake.

The spinor wave function at a snake will be trans-
formed locally according to

imperfection resonances due to a localized constant spin-
perturbing kick.

Extending the model a step further, we assume that
the precessing kick is diff'erent in each turn, and the spin
transfer matrix becomes

r ~ a ~

m=1
e

—i3 [Q" x(—i)" X ]63 o (i 1'II,m- )2o 3)

(2.19)

The vertical spin vector is given by

(2.20)

Now if the spin perturbation kicks are due to a betatron
motion, these kicks are correlated by

m gp cos 2m7cvz
& (2.21)

where v, is the fractional part of the vertical betatron
tune. When the vertical betatron tune is v, = 2, each
kick adds up coherently. The spin vector will preeess
around the nl, axis at a precessing tune of ~z', or in other
words, it takes —"orbital revolutions to complete one
precessing turn around the ng axis.

The spin perturbing kick of Eq. (2.21) arises mainly
from the vertical betatron motion in a quadrupole, where
the magnitude yo depends on the betatron amplitude.
Since a beam bunch is composed of particles with differ-
ent betatron phases and amplitudes and the polarization
of the beam is the ensemble average of Eq. (2.20) over
the beam distribution, the polarization will therefore be
lost at the v, =

2 resonance condition. On the other
hand, the spin of an ideal beam bunch without spin-tune
spread and phase spread will precess about the ng axis
at a precessing tune of —"without depolarization at the

Xo
resonance condition.

An interesting observation worth pointing out is that
the depolarization occurs only at v, =

2 in the local-
ized spin kick model discussed above, i.e. , the localized
spin kick does not explain higher-order snake resonances
shown in Fig. 1.

C. Basic requirements of snake con6gurations
in accelerators

N, —1

Let us consider N, snakes with snake axes
(Pi, $2, ..., giv. ) distributed in an accelerator, and let
6I, ,+1 be the azimuthal orbit rotation angle between the
ith and (i + l)th snakes. The one-turn spin transfer ma-
trix for a perfect circular accelerator is given by

if n = even
~

~

[icrs]"
T(n) [T ]n

Ti [ios](" i) if n = odd,
(2.18)

which means that the perturbed spin precessing kicks
cancel each other every two turns around the accelera-
tor. Thus the snake is very effective in correcting the

(2.22)

where the spin tune v, and the spin closed-orbit vector
neo can be obtained by identifying the matrix elements
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of Eq. (2.22). To ensure that the spin tune is independent
of the particle energy, the distribution of snakes should
satisfy the following condition [6, 10]:

with Ugly
= —71g, 722 = 711, where C = &t90 +

2Kvr/Ne+ 0—Pi and parameters a, b, c, and d are defined
in Eq. (2.9) with 8f —8, = 2m/Ne as

b= —sin =(1 —a) i7r A

A N,
6odd = 6even = 7t

~

Ns

t9odd = 6k, k+1~
k=odd

(2.28)

(2.23) and

Z = (b'+ I~I')'i', b = K —Gq,
Ns

8even = 8k, k+1~
k =even

where 8egs + 8, ,„=2vr is the total orbital angle for a
circular path. If the odd (or even) orbital angle deviates
from x, the spin tune becomes 2 + Gp(1 —8 dd/x), i.e.
the spin tune is shifted away from 2 by an amount

6 vrA
c = arctan —tan, d = arg(~*).

8

The spin motion in accelerator can then be obtained
iteratively by using the spin tracking equation through
pairs of snakes, i.e. ,

T(8„+i) = r(8„+g, 8„)T(8„), (2.29)

where 8„+i = 8„+47r/N, . Here r(8„+i,8„) is the kernel
of the iterative equation, which can be solved iteratively
using a power-series expansion in strength parameter b~,

For high-energy storage rings, G'p is a large number, e.g. ,

Gp = 450 for the relativistic heavy ion collider (RHIC)
and GO=36000 for the Superconducting Super Collider
(SSC), accurate placement of snakes becomes important.
This issue will be addressed in Sec. III. The spin tune
can be obtained from the trace of the one-turn transfer
map, i.e. ,

N,

) ( 1)kg
7r k=1

(2.24)

which can be used to set the spin tune to the most fa-
vorable number in avoiding spin-depolarizing resonances.
For example, accelerators with two snakes, N, = 2,
should have those two snakes placed at the locations of
the vr orbital angle apart and the snake axes of these two
snakes should be orthogonal to each other to obtain a
spin tune of 2. For accelerators with a large number of
snakes, there are many ways to organize snakes to obtain
proper snake superperiodicity and proper spin tune.

D. Spin tracking hierarchy equation

(2.26)

4~
8p + 8p

I

= —2iabe '(' i '+~') cos 4
(2.27)

Let us consider an accelerator with N, equally spaced
snakes. The spin transfer matrix after passing through a
pair of (P2, Pi) snakes is given by

t' 4~r
I 8o+, 8o

I
T, (&2)t 8o+, 8o+) N. )

2~
xT, (dz)t I

8o+ N, 8o
I (2 25)

where t(8f, 8,) and T, (P, ) are given by Eqs. (2.7) and
(2.14), respectively. The components of spin transfer ma-
trix are given by

6p+, 00 = —e ' ~' ~' 1 —26 e' cosc

l.e. ,

T11 ——T11 + T11 + T11 + )
(o) (1} (~)

T12 ——T1q +T12 + T12 + ~
(1) (2) (3) (2.30)

where T ' = Q(b ') and T&2
——O(ab ' ). The final ver-

tical spin vector is obtained from the expectation value
of a.3 in the spinor wave function, i.e. ,

(2.31)

E. The perturbed spin tune

Without loss of generality, we will discuss an acceler-
ator with two snakes Pi, P2, located at an orbital angle
of vr from each other. The spin transfer matrix for pass-
ing through two snakes [or equivalently the one-turn map
(OTM)] is given by

rii(8p+ 2~, 8p) = —e ' '(1 —2b e' cos4),
F2�(8p + 27r, 8p) = —2iabe '(' +&'l cos C'

(2.32)
(2.33)

1 1 . . g 7l6
Q, = —+ —arcsin sin

~~ min N,
(2.35)

If the resonance strength of a spin resonance is IeI

mN, /2, m = 1, 3, ..., the perturbed spin tune Q, will

cover a whole integer unit during the acceleration and
cross the intrinsic resonance many times. The polariza-
tion may be lost. Figure 2 shows the final polarization
after passing through a single resonance with two snakes

where mv, = p2 —pi and C = K8o + K~ + d —4y is the
characteristic betatron phase of the orbital motion.

The perturbed spin tune Q, defined as the trace of
OTM is given by

cos&Q, = —cosvrv, +2b cosc cos(C' —vrv, ) = b sin(2C).

(2.34)

Because of the betatron phase, the perturbed spin tune
for an intrinsic resonance, Q„ is oscillating around z up
to a maximum and minimum given by
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FIG. 2. The vertical spin vector and the perturbed spin
tunes ~t &, ~~~~~;„~ obtained from a numerical tracking calcu-
lation at intrinsic resonance v = 081 '

l tt dis p o e as a function
of the resonance strength. Note that the perturbed spin tune
covers the entire tune space at e = 1,3.

as a function of the intrinsic resonance strength at the
betatron tune of v, = 0.81. Note that the maximum
and minimum perturbed spin tunes cover the entire tune
spaces around e = 1 and 3, where beam depol
occurs.

ne might conclude that the critical spin-resonance
strength (e,) could be defined by requiring that the per-
turbed s in tune dp' does not cross the spin resonance K
during the acceleration, i.e. ,

arcsin(~ cos7rK~ ~ )
&c) & N„ (2.36)

where the resonance tune K is related to the betatron
and/or synchrotron tunes of an accelerator by Eq. (1.2).
Equation (2.36) indicates that the tolerable critical res-
onance strength will be larger when the betatron tune
is nearer to an integer. This howeve

' twever, is not a sumcient
condition. At some special fractional betatron tunes, e.g.
1/3, 2/, /, /, 1/8, 3/8, etc. , the spin motion is not af-j. 3, 2,~3 ~,)4 3,)4

)

fected by the spin tune. At these special betatron tunes,
the maximum and minimum perturbed spin tunes during
a resonance crossing depend also on the ' 't' 1 betatron
phase. Results of tracking calculations show that the spin
motion is not much affected by the perturbed spin tune.

imilarly, at an odd-order snake resonance of E . (1.4),
e.g. , v, = 5/6, depolarization occurs at a very small de-
viation of the perturbed spin tune from

&
and the final

spin vector after passing through the resonance d d
on e inctxat betatron phase. However, if the betatron
tunes are chosen to be far away from low-order rational
numbers, the critical resonance strength obtained from
numerical simulations agrees [6] with that of Eq. (2.36 .

On the other hand, when K = integer for an imper-
feection resonance, the phase C in E . ~2.34~ iq. ~ . ~ is constant

smoothl
mod 2' . The perturbed spin tune of E . q2. 34(eo q. &

. ~ varies
smoo y across the resonance shown in Fig. 3 wh th

~ ~p' une for various imperfection resonance strengths is

FIG. 3. The perturbed spin tune across imperfection res-
onances.

Q, + v, = integer. (2.37)

However, this condition is irrelevant t tho e imper ection
resonance shown in Fig. 4 where th b te e atron tune is
chosen to satisfy the above condition. There is no ef
ect on the spin motion across the resonance. This can

be understood easily by the fact that there are no spin
ic s co erent to the resonance condition of E . (2.37)

act that the intrinsic resonance strength in
this tracking demonstration is zero. When the intrinsic
resonance strength is zero, the spin motion is not af-

1.0

0.5
Q.

0.0
1—LI z

—0.5

g
——0.

&;~I, ——0.83722
N, =2

1
Va 2

(S)

—1.0
480 485 490 495

FIG. 4. The evolution of the vertical spin vector and the
per urbed spin tune in the presenc fce o an imper ection reso-
nan. ce at e = 0.83722. The betatron tune is chosen to satisfy
Eq. (2.37) in order to demonstrate th t th ' fa e imper ection res-
onance does not contribute to th d le epo arization of a snake
resonance.

shown for an accelerator with two snakes. The actual
e s i or imperfec-magnitude and sign of the spin tun h'ft f

tion resonances depend on the vertical closed-orbit error.
ne might argue that depolarization might occur when

the perturbed spin tune Q, satisfies
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fected by varying the betatron tune across the snake res-
onance condition of Eq. (2.37). However, we will show
that Eq. (2.37) plays an important role when the intrinsic
resonance strength is not zero, i.e. , overlapping intrinsic
and imperfection resonances.

F. Snake resonances

T(1)(g ) 2 b( 1)n i(c K—m+—Pq)

x 1( i(C+nK~)( (~+ )

+e i(C'+n—Km)
q (~ )) (2.38)

where g„(q), called the enhancement function, is given
by

sin nq7r

sin qvr

At the first-order snake resonance condition,

(2.39)

v, + K = integer, (2.40)

We have demonstrated that the spin depolarization
mechanism is not determined solely by the criterion of
spin tune alone. The simple model used in Sec. IIB
shows that snakes provide a mechanism for the self-
cancellation of localized spin kicks every two revolutions
in the accelerator, and a coherent enhancement of the
perturbative kicks at the betatron tune of v, = 2. The
Fourier harmonics of a localized spin kick is equivalent
to the equally spaced spin resonances. In Sec. IIB,
we found that a localized spin kick can explain only the
snake resonance at v, = 2. In this section, we will show
that the cancellation is also valid for distributed spin-
perturbative kicks, which corresponds to an isolated res-
onance. Solving the spin tracking equation (2.29) to the
first order in parameter b, the spin transfer matrix is
given by

envelope function has many nodal points at A = 2m,
corresponding to b = 0. At these nodal points, the de-
polarization driving component vanishes. Away from the
central resonance location, the depolarization driving pa-
rameter 6 is usually small. Therefore if the spin vector
is not restored to the vertical position at the first nodal
location after passing through the resonance, the spin is
depolarized. A few important observations can be drawn
from Eqs (2.36)—(2.41).

(1) At an imperfection resonance, K = integer,

Tiz (8„,,„) = 0. This means that imperfection kicks
cancel each other every two revolutions around accelera-
tor. Thus snakes are most effective in overcoming imper-
fection resonances.

(2) At a fractional betatron tune, e.g. , K = & g 2,
one obtains

if p is even
(1}

m=p
T,z (8 ) = 0

m=2p if pisodd.

Thus the linear depolarization driving terms tend to can-
cel at a betatron tune of a rational number. One might
guess that the spin will be more stable against perturba-
tion at a betatron tune which is a rational number with a
small even-number denominator. Figure 5 shows the ver-
tical spin vector, after passing through an intrinsic res-
onance, as a function of the intrinsic resonance strength
for the betatron tune at v, = 3/4. The vertical spin is
characteristically different from that of Fig. 3 of intrinsic
resonances, where the betatron tune is not a low-order
rational number. This feature remains true to all low-
order rational numbers, such as 1/3, 2/3, 1/4, 3/4, 1/5,
2/5, etc.

(3) The envelope function ((8)) has many nodal points,
where the depolarization driving term vanishes, i.e. , b = 0
or 1. These nodal points correspond to the spin matching
condition [10] where

the off-diagonal kicks add up coherently each turn
through snake pairs. The beam can be depolarized easily
as shown in Fig. 1 at v, = &. Since betatron tunes of
an accelerator are not half integers, the first-order snake
resonance condition can easily be avoided.

It is interesting to note that the enhancement factor
(n vanishes for an imperfection resonance when n is an
even number. This means that the linear perturbing
kicks to the spin vector cancel each other every two turns
around an accelerator for an imperfection resonance dis-
cussed in Eq. (2.18). With imperfection resonances, there
is no source of coherent spin kick at the condition of
Eq. (2.40) and hence it does not cause depolarization
shown in Fig. 4.

Avoiding snake resonances, the vertical spin vector
across the resonance region will fall within the envelope
of

1.0

0.5

0.0

—0.5

—1.0
0

v, =0.75
~imp =0
N, =2
v, =1/2
go =45

I I I I I I I I I I I I I I

3 4

((S)) = 1 —8a b, b = —sin
~A

A 2 ' (2.41)

which have been demonstrated in many numerical sim-
ulations [see, e.g. , Fig. 1 of Ref. 4]. Note here that the

FIG. 5. The perturbed spin tune and the vertical spin
component after passing through an intrinsic resonance at
v, =3/4 are shown as a function of the intrinsic resonance
strength for ~; ~ = 0.
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A = integer or Gp = K + Q(integer x N, )2 —~e~s.

1.0 I I I

6int 0 83
~imp =0

Thus these nodal locations are separated approximately
by N, units of Gp. These nodal points may play an essen-
tial role in spin restoration during the passage through a
depolarization resonance.

(4) The width of envelope function is about 12 e~ for
95%%uo polarization. However, one can choose a nodal point
to obtain 100%%uo polarization.

(5) Based on the linear-response theory of Eq. (2.38),
we expect that depolarization occurs at a betatron tune
equal to a half integer shown clearly in Fig. 1. The v, =

2
snake resonance has been observed [5].

(6) Up to the linear order in the kick strength, the
result of distributed spin-perturbative kick (a single iso-
lated resonance) of Eq. (2.38) is equivalent to the local-
ized spin kick (equal resonance strength at every har-
monic) of Eq. (2.19).

From the discussions above, we might expect that the
spin vector would be more stable at a betatron tune equal
to a low-order rational number. However, Fig. 1 shows
that there are many high-order depolarization resonances
at a betatron tune of rational numbers, e.g. , 1/6, 5/6,
1/10, 3/10, etc. Solving the spin tracking equation be-
yond linear order in 6 gives rise to snake resonance con-
ditions given by Eq. (1.4) [4].

G. Overlapping resonances and even-order
snake resonances

Basic accelerator theory [2] indicates that a closed-
orbit distortion has largest amplitude at a harmonic near-
est to the betatron tune. We thus expect a large imper-
fection resonance, located at an integer nearest to the
important intrinsic resonance. The correlation remains
important even after closed-orbit corrections, which min-
imizes error harmonics nearest to the betatron tunes.

For a single isolated intrinsic resonance at v, = 3/4,
we found that the spin is not much affected by the per-
turbative spin tune and is not depolarized at e = 1, 3
due to the cancellation of the linear spin kicks every four
revolutions. Figure 6 shows the evolution of the verti-
cal spin vector across the resonance region for v, = 3/4.
The upper part of the graph shows the vertical spin vec-
tor at e;„t, ——0.23 without imperfection resonance. Note
that the deviation of the vertical spin from the value 1
is much smaller than the envelope function of Eq. (2.41).
The lower part of the figure shows the inverted verti-
cal spin vector (for clearly visible reasons) at the same
intrinsic resonance strength with an overlapping imper-
fection resonance at the resonance strength e; ~ = 0.04.
When the imperfection resonance is introduced, the ver-
tical spin vector is strongly perturbed so that the spin
vector cannot retain full polarization at the erst nodal
point. The memory on the vertical spin vector is lost. A
simple model to explain the coherent kicks at the even-
order snake resonance will be discussed in the next sec-
tion. Figure 7 shows the vertical spin vector after passing
through overlapping resonances with a very small imper-
fection resonance strength e; ~ = 0.002 as a function of

0.5

(S)
00

v, =3/4

—0.5
ei t=0.83
e;mp=0, 04

—1.0
480 485

FIG. 6. Evolution of the spin vector at an even-order
snake resonance for the case of an isolated intrinsic resonance
(upper curve) and the case of overlapping intrinsic and im-

perfection resonances (lower curve).
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FIG. 7. The perturbed spin tune and the vertical spin
component after passing through an intrinsic resonance at
v, =3/4 are shown as a function of the intrinsic resonance
strength for e; ~ = 0.002.

the intrinsic resonance strength e;„& and v, = 3/4. Note
here that strong depolarization occurs at a small per-
turbed tune shift due to the even-order snake resonance
condition.

To understand the effect of the imperfection on the
spin motion, the imperfection spin-depolarizing kick is in-
cluded in the spin tracking. Figure 8 shows the final ver-
tical spin vector after passing through overlapping intrin-
sic and imperfection resonances, e;„t ——0.5, e; &

——0.05.
We observe that when a small imperfection resonance
strength e; ~ = 0.05 is included, beam depolarization
occurs at all even-order snake resonances shown in Fig. 8.

To understand further the effect of imperfection reso-
nances on the spin motion, we reduce intrinsic resonance
strength in our calculation to e;„t ——0.137, where only
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on the snake resonances at the maximum spin-tune shift
shown in Figs. 3 and 4.

Thus the spin-depolarization mechanisms are due to
the perturbed spin-tune shift of the imperfection reso-
nance and the snake resonance conditions of Eqs. (1.4)
and (1.6). Since betatron tunes of colliders, such as
RHIC, Tevatron, and SSC, have to avoid similar low-
order betatron resonances for orbital stability, snake res-
onances do not impose further constraints to the oper-
ation of colliders. One can generalize the discussion to
multisnake accelerators, where the resonance condition of
Eq. (1.4) will be modified by snake superperiodicity, P, .
At higher snake superperiodicity, there are fewer snake
resonances, yet resonance width is also increased. Basic
physics remains unchanged [6j.

FIG. 8. Beam polarization after passage through overlap-
ping intrinsic and imperfection spin resonance is shown as
a function of the fractional part of spin-resonance tune, In
comparison with that of Fig. 1, even-order snake resonances
appear while the odd-order snake resonances are not much
afI'ected. At ~; ~ = 0.05 for two snakes, the even-order snake
resonances become more important than the odd-order snake
resonances,

H. A simple model for even-order snake resonances
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To understand the essential mechanism of the even-
order snake resonances in the presence of overlapping spin

0.5

low-order snake resonances at v, = 1/2, 1/6, 5/6 are irn-

portant. When an imperfection resonance at e; p: 0 13
is included, we found that even-order snake resonances at
v, = 3/4, 5/8, 7/8, . . . appear. Furthermore, all snake
resonances split into double peaks shown in Fig. 9. The
distance of these two peaks increases with the strength of
the imperfection resonance. There are two points worth
mentioning. First, the even-order snake resonance be-
comes more important than the odd-order snake reso-
nance, and the odd-order snake resonance is not much
affected by the imperfection resonance. Second, double
peaks occur for each snake resonance. The feature of
double peaks can be understood easily knowing that the
imperfection resonance generates a perturbed spin-tune
shift. The snake resonance condition becomes

&s&

0.0

—0.5

1.0

e;„g ——0.137
p

——0.13
N, =2

1
V~ 2

0 I I I I I I I I I I I I I I I I

0.5 0.6 0.7 O. B

I I I I ! I I

0.9

2+ AQ, +tv, = integer, / = integer, (2.42)
&s&

1, /, 2~a; pb
~AQ,

~

& —arcsin sin
N,

(2.43)

where AQ, is the perturbed spin-tune shift from the im-
perfection resonance given by 0.0

—05

g;„q ——0.13?
p

——0.25
N, =2

1
V~

The actual magnitude and sign of the spin-tune shift de-
pend on the closed orbit of the circular accelerator. Be-
cause of spin tune shift, each snake resonance will split
into two snake resonances separated by

—1.0
0.5

I I 1 I t

0.6
I i i t i I i i i i I

0.7 O. B 0.9
V

Av, = +—AQ, .1
Z (2.44)

The distance of splitting becomes smaller at higher-order
snake resonances as clearly seen in Fig. 9. The depolar-
ization line shape of these double peaks shown in Fig. 9
reflects the important efFect of perturbed spin-tune shift

FIG. 9. The effect of the imperfection resonance on the
snake resonances is shown for e' p = 0.13 (top) and E' p

0.25 (bottom). Note that even-order snake resonances appear
and each snake resonance splits into two resonance conditions
due to the unperturbed spin tune of the imperfection reso-
nance.
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resonances, we consider the model of the spin transfer
matrix shown in Eq. (2.25). The OTM of the overlapping
intrinsic and imperfection resonances can be expressed as

~ = e '2 'r(Hp+ 2vr, Hp), (2.45)

where r(Hp + 2m, Hp) is given in Eq. (2.25), and we have
assumed a small local spin-precessing kick y about the
eq axis. The resonance strength of the imperfection res-
onance is given by e; ~

= y/2vr at all integer harmonics.
The matrix elements of the OTM are given by

fqq = —e ' '(1 —2b e' cos@)cos—
2

x—2abe' ' "+~' cosC sin—2' (2.46)

~q2 ———2iabe ' ' +~' cosC cos—
2

+ie' '(1 —2b e ' cos4) sin —,x (2.47)

where parameters a, b, c, d, and C are given in Eq. (2.28)
and Vga ——7~2, f2g ——7~~. Due to the imperfection res-
onance, the off-diagonal matrix elements now contain
a term oscillating at two times the betatron frequency
with an amplitude proportional to b sin~2. Following
the same procedure in deriving Eq. (2.38), one obtains
a snake resonance condition, vs + 2K = integer, which
is the lowest even-order snake resonance condition of
Eq. (1.6). By performing similar higher-order analysis,
one can obtain all even-order snake resonances. Since the
first term of ~q2 in Eq. (2.47) depends on the imperfection
resonance in cos 222, the odd-order snake resonance is not
much affected by the overlapping imperfection resonance.

Since the real part of %~ 3 contains only terms oscillating
with the betatron frequency C, the average spin tune shift
is zero in this simple model with imperfection resonances.
In reality, if the imperfection spin kicks are mixed with
the intrinsic spin kicks, the spin tune of the one turn map
will be shifted during the passage of a resonance region
discussed in the last section. A slightly more complicated
model given by

4~
&

I
Ho + , Ho

I

= &
' ' ' T (4'2)t I Ho + , Ho +

x e ' 'T, (A)t I
Ho + , Ho

I
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alent to imperfection resonances at all integer harmon-
ics. The result of the spin tracking calculation for two
snakes at a spin rotation angle of 170' is shown in Fig. 10.
The equivalent imperfection resonance strength is 0.055.
The spin tune shift will cause each snake resonance to
split into two resonances. The result is similar to the
simple model of imperfection resonances discussed in the
last section. When the spin-rotation angle deviates from
180', the spin closed-orbit vector is also tilted away from
the vertical axis.

Besides the eKect of imperfection resonance, the spin
tune becomes energy dependent. If we assume that iden-
tical snake pairs are installed in the accelerator, then the
spin tune becomes

2~Q,
cos ' = —cos($2 —Qt)

Ns

. 2 (APl+ sin
I I Icos($2 —Pq)02)

+ cos(2Gp~/N, )j,

can generate a spin tune proportional to sin ~2' sin ~2.
0.0

I. Snake imperfections

When the spin-rotation angle P of Eq. (2.14) deviates
from vr by AP = vr —P, the spin transfer matrix of the
snake becomes

(2.48)
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0 I I I I I I I I I I I
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&int =-
&imp =
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1
8
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38
~ 13

Comparing Eqs. (2.14) with (2.48), one obtains an equiv-
alent imperfection spin resonance e',. q as

eq
lIIlP (2.49)

Therefore the error in snake spin-rotation angle is equiv-

I'IG. 10, The vertical spin vector after passing through
an intrinsic resonance with e = 0.39 for two snakes with spin-
rotation angle of 170 (top). The equivalent imperfection res-
onance strength is e',. q = 0.055. On the bottom frame, the
vertical spin vector after passing through an intrinsic reso-
nance and an imperfection resonance at e; ~ = 0.13 is shown
for comparison.
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sated solenoid field at the interaction point (IP) of ex-
perimental detectors and the effect of spin rotators for
helicity experiments, (5) effects of linear coupling, and
(6) effects of rf noises. In this section, we will evaluate
the importance of each issue. First, we make an esti-
mation of the spin-resonance strengths for RHIC as a
possible polarized proton collider.

Important intrinsic spin resonances are located at [6,

&,„, = O.39
&isn't

1V, =2
= ()', Q2

——85'

—1.0
0.5 0.6 0.7

I I I I I I l j I I I

O. B 0.9

FIG. 11. The vertical spin vector after passing through
an isolated intrinsic resonance for two snakes with spin axes
angles with Pi = 0' and P2 = 85'. The spin tune is shifted
from 2 by 0.028 without introducing imperfection resonances.
Therefore each snake resonance is split into two without in-

troducing even-order snake resonances.

where AP is the error in the spin-rotation angle of snakes.
Here we expect that the spin-tune shift from 2 will in-
crease linearly with the number of snakes. In reality,
the snake rotation angle may deviate from vr randomly.
The resulting spin-tune modulation will not increase lin-
early with the number of snakes. Because the perturbed
spin tune is very important to snake resonances, the con-
straint on the spin-rotation angle of each snake is also im-
portant for an accelerator with a large number of snakes.

III. CONSTRAINTS ON POLARIZED PROTON
COLLIDERS

From our studies in Sec. II, we found that possible
depolarization sources are (1) spin-tune modulation so
that the spin tune overlaps with snake resonances, (2)
betatron tune modulation so that snake resonances over-
lap with the spin tune, (3) the effects of beam-beam in-
teractions, higher-order nonlinear resonances, and syn-
chrotron depolarization resonances, (4) an uncompen-

J. Snake axes imperfection

Besides the error in spin-rotation angles, P, the snake
axis angles P, may also deviate from the ideal situa-
tion. The resulting spin tune will deviate from 2. The
snake resonance condition of Eq. (2.42) indicates that
each snake resonance will split into two. The correspond-
ing tune space available will be smaller. However, the
error in the spin-rotation angle does not generate im-
perfection resonance strength; therefore, the even-order
snake resonances do not appear. Figure ll shows the
result of the vertical spin vector after passing through
an isolated intrinsic resonance in an accelerator with an
intrinsic resonance strength s = 0.39 and two snakes hav-
ing Pi = 0, Ps = 85', which corresponds to EQ, = 0.028.
Note here that each snake resonance has split into two
while the even-order snake resonances are missing.

K=nP+v, -mPM+v~,
where n and m are integers, P is the superperiodic-
ity of the accelerator, M is the number of FODO cells
per superperiod, and 2vrv~ is the accumulated phase ad-
vance of all FODO cells, which contain bending dipoles.
Here a FODO cell, composed in sequence of a focusing
quadrupole, a dipole, a defocusing quadrupole, and a
dipole, is the basic building block of synchrotrons. The
corresponding resonance strengths are given by

ga. (D)
4a vr f ( P, (D))

'

(3.2)

where P, (F) and P, (D) are vertical betatron ampli-
tude functions at the location of focusing and defocus-
ing quadrupoles, f is the focal length of quadrupoles, e~
is the normalized emittance, and p is the Lorentz factor.
The maximum resonance strength for RHIC is about 0.45
at 250 GeV. Figure 12 shows intrinsic resonance strength
for a RHIC lattice.

Important imperfection resonances are located at an
inter ger nearest to an important intrinsic resonance
of Eq. (3.1). The maximum imperfection resonance
strengths are given by

(3.3)

where o., is the rms vertical closed orbit in the arc, and v,
is the vertical betatron tune. We expect the imperfection
resonance strength to be less than 0.05 for RHIC after a
closed-orbit correction with o., = 0.2 mm.

A. Spin tune modulation

With snakes, the spin tune is independent of energy.
Therefore the synchrotron motion does not give rise to
spin tune spread. This has been verified indirectly in
the snake experiment at the IUCF Cooler Ring, where
one finds that there is no depolarization [5] at the syn-
chrotron sideband for a 100'Fo snake. Therefore the spin
dispersion function, p &~~, and the spin chromaticity,

P

&' ', are small for an accelerator with snakes [11].
However, the spin tune modulation may still arises from
imperfect spin rotation in the snake, and imperfect or-
bital angle between snakes [Eq. (2.23)]. The errors in
orbital angle may arise from survey error, closed-orbit
error, and/or betatron motion.

First, let us set a basic constraint for the spin tune
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FIG. 12. The intrinsic resonance strengths calculated from a RHIC lattice. The expected resonance strength is about Q.45
at 250 GeV proton energy. The injection energy corresponds to Gp 48, which happens to have a small intrinsic resonance
strength.

spread. For an imperfection resonance strength at e =
0.05 for two snakes, the perturbed spin-tune shift is given
by [Eq. (2.34)]

AQ, = = 0002,
4 (3 4)

which will be used as a constraint for the tolerable spin
tune spread for various sources.

We observe from Sec. IIC that the deviation of snake
spin-rotation angle from x is equivalent to intrinsic res-
onances at all integers. Assuming that the integrated
field strength of each snake dipole is 10, the error
in the spin-rotation angle of a snake should be about
v 8 x 180 x 10 s = 0.5', where we have assumed that a
snake is constructed from eight dipoles. The effect of N,
snakes in the accelerator will give a resonance strength
of the order

p 0.004 for RHI C (3.5)

where we have assumed two snakes for RHIC. The cor-
responding spin-tune modulation is negligible [See Sec.
II I].

The error in the orbital angle between odd and even
snake pairs can give rise [Eq. (2.23)] to a spin-tune shift of
Av, = —Gp68~gd with 48,gd = (vr —8~ad). If the spin-
tune shift is less than 0.002, the tolerable survey error
should be less than 48 qq & 1.4 x 10 rad at Gp = 450.
Since the error in the orbital angle gives rise to spin-
tune shift (not spin tune spread), one can compensate
the eKect by adjusting the spin-precessing axes of snakes.
Thus the tolerance may be raised to about 0.01. The
survey error can be about 46I~gg = 10 rad. At a larger

survey error, active compensation by adjusting the snake
spin axes is needed.

The closed orbit can also cause orbital angle error be-
tween snakes. I et us assume that the maximum closed
orbit is about aP = 60 0.6 mm. The angular deviation
is of the order of

I
+CO (3.6)

where a is the maximum orbit error and PP = + is the
V

average betatron amplitude function. The expected error
is about AzI-o = 1 x 10 for RHIC, which is smaller
than the survey requirement.

Similarly the betatron oscillation can cause orbital an-
gle modulations. The spin-tune modulation is given by

1
Lv, p = —Gp

7r 7r P
(3.7)

B. Betatron tune spreads and modulations

For an accelerator with two snakes, we found that the
ninth-order snake resonances are not important if the in-
trinsic resonance strength is kept below e;„q & 5 N, = 0.4.
The available tune space is about 0.03. The control of

The resulting spin-tune spread is about 0.005 for a beam
with 10m-mmmrad normalized emittance at 250 CeV.
Combining all the possible sources, we expect the total
spin tune spread to be about 0.008 by taking quadrature
of all sources.
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power supply ripples needed to avoid nonlinear betatron
resonances for the orbit stability is sure enough to limit
the snake resonance modulations.

At the injection energy, the space charge tune spread
can be as large as 0.02 for RHIC. However, the corre-
sponding spin-resonance strength at low energy is also
about a factor of 3 smaller. Thus the spin is less suscep-
tible to field errors at injection.

C. Beam-beam interaction, nonlinear depolarizing
resonances

The linear component of the beam-beam interaction
gives rise to tune spread in the beam. The spin pertur-
bation due to beam-beam interaction is more important
in the e+e colliders, where the linear beam-beam tune
shift is about 0.05. For a hadron collider, the typical lin-
ear beam-beam tune shift is 0.005, which is small relative
to the available tune space of 0.03. Since the betatron
tunes of high-energy colliders should be chosen to be free
from high-order betatron resonances, the betatron tunes
are also free from snake resonances. Higher-order snake
resonances should not be important provided that the
spin-tune spread is small.

The most important spin resonances, arising from sex-
tupoles, are located at

K = nP 6 v 6 v, = mPM + v~~ + v, .

The maximum resonance strength is given by

& 4 ~1 +~ g t s ~2 + & 4 ~1 & g |s &31 ' 7r '1
(3.10)

Thus the combination of 90 spin rotation along the ei
direction and the solenoidal field in the e2 direction gives
rise to a spin rotation about the vertical axis, i.e. , the
so called "type-3 snake" [5, 12]. The amount of spin pre-
cession is proportional to the solenoidal field precessing
angle 8„which is about 0.017 rad at 250 GeV. The corre-
sponding spin tune shift is about 0.003, which is tolerable
at 250 GeV in RHIC. At lower energy, the solenoid field
should be decreased accordingly. However, since this is
a systematic eKect, one can arrange the snake to be lo-
cated between two detectors with identical spin preces-
sions. Partial cancellation of the type-3 snake efI'ect can
be arranged. Another solution is to use a local solenoid
compensation scheme. One can also correct this tune
shift by a small adjustment in snake axes.

E. Linear coupling

Linear coupling, which arises from skew quadrupoles
and solenoids, is important in high-energy colliders. Lin-
ear coupling limits the tune space available and can cause
coupling snake resonances,

Q, + EQ~ = integer, E = integer. (3.11)

Linear coupling correction in RHIC can minimize the
coupling snake resonances. One can also choose the be-
tatron tune to avoid these snake resonances.

F. Polarization lifetime

where S~, SD are respectively strengths of sextupoles
located at the focusing and defocusing quadrupole lo-
cations. Because the emittance decreases with energy,
the sextupole spin-resonance strength is energy indepen-
dent in hadron storage rings. For RHIC, the resonance
strength is about 1.5 x 10 4 at a normalized emittance
of 10vr mm mrad. At the lowest-order snake resonance,
v, + v + v, = integer the beam depolarization may oc-
cur, which has been observed in the IUCF Cooler Ring
at a 100%%up snake [5]. Higher-order snake resonances are
not important.

D. Uncorrected solenoid field at IP

To prevent beam depolarization, the constraints listed
above should be addressed. With careful manipulation of
the operation condition, the polarization lifetime should
be, at least, as long as the beam lifetime. Adiabatic
modulation within the tolerable limit does not affect the
beam polarization. The spin vector will follow the spin
closed orbit adiabatically.

Nonadiabatic process, arising from rf noise at the spin-
precession frequency, can indeed cause beam depolariza-
tion. Let us consider that a single dipole with strength eg
is modulating at v, fo, which is about 39 kHz for RHIC.
The corresponding induced spin-precessing kick is Gpt9A. .
The number of turns that the spin is perturbed to 80%
of the original polarization is given by

High-energy particle detectors usually use solenoid
magnets. The solenoid can contribute to the imperfec-
tion resonance strength,

1+ t f BiidE
1IP,SO1-

7l P
(3.9)

For a 5-Tm integrated solenoid field strength, the reso-
nance strength is about 0.02 at the injection energy and
0.003 at 250 GeV for RHIC.

To achieve helicity state collision, two spin rotators
are needed. The spin transfer matrix at the IP can be
expressed as

arccos [0.8]

Gp9A,
(3.12)

(3.13)

where (P) is the average betatron amplitude, and A is
the dynamical aperture. Using A. = 0.01 m, (P) = 20 m

Let us now consider the same angular kick to the orbital
motion. If there is an rf source at v, fo, one expects to
have a similar angular kick at the frequency qfo, where
q is the fractional part of the betatron tune. The orbital
survival turn is given by
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for RHIC, we found that the orbital lifetime is not longer
than the polarization lifetime.

Indeed, any rf sources at high frequencies around the
synchrotron and betatron tunes are dangerous to the or-
bital stability of particles in accelerators. Similarly, any
rf source at the spin tune can cause beam depolarization.
These high-frequency rf sources should be addressed care-
fully in hardware design. Synchrotron radiation is known
also to limit the polarization lifetime of electron beam.
However, synchrotron radiation is not important in RHIC
energy.

IV. CONCLUSIONS

In conclusion, we found that snake resonances, located
at v, + ZK = integer, are the major source of depolar-
ization in synchrotrons with snakes, where the integer
l is called the order of snake resonance, K is the spin-
resonance harmonic given by K = mP + v, for the in-
trinsic resonance, K = integer for an imperfection reso-
nance, K = mP + v for a linearly coupling intrinsic res-
onances, etc. For a perfect accelerator with only intrinsic
resonances, only odd-order, E = odd integers, snake reso-
nances exist. On the other hand, when imperfection res-
onances are overlapping with intrinsic resonances, even-
order snake resonances appear. A simple model was used
to explain the existence of even-order snake resonances.
The perturbed spin tune, arising from imperfection res-
onances, is found to play an essential role in the depo-
larization mechanism; it causes each snake resonance to
split into two resonances. Thus the available tune space
becomes smaller.

For polarized colliders, the depolarization sources are
the spin-tune modulation and/or the betatron tune mod-

ulation so that the betatron tune overlaps with an im-
portant snake resonance line. Spin-tune modulation may
arise from the deviation of the orbital angle between
snakes from vr caused by survey and alignment error, the
closed-orbit error, and the betatron motion. The most
severe constraint might be the survey and alignment error
of the orbital angle between snakes, where the magnitude
of spin-tune shift is proportional to the Gp value. An
alignment angular error better than 10 rad is recom-
mended. The expected spin-tune spread for the proton
beam, arising from the imperfection resonance strength
of the order 0.05, the rms closed-orbit error of 0.2 mm,
and the betatron oscillation at 10' mm mrad normalized
emittance, is about 0.008. The betatron tune modulation
for the polarized proton collider mode should be kept un-
der 0.005, which is required for maintaining transverse
orbital dynamical aperture. We also found that the com-
bination of the uncompensated solenoid and the helicity
spin rotator contribute to a type-3 snake. Methods to
compensate the effect were also discussed.

We define the critical snake resonance strength of or-
der E as the maximum resonance strength at the con-
dition v, + EK = integer. We found that the critical
snake resonance strength depends linearly on the order
of snake resonance. At the same time, the critical reso-
nance strength seems to depend on the acceleration rate
in a power law. These studies are important to the de-
polarization lifetime for the storage ring. Details of these
studies will be reported shortly.
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