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Modulational instability dynamics in a spatial focusing and temporal defocusing medium
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The modulational instability of a wave in media where the nonlinearity has a focusing-in-space and
defocusing-in-time character is investigated. An approximate self-similar solution of the nonlinear
Schrodinger equation is derived for this nonlinearity and is used as background envelope of the wave.
We show that this background wave envelope can initially enhance exponential growth of a transverse
spatial modulation. The analysis is extended to the case of a modulation in both time and space, and it is
found that such a spatiotemporal modulation can be unstable as well.

PACS number(s): 52.35.—g, 42.65.—k

I. INTRODUCTION

As is well known, the nonlinear Schrodinger (NLS)
equation describing the evolution of a wave-field envelope
represents a universal model for nonlinear wave propaga-
tion in many physical media, cf. [1-3]. This equation is
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where E is the wave envelope, ¢ is the retarded time, x,y,z
are normalized space coordinates, A, =d?/3x%+9?/dy?,
and a and b are real constants. The signs of the
coefficients @ and b are determined by the group-velocity
dispersion and the wave-vector surface curvature in k
space, respectively. For a,b>0, Eq. (1) describes, de-
pending on the field dimensionality, such extensively
studied phenomena in nonlinear physics as solitary
waves, self-focusing, collapse, etc. In the case of opposite
signs of ¢ and b, e.g., a=—1, b=1, Eq. (1) [here called
the modified nonlinear Schrodinger (MNLS) equation]
has been less studied in the literature in spite of the fact
that it provides a proper model for describing the non-
linear dynamics of a wide class of waves, e.g., deep-water
gravitational waves [4], lower-hybrid waves [5], cyclotron
[6] waves in a magnetized plasma, and optical waves in
media with positive (normal) group-velocity dispersion
[7,8].

It turns out that, contrary to the classical NLS equa-
tion, the MNLS equation does not possess any localized
stationary solutions, and the nonlinear dynamics in the
frame of the MNLS equation may lead to wave collapse
of a non-self-similar fractal character [9]. Considering a
wave packet localized in time and (x,y) space, it can be
shown, using the known integrals of Eq. (1) with a=—1
and b =1, that the following important relation is
satisfied, cf. [9]:
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which states that the mean-square width of the wave
packet is a monotonically increasing function of z. This
implies that any structural modulation of the wave pack-
et develops on a background field distribution that ex-
pands in time.

Since the nonlinearity in the MNLS equation is of a
focusing-in-space and defocusing-in-time character, one
would expect that the interplay between diffractive and
dispersive effects, as well as the field distribution of the
expanding background, should be important for the de-
velopment of modulational instabilities. The case of
modulation instability developing on a constant nonex-
panding background was recently investigated [10], and it
was found that spatiotemporal modulations could grow
faster than pure spatial modes. Allowing the background
to expand does, however, change the situation
significantly. Different possibilities are conceivable. (i)
The expansion of the background may suppress the trans-
verse modulational instability and may result in self-
focusing and/or collapse of the wave packet. (ii) The
wave packet may be unstable in the time domain in spite
of the nonlinear defocusing in time. (iii) In cases of un-
stable perturbations, what are the properties of the fastest
growing mode?

The aim of the present paper is to explore these issues
by investigating modulational instabilities on an expand-
ing background within the framework of the MNLS
equation. In Sec. II we will derive a suitable background
distribution to the MNLS equation, and in Sec. III we in-
vestigate its sensitivity to transverse periodic perturba-
tions in space. Finally, in Sec. IV the analysis is extended
to include time-dependent perturbations as well.
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II. MODEL FOR THE EXPANDING BACKGROUND

The main features of the modulation instability can be
studied by assuming the background field distribution to
be one dimensional (A;=0). Then the envelope of the
background field E, is described by the NLS equation

O0E, J’E,
j ——+|E,|’E,=0, 3
% o |E, IPE,, (3)
separating E, into real amplitude 4 and phase ¢ accord-
ing to E, = A exp(i¢), we obtain from Eq. (3)
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where the chirp function Q is defined by Q=09¢/9t. We
now assume that the term (324 /dt2)/ 4 is small in com-
parison to A 2, which will be verified a posteriori. Thus,
Eq. (5) can be approximated as
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Looking for simple solutions to Egs. (4) and (6), e.g., po-
lynomial dependence of ¢, we realize by inspection that
Eq. (4) implies Q to be a first-degree polynomial in t.
This is consistent with the two first terms of Eq. (6), and
it also follows that 4?2 is a second-degree polynomial in ¢,
i.e., the pulse shape is parabolic. Thus, we can find self-
similar solutions of the form f(z)g [z /7(z)] for A and Q,
and we make the ansatz
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Q(z,t)=alz)t . (8)

If we now compare the terms on the right-hand side of
Eq. (5) we find that
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This implies that for a high intensity pulse with I72>>1,
the term (924 /3t%)/ A is small in a large part of the
pulse and can be neglected, except very close to the pulse
edges. Thus, for a strongly nonlinear pulse the analysis is
consistent. Substituting the expressions (7) and (8) into
Egs. (4) and (6) and identifying powers of ¢ we obtain the
following equations for I (z), 7(z), and a(z):

I(z)7(z)=I1(0)7(0)=W =const , (10)
2
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The implicit solution of Eq. (12) is
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FIG. 1. Falloff in central intensity along the normalized dis-
tance of propagation. The thin line is the (exact) implicit rela-
tion given by Eq. (13), and the thick line is the approximate ex-
plicit relation of Eq. (15).
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Figures 1 and 2 show the variations of I(z) and a(z), re-
spectively, according to Egs. (13) and (11). The intensity
I(z) is monotonically decreasing, and for large values of z
it decays asymptotically as
14 1 Zd
2V21(0) z z
A characteristic length of dispersion, z; has been intro-
duced as W /[21(0)]*/? in the last expression. A good,
empirical approximation to I(z) is given by the function
2z,+4z3

Iz2)=I0)———, (15)
2242z, +4z2]

which preserves the first and second derivative of I(z) at
z =0, as well as the asymptotic behavior for large z, see
Fig. 1. According to Fig. 2, the chirp function a(z) first
reaches a maximum value a,, =37 %/2/z,, which is at-
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FIG. 2. The chirp function a(z) vs distance in the case z; = 1.
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tained at the distance

V3 =

) 6 |’ (16)

Zm =24

and then decays asymptotically as a(z)=1/2z for large z
(z>>z, ). We also note from Eq. (10) that the width of
the pulse 7(z) increases asymptotically for large z as

z)=2V'2I(0)z . (17)

In summary, the envelope of the background pulse is

given by
2 ] 172 ]
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X exp , (18)

where the functions I(z), a(z), and 7(z) are determined
by Egs. (10), (11), and (13).

III. TRANSVERSE SPATIAL PERTURBATIONS

We will start the perturbative analysis with the case of
a time-independent perturbation of the background. The
perturbed field is assumed to be of the form
E,(z,t)[14+€(x,y,2)], where |€| <<1, and E,(z,1) is given
by Eq. (18). This is inserted in Eq. (1) (with a=—1,
b =1), and the resulting linearized equation becomes
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la—j =Ae—
which is evaluated at ¢t =0, i.e., the perturbation is for
simplicity considered to be at the pulse center. Note that
the small term A/ /A, which was neglected when the
background was determined [cf. Egs. (8) and (9)], is here
assumed to be of the order O (€) and has to be retained.
Now, considering transverse periodical perturbations
with wave number k, we can write Ale=——K26, and
defining e=g(x,y,z)+if (x,,z), the real and imaginary
parts of Eq. (19) can be separated. Thus, the equations
governing g and f will become

+ AU e+e*), (19)
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where the term on the rhs in Eq. (20a) arises from A4,/ A
evaluated at t =0. We neglect this term to start with,
and concentrate on the homogeneous equation for g. Ex-
ponential growth can occur if 27(z)> «?, similar to the
case of conventional modulational instability. This im-
plies that the gain a perturbation exhibits (corresponding
to a certain value of x) will change along the distance of
propagation, see Fig. 3. At the distance z > z,, where z,
is defined by 271 (Zo)=K2, the quantity in the brackets of
Eq. (20a) becomes positive, and g becomes oscillatory.
Since I(z) decreases as z~! at large distances, the
behavior of g will in this limit be that of a Coulomb wave
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FIG. 3. Gain spectra of the modulation instability at

different distances of propagation. We have used I,=1 and
considered z /z; =0, 1,2,3,4,5.

function [11], and the amplitude of the oscillations will be
of the order g(z,). Note that the perturbation after the
growth stage will not be damped out, but will oscillate
with the period «? in the long-distance limit. Conse-
quently, a transverse periodic perturbation of the period
« will develop into a longitudinal oscillation of the period
2, thus manifesting a form of “frequency squaring.”

All these features are apparent in the numerical solu-
tions of Eq. (20a), shown in Fig. 4. In these simulations
we have examined the normalized perturbation
g(z)/g (0), where we have assumed g'(0)=0. In Fig. 4(a)
the homogeneous part of the solution of Eq. (20a) is plot-
ted with a few different values of k. Note that the strong-
est perturbations at long distances have a small value of
«, whereas at small distances the larger values of x dom-
inate, cf. Fig. 3. The influence of different strengths of
the rhs term in Eq. (20a) can be seen in Fig. 4(b). This
term does not affect the qualitative behavior of the homo-
geneous solution, but it increases the maximum values of
g. For larger values of z (past the first maximum of g) the
solution appears to be the homogeneous, multiplied with
some constant factor. Thus, in order to examine the
qualitative behavior of g, it suffices to examine the homo-
geneous equation.

Exact analytical solutions to the homogeneous Eq.
(20a) are not available, but a quantitative approximation
of g can be found using the WKB approximation [12]. In
this approach, the second derivative g''(z) is assumed to
be small, and g can be approximated with g ~ exp[I'(z)],
where

D)= [ k[21(z")=&*]dz" . 1)

Specifically, the value g(z,) can be calculated from this
integral by changing the variable of integration from z to
I by using Eq. (12), and thus
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FIG. 4. (a) Homogeneous solution of Eq. (20a). Note that we
plot the normalized perturbation g(z)/g(0). Equation (15) has
been used for I(z), along with I=35, W =10, and «?, taking the
values 0.5,1,1.5,2,2.5. The lower values of k have higher ampli-
tudes and longer distances to the first maximum. (b) Full solu-
tion to Eq. (20a), including the rhs term [I(z)x/W1*/[2g(0)]
for the same values as in (a) but with k>=4. The curve with
lowest amplitude is the homogeneous solution, and the other
three curves correspond to (in growing order) g (0)=1,0.1,0.05.

This relation shows that the growth of a perturbation of
wave number « up to the distance z, will be larger the
less k is. The lower gain for small values of k is compen-
sated by a longer distance of growth z,. Therefore, if we
consider distances long enough the lowest wave numbers
x will dominate. If this is not the fact, i.e., if some arbi-
trary distance is considered, the natural question arises:
Given a certain distance of propagation z; and initial in-
tensity I, which « value will yield the strongest perturba-
tion? The answer of this question requires the evaluation
of the integral [Eq. (21)] at an arbitrary distance z,. This
gives us

~ 1/2
w -1
I(z,)=—— {(1—k?)arctan |k | =
z, ‘/210 [ arctan 752 l
Kig_ 12 711172
+?[(I—k W1—1)]
TW ~
2v/2I,

where k2=«2/(2I,) and T=1I(z,)/I,. Here, the intro-
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FIG. 5. Plot of the function ®(/,k) showing the relative am-
plitudes of perturbations that have different values of k at
different distances corresponding to the values of I.

duced function ®(T,k) is only defined in the regime
k?<T <1, or equivalently 0<z, <z,. Note that ®(I,k)
reduces to 1 —k? when T=k?2, or when z, =z,. The func-
tion ®(7T,k) gives a measure of how strong a certain per-
turbation (corresponding to a certain value of k) is at a
distance z, (corresponding to a certain value of T), and it
is plotted in Fig. 5.

IV. TEMPORAL PERTURBATIONS

Let us now consider a time-dependent perturbation.
We will restrict the analysis to the asymptotic behavior at
large z and consider the background pulse at t =0. Then
the perturbed field has the form

172
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where z,; was defined in Sec. II. Substituting this into Eq.
(1) we find to the first order in €:

LA S NP (25)
z ot z
Comparing with the corresponding relation for a time-
independent perturbation, Eq. (19), we find two addition-
al terms arising from the time dependence of €. We have
also neglected the A4’/ A term, because it will not quali-
tatively affect the solutions, as discussed in the preceding
chapter. In order to treat Eq. (25) we introduce new vari-
ables

t
'= =— 26
z'=z, § p (26)
which transform Eq. (25) into

2 z
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At this stage it is suitable to define the spatiotemporal
wave numbers k; and k, by
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—=—xrk, Ae=—«le. 28
Then separating Eq. (27) into the real and imaginary
parts by taking e=g +if, we obtain the following equa-
tion for g (z):

d%g 22 dg 22K§ (Ké—Kfzz)
3z? (Ké—Kfzz) oz (Ké—Kfzz)z & 2?2
21,z
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where we have dropped the primes on the z coordinate.
Equation (29) can be simplified by rescaling the z axis
through

E=z+a?/z , (30
v;flhere a2=(K§/Kl)2. The resulting equation for g(§) is
then
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Note that Eq. (31) reduces to Eq. (20a) in the limit ¢*>—0,
i.e., when the temporal perturbation vanishes. Equation
(31) has been solved numerically in a few cases as illus-
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FIG. 6 (a). Evolution of a spatiotemporal perturbation on a
background having I,=5 and z;,=1. We have fixed the spatial
modulation to «;,=1 and the curves correspond to (in growing
order) Ké= 5,4,3,2. (b) Same as (a), but for K§=2, and the curves
correspond to (in growing order) x?=4,3,2.
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trated in Figs. 6(a) and 6(b). The evolution of g(x) is
shown for different transverse spatial perturbations in
Fig. 6(a), and for different modulation frequencies in time
in Fig. 6(b). It can be seen that the qualitative behavior
of g is similar to that of Sec. III, with an initial exponen-
tial growth and oscillations at larger distances. As before
the oscillations do not decay at long distances, but
remain strong during propagation. Note, however, that a
different scaling is used on the z axis here. It follows
from the transformation (30) that £=2a, where the
equality corresponds to z=a. For simplicity we will
therefore restrict the analysis to values of z above a. This
is also in agreement with the assumption of asymptotic
behavior of the background, i.e., that z is above z;. Thus,
a has to be greater than z, if this calculation is to be con-
sistent.

The growth rate I'(§) of g (&) at a specific value of £
may, similar to the previous section, be WKB approxi-
mated with
172
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The maximum growth rate I',, occurs when the upper
limit is chosen as the value of £ which makes the in-
tegrand vanish, i.e.,

gzz 1/2
P =T =2 |2+ 55 | | =212,/ (8), (33)
K|
where
1| v(1—v) 2 KeKy
= 5 dv, 6= . 34

The function f(8), plotted in Fig. 7, is monotonically de-
creasing with f(0)=m/2. As can be seen in Eq. (34), the
wave numbers of the spatial and temporal modulations
appear symmetrically, which implies that the maximum
value of the perturbation is independent of whether the
highest modulation frequency is in time or in space. We
also note that, as in the case of pure spatial perturbations,
I, is larger the less the perturbation wave number is,
and this is due to the longer distance of propagation be-

0.5 1 1.5 2 %

FIG. 7. Function f(8) as defined by Eq. (34).
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FIG. 8. Comparison of I',,,,, vs «? for the pure spatial modu-
lation, and vs kK, in the case of a spatiotemporal modulation.
We have used a background having I,=5 and z,=1, and Egs.
(22) and (33), respectively.

fore cutoff for these wave numbers.

The fact that a temporal perturbation can exhibit ex-
ponential growth may seem surprising for media of a
defocusing-in-time character. It is, however, essential to
note that a perturbation cannot be in time only in order
to grow, but it is strongly dependent on the existence of a
transverse spatial perturbation. The spatial perturbation
can be said to boost the temporal one. This can also be
seen in a direct comparison between I, for both a pure
spatial and a spatiotemporal perturbation on the same ex-
panding background pulse, see Fig. 8. A pure spatial
modulation will always give a higher value of I' ,, than a

max
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spatiotemporal modulation at the same modulation fre-
quency. However, at a given value of k, we can decrease
K sufficiently so that I'j,, becomes higher in the spa-
tiotemporal case than in the pure spatial. Thus in theory,
there are temporal perturbations that can be boosted so
much by the spatial perturbations that the perturbation
amplitude becomes higher for a spatiotemporal modula-
tion than for a pure spatial modulation. Note however
that the requirement x> k,z; due to the condition a >z,
puts restrictions on this possibility.

V. CONCLUSIONS

In summary, we have analyzed modulational instabili-
ties developing on an expanding background wave en-
velope in a nonlinear media having a focusing-in-space
and defocusing-in-time character. We have shown that
exponential growth of a periodic spatial perturbation is
possible in the initial high-amplitude stages of a pulse
that defocuses in time, and that this exponential growth
at longer distances develops into nondecaying oscilla-
tions. We have also found the qualitative properties of
the strongest perturbation at a given distance of propaga-
tion. Finally, when the perturbative modulation is al-
lowed to vary in both time and transverse space, the in-
stability exhibits qualitatively the same behavior. How-
ever, the spatial perturbation amplifies the temporal one
due to the interplay between the dispersive and diffractive
effects.
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