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Fast-ion interaction in dense plasmas with two-ion correlation effects
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The analytical and numerical investigations of the slowing-down process of a two-ion system in an
electron plasma are developed on the basis of the Vlasov-Poisson equations, with particular emphasis on
two-ion correlation effects, and the main results are presented. The analysis is based on the assumption
that the velocities of the two ions are the same. The forces acting on the two particles are calculated and
their resulting effects are (a) the appearance of an angular momentum aligning or misaligning the in-

terionic vector with respect to the velocity vector and (b) the appearance of a net transverse momentum
acting on the ion pair and proportional to the angle between the interionic vector and the beam direc-
tion.

PACS number(s): 52.40.Mj

I. INTRODUCTION

The energy loss of fast charged particles in an electron
gas has been a topic of great interest since the 1950s
[1—9] because of its considerable importance for the
study of the basic interactions of charged particles in real
media; moreover, recently, it has also become a great
concern in connection with heavy-ion driven inertial
fusion research.

This topic has always been treated in the single-
projectile approximation, i.e., under the assumption that
the particles of the incident beam interact separately and
independently with the medium. This approximation is
acceptable in most cases when the beam-to-plasma densi-
ty ratio nb/no is very small. On the other hand, for
su%ciently high beam densities, the correlated motion be-
tween beam particles becomes important and the single-
projectile approximation does not describe correctly the
slowing-down process [10].

Experimental investigations concerning the interaction
of ion clusters with condensed matter have yielded evi-
dence of the presence of correlation effects [11,12] and in
some previous theoretical works [13—15] such effects, due
principally to the collective response of the plasma to the
incoming projectiles, have been further studied.

In a recent paper [10] we calculated, within a dielectric
theory, the stopping power of a fast ion moving in the po-
tential wake induced in an electron-collisionless plasma
by an aligned leading ion (that is, with the interionic vec-
tor and the projectile velocity in the same direction),
showing the importance of correlation eft'ects. This work
is an extension of that analysis to the more general case
of noncollinear motion of two projectile ions, with the ex-
plicit computation of the mutual forces acting between
the two ions.

In Sec. II, by means of a Fourier analysis, the linear-

ized Vlasov-Poisson equations are solved for two test par-
ticles in order to obtain a general form for the linearized
potential generated in a Maxwellian plasma [16]. Then
the forces acting on the two ions are calculated, resulting
in the theoretical evidence of an aligning angular momen-
tum acting on the system when the trailing ion is in the
first potential well of the wake created by the leading ion.
Furthermore, a net transverse force appears when the
ions are not aligned, its intensity being proportional to
the angle between the interionic vector and the beam
direction.

In Sec III the slowing-down process is analyzed and
the stopping power is evaluated in terms of the y parame-
ter, which measures the strength of correlated motion.
In Sec. IV we present a qualitative discussion of the re-
sults. In the Appendix a detailed analysis of the plasma
dispersion ayproximations which allow a correct descrip-
tion of the Cerenkov wake, excited by a fast charged par-
ticle, is presented and the consequences on the results
previously reported in the literature are discussed.

II. SOLUTION OF THE LINEARIZED
VLASOV-POISSON EQUATIONS FOR

A TWO-ION SYSTEM.
FORCES BETWEEN THE TWO IONS

Let us analyze the interaction process of a two-ion sys-
tem moving with velocity much larger then the thermal
electron velocity in a fully ionized electron-collisionless
plasma on the basis of a dielectric theory by solving the
linearized Vlasov-Poisson equations. Such a description
is valid when the plasma parameter is small, i.e.,
g =—1/XD «1, where ND is the number of electrons in
the Debye sphere (ND =noAD).

In the following we shall use the dimensionless vari-
ables, defined as
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r vv=-
D U&h

where AD=(T/4mnoe )' is the electron Debye length,
co =(4vrnoe /m )' is the electron plasma frequency, m

is the electron mass, no is the unperturbed electron densi-

ty, v, h
=&T /m is the electron thermal speed, and

f(r, v, t) and P(r, t) are the electron distribution function
and the self-consistent electrostatic potential, respective-
ly.

The dimensionless linearized Vlasov-Poisson equations
for an electron plasma with a static background ion corn-
ponent read

df1 df1 ~41 (3foat+" ar+ ar av

7 f1= Z, 5(r —
v~t)

—Zzo(r (v—~t+lb )}-
+f d v f, (r, v, t),

(2)

(3)

where v is the velocity of the two ions and lb is their in-

terionic distance.
Here, Z,&, and Z,~ 2, the effective charges of the two

ions moving in the plasma, are supposed to be constant
throughout the slowing-down process. Such a hypothesis
is quite realistic for heavy ions in the high- velocity limit
(v~ ))1), electronic recombination effects being strongly
reduced in a fully ionized plasma [17]. All the atomic
processes involved in the projectile-plasma interaction
(ionization and recombination) are more effective, as a
matter of fact, at small velocities (v 51). Even recom-
bination effects caused by the electrons trapped in the po-
tential wake excited by the projectiles are not expected to
be effective, the number of resonant electrons being ex-
ponentially small at large velocities.

Equations (2) and (3}are obtained by introducing in the
Vlasov-Poisson system the expansions f=f0+f1+f2+, P=P, +$2+ in the parameter ;Z(/I +v )r,

where Z; =Z,tt;/ND (i =1,2) is the coupling parameter
between the incoming projectiles and the plasma, and
measures the strength of the perturbation due to the ion
beam. The unperturbed state is assumed to be Maxwelli-
an. It must be noticed that for large projectile velocities
(v~ &&1) the linear theory well describes also the situa-
tions where Z,. & 1 because only those few electrons mov-

ing with a given projection of their speed along v (reso

nant electrons) will interact strongly with the projectile.
Moreover, the successive nonlinear correction to the
stopping power turns out to be of relative order Z/U
(Barkas effect).

By solving Eqs. (2) and (3) in space-time Fourier com-
ponents, we obtain the following expression for the elec-
trostatic potential in the reference system where the two
ions are at rest and the leading projectile is in the origin:

1 ~ lk x' —i k. lb

p, (r)= f d k
2 (Z, +Z2e '),

(2~)' k e(k, k v~ ). (4)

F12 Flp II+F12
II

e +(F121+F121)e
where

(6)

where e(ken, ) =1+ W(cu/k )/k is the longitudinal
dielectric function for a Maxwellian plasma and
JV(g)=X(g)+iY(g) is the plasma dispersion function
[18].

Equation (4) has been discussed by a number of authors
for a single test particle (see, for example, the paper by
Peter [16] and references therein). In the large-velocity
limit (v ))1), the main result is that a test particle cou-
ples to the plasma electrostatic modes (collective degrees
of freedom), exciting a conical wake behind the particle
itself (the Cerenkov cone). A second ion that moves in
such a tail will be correlated to the leading ion by means
of the excited oscillations. The phase factor in Eq. (4)
arises from the presence of the second ion and is responsi-
ble for the two-ion correlated motion. In the Appendix
we shall discuss in detail the Cerenkov cone and the
different plasma dispersion approximations to correctly
describe such a wake.

Within a Fourier analysis, we look for a stationary or
time-asymptotic solution of the problem. Let us calculate
the force acting on particle 2 due to the electrostatic field
generated in the plasma by particle 1. It reads

gy(1)
F12= —ZXD

Br =1b

Z XD 3,'k~ b2 ik 1b

d k
(2m. ) k e(k, k v )

where P',"(r) is the linear electrostatic potential generat-
ed in the plasma by particle 1. Here we have assumed for
simplicity Z, =Z2 =Z. If v =U e„and l& =l& e
+lb~e~, Eq. (5) becomes

FR
12, //

FR
12,J

FNR

FNR
12,i

Z + f dk k'f dp. . .cos(kpl„„)J,[kl, (1—p')'i'],
2n (k'+X)'+ Y2

Z'ND &,„1(1 p') Y(pv~ )—
lb f dk k f dp sin(kplb )J1[klbr(1 —p )' ],

2m' (k +X) +Y
Z2ND &,„,1 p[k +X(pv~ )]j '

dk k3f dp, sin(kplb )Jo[klby(1 —p )' ],
2w (k2+X) + Y

k,„1(1—p )[k +X(pv~)]f '
dk k4f dp cos(kplb )J, [klb (1—p )' ],

2m (k '+X )'+ Y'

(7b)

(7c)

(7d)
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with p =k.v /kv and k „=1/b;„=4~v /Z, where
b;„ is the effective minimum impact parameter. Here
k, has been introduced to avoid the divergence of the
integrals caused by the incorrect treatment of the short-
range interaction between the projectile and the plasma
electrons within the linearized Vlasov theory. We remind
the reader that Im(1/e)= —k 7/[(k +X) + I' ] and
Re(1/e)=k (k +X)/[(k +X) + Y ].

By inspection of Eqs. (7) we can observe the presence
of two different kinds of contributions to F12. The com-
ponents F12 II

and F12 y are two resonant contributions
which depend on Im(1/e), that is, they are of dissipative
nature. These contributions describe the coupling be-
tween the two ions by means of the resonant interaction
with the excited plasma oscillations. We shall see in Sec.
III that F12

II
is the correlated-particle contribution to the

stopping power and coincides with the contribution cal-
culated by other authors [13,14].

Besides F,2 II, the transverse contribution F,2 J also
gives rise to an irreversible exchange of energy between
the incoming particles and the plasma, and, as far as we
know, it has never been taken into account before. This
term represents a net force acting on the system and ac-
celerating it in the transverse direction. As we can see
from Eq. (7b), E&z z is proportional to the angle 8 be-
tween the interionic vector I& and the velocity v through
Ipy so that such a term does not appear when the ions are
aligned. This contribution depends on the plasma disper-
sive properties through the Cerenkov cone.

Computing the force acting on particle 1 due to the
electrostatic field created by particle 2, F21, we obtain the
following relations with F,2..

F& =F&
21, II 12, II

Here r can be evaluated as in Ref. [2] and condition (9)
coincides with XD ))1, i.e.,

no «2X10' T (10)

where no is measured in cm and T in eV. Condition
(10) is always true for the range of parameters in which
we are interested (no —10' —10 cm, T ~ 10 eV).

In the case of aligned projectiles, it has been verified by
the numerical computation of Eqs. (7) and (8) of Ref. [10]
that this is an acceptable hypothesis. This is shown in
Fig. 1, where the collective (solid line) and the individual
(dash-dotted line) contributions to the mutual forces are

0.04

0.03-

0.02-

0.01-

hypothesis is justified because correlations are essentially
due to long-wavelength collective modes which are slowly
damped, while oscillations characterized by k ) 1 turn
out to be strongly Landau damped, at least for lb ) 2vrv .

Individual-particle contributions are negligible if the
electrons move along straight lines during the time in
which they respond collectively to the induced fields. If ~
is the time interval during which the energy exchanged in
electronic collisions becomes of the same order of magni-
tude as the initial energy of the electron, we can formu-
late the subsequent condition

FNR FNR
»II '

(8)

0.00-

FNR FNR
21,i 12,I

which can be easily derived by exchanging I& with —
I& in

Eqs. (7).
From Eqs. (8) we see that if we sum up the mutual

forces acting on the whole system, those related to the
term Re(1/e), l.e., E]2 ~~, F2]

~~

and EI~ J,F2I J, cancel out,NR NR NR NR

resulting only in an angular momentum acting on the sys-
tem. In particular, as we shall see below, for small angles
and when /b (2mv~, where ib = lib I, there is an aligning
angular momentum of the interionic vector 1b with v;
this is the theoretical evidence of what has been found in
some experimental investigations [15]. The forces acting
through the term in Im(1/e), on the contrary, sum up,
giving a nonzero contribution.

We can obtain simpler formulas, suitable for numerical
computation, when v )) 1 ~ The wave-vector integrations
in Eqs. (7) include contributions due to modes either with
k ) 1 or with k & 1, related to the individual particle and
collective aspects of the wave-particle interactions, re-
spectively. To simplify the mathematics underlying Eqs.
(7), we neglect the individual-particle contributions to the
mutual forces (collective approximation). This working
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FIG. 1. Collective (solid line) and individual (dashed-dotted
line) contributions to the mutual forces for 6=0 given by Eqs.
(7a) and (7c) as a function of U~ (in units of U,„) for difterent
values of lz (in units of A,D): (a) Ib =10, (b) Ib =20. The plasma
parameters are T=20 eV and no = 10' cm, while Z,&

= 10 for
the projectiles.
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plotted as a function of v for two aligned ions.
Considering only the collective contributions in the

large-velocity limit and using for X(g) the expansion for
large arguments up to the second term in order to treat

correctly the plasma-wave dispersion properties, i.e.,
X(g)= —I/g —3/g (a full discussion of the different
plasma dispersion approximations is presented in the Ap-
pendix), we have

RF i2, ll

—— lbj dk (1+3k2)1/2 J 3' (k2 2)1/2
4~vp CX Vp

(1 1a)

Z ND k
sin

4~v, ' (1+3k2)"2
lb„ lb(1+3k2)1/2 y (k2 2)1/2
Up CXVp

(1 lb)

NR
Z ND 1 p3F,2 l

=
2 dk kg, dp 2 2sin(kplb )Jo[kl&1,(1—p )' ],4~' P Po

(1 1c)

p p()
(1 ld)

where f is the Cauchy principal-value integral,
a=(1+3/v )'/ /v, and go=(1+3k )/kv~.

Due to the resonant nature of the integrals (7a) and
(7b), we obtained Eqs. (lla) and (lib) for the collective
contribution by using the following property of the Dirac
5 function:

~(k —ko)
limr-o f'(g)+ I 2

l
f'(go)

(12)

where f(g)=X(g)+k and go is the zero of f(g). Equa-
tions (llc) and (lid) instead are to be evaluated as the
Cauchy principal value.

The sign of the forces given in Eqs. (11) depends in
general on the sign of the integrals and the components
of lb (l», l„~). Because they depend on the projections
along x and y of the gradient of the electrostatic poten-
tial, and the latter has an oscillating character as a func-
tion of the interionic vector Ib when v ))1, we expect
that this behavior is found in general in the force com-
ponents too. Figures 2 and 3 show this behavior. An in-
teresting point that emerges from these figures is that the
modulus of F,2/2, 1 (dash-dotted line in the figures) is al-
ways greater than those of the other components, so that
its dynamical effect will dominate over the other ones.

In particular, Fig. 2 shows the force components given
by Eqs. (11) as functions of v for different values of the
interionic distance lb and of the angle 8. The regions
where F,z j & 0 are those governed by an aligning angular
momentum.

In Fig. 3 the force components are plotted as functions
of lb for v =7 and for two different values of 6: (a)
6=10' and (b) 8=60; that is, respectively, inside and
outside the Cerenkov cone excited by the leading ion [for
v =7 the Cerenkov semivertex angle is chic
=arctan(&3/v~ ) = 15']. In Fig. 3(a) we observe that
when the trailing ion is inside the cone and for lb & 2nv
(i.e., in the first potential well created by the leading ion),
there is a net alignment of the ion pair, due also to F ]p
In Fig. 3(b), on the other hand, the trailing ion is outside
the Cerenkov cone, and for small interionic distances the
system experiences a misaligning angular momentum. It
is also evident that outside the Cerenkov cone the force
disappears in a few Debye lengths.

We can thus conclude that a two-ion aligned system is
stable when lb & 2~v, as indicated in the previous figures.
If any perturbation appears which breaks alignment, the
plasma electrons act on the perturbing system and push it
to the aligned situation.

Gemmell et al. [12] have observed experimentally this
aligning effect in the case of ion clusters injected in solids.
They have explained it theoretically within the cold-
plasma approximation by using the Neufeld form of the
electrostatic potential, i.e., Eq. (A8) in the Appendix.
This approximation can be obtained by taking
X= —I /g' in the dielectric function e(k, co) and does not
take into account correctly the plasma dispersion proper-
ties. In conclusion, that model does not describe all the
aspects of correlation effects and in particular cannot de-
scribe correctly the action of the angular momentum
when the trailing ion is in the Cerenkov wake excited by
the leading ion.
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III. SL(OWING-DOWN PROCESS

Now we can calculate the stopping power for the sys-
tem considered as the force that the ions experience due
to the field induced by themselves along their motion
direction. Within the linear theory we have

dE = —F.e„
dx

a(t,„, BP;„d
=Z)ND — +Z2ND.r=r, (t) BX r=r2(&)

0 01-

0.00

(13)

where rI(t)=vpt and r2(t)=vpt+Ib are the projectile
trajectories in the laboratory system. The sign has been
chosen so that —(dE/dx) is positive if the energy is lost.
After differentiation of Eq. (4) we obtain

—0.01— dE
dx

XD ik v
d k —l

(2~) U„k e(k, k vp)

-o.oal-

(a)—0,04 —
I I I I
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op/ntb

X [Z, +Zz+2Z, Z2cos(k lb)] .

(14)

Proceeding as in Sec. II and assuming Z&:Z2=Z Eq.
(14) becomes
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FIG. 2. The different components of the mutual forces, Eqs.
(11), as a function of v~ for (a) lb=10, 6=10', (b) lb=20,
8=10', (c) lb =20, 8=30'. The plasma parameters are T=100
eV and no=10 cm, and Z,&=10. Solid line F» ~~,

dotted
line, F»» dashed line, F» ~~,

dash-dotted line, F,2 &. It can be
noted that F» & is, in modulus, always greater than the other
components.
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FIG. 3. The different components of the mutual forces, as in
Fig. 2, as a function of lb for V~=7 and for (a) 8=10', (b)
8=60 .
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dx o k+X +Y
(15)

dE
dx

Z ND Z ND
[1n(k,„uz )+I, ]+ I;, (16)

where
&b~~ =Ib, and l& J

There are two contributions to the stopping power of
the ion pair. The first one is the uncorrelated particle
contribution and represents the energy loss of the two
projectiles by emission of Langmuir waves. Such a mech-
anism can be interpreted as a local competition between
spontaneous emission of plasma waves and its corre-
sponding Landau damping. For U )&1 the latter mecha-
nism is overcome by the first one. The second contribu-
tion, on the contrary, is responsible for the correlated
motion of the two ions by means of the resonant interac-
tion with the excited plasma oscillations. This contribu-
tion arises for the phase factor in Eq. (4).

These two terms are responsible for the irreversible
transfer of the two-ion energy to the plasma by means of
resonant electrons. The Bessel function J0 takes into ac-
count the dependence on the angle 8 between the in-
terionic vector Ib and the velocity v . Correlation effects
are expected to be maximum when the two test particles
are aligned, while they go to zero (at least for lb & 10)
when 8—+90'. The explanation is connected with the be-
havior of the potential: from 0 to 90 the oscillation am-
plitude decreases (Cerenkov cone) and the two ions tend
to an uncorrelated motion (except when Ib && u~, in which
case each ion is affected by the unscreened field of the
other ion).

Since correlation effects are strong for large projectile
velocities (u )&1), we have computed Eq. (15) in that
limit. The first integral gives the classical Bohr formula
for the single-projectile stopping power [8]. The second
integral can be split into two contributions: the collective
one (k (1) and the individual one (k ) 1). Equation (15)
takes the form

I~ —cos

=cos

For lb~&0, in the limit of u~ )&1, the upper extreme
can be sent to infinity because of the convergence of the
integrand function (for g~ ~ it decreases as 1/r) / ).
With this approximation the integral can be simply eval-
uated:

lbll lb'
I, =cos K0

Up Up

(19)

where K0 is the modified Bessel function of zeroth order.
Assuming I; =0, Eq. (16) becomes

Z ND ln(k, „u )
27TUp

+cos
l l

bll b J-

0
Vp Up

(20)

contribution of I; to the correlated motion. In Fig. 4,
—(dE/dx ), given by Eq. (16), has been plotted versus u

in this approximation, for different angles. It can be no-
ticed that when 8 increases correlation effects decrease,
as it is expected.

We can compute analytically Eq. (17a) in the cold-
plasma limit with X(g)= —1/g; however, in doing so,
we do not take into account the plasma-wave spatial
dispersion (see the Appendix). In this case the latter
equation becomes

lb 'p 1 lbf &d( g &~
(g2 1 )1/2

u, i g
'

u,

lb'

Vp 0 ] +~2

where

I, = f dk —cos
1

a k

lb lb'
II (1+3k2)&/2 J (k2 2)1/2

Up CX Up

(17a)

30

8 20

I, = f doge ~/ f dk —cos k
0 i k Vp

lb
( u

2 g2)1/2
Vp

(17b)

10
l

7

up/ua

10

with a=(1+3/u )'/ /u . Equations (17) have been ob-
tained by taking into account the plasma-wave spatial
dispersion.

In the collective approximation we shall neglect the

FIG. 4. Stopping power (in MeV/cm) of a two-ion correlated
system with lb = 10 as a function of Up for different values of 8.
Solid line, 6=0', dashed line, 8=10'; dash-dotted line, 6=25;
dotted line, single-particle approximation. Parameters as in
Fig. 2.



3580 J. D'AVANZO, M. LONTANO, AND P. F. BORTIGNON 47

Although this is a very crude calculation, it agrees with
the result of Basbas and Ritchie [14] when lb~q, „))1,
where q,„=(k,„—1/v~ )' is the maximum transverse
momentum transferred in a "close" collision. From the
analysis of the Cerenkov cone, this solution is in good
agreement with the numerical evaluation of Eq. (16), with
Eqs. (17), outside the cone. In this sense, q,„depends
on the semivertex angle of the cone.

We must observe that Eqs. (19) and (20) diverge loga-
rithmically in the limit of l& ~0 due to the inconsistency

of the two simultaneous assumptions Ib~ —+0 and U ~ ~
(which is equivalent to considering a cold-plasma limit).

This can be explained with the following arguments.
By putting T=O or vz ~ ~, the Cerenkov cone becomes
infinitely narrow and "collapses" in a straight line behind
the fast ion which has created it. This has unphysical
consequences on the description of the wake and on the
evaluation of the stopping power for lI,&~0.

When the two ions are aligned (lbt=0) the stopping
power should be computed by considering the thermal
corrections to the plasma dispersion. The relevant com-
putations and results have been published in Ref. [10].
There, the most important consequences of considering
the spatial dispersion of the excited waves consist of the
finite value of the stopping power for Ib~=0 and the de-

creasing importance of the individual particle contribu-
tions to the correlated motion for increasing lb, thus sup-

porting our hypothesis of a collective approximation.
It is useful to write the stopping power in terms of two

contributions,

dE
dx

dE
dx

SP

dE
dx

C

(21)

dE
dx

dE

C
(22)

SP

and Eq. (21) can be written as

0.3

where (dE—/dx), is the single-particle contribution to
the stopping power and (dE—/dx ), is the correlated
motion contribution. In this way we can introduce the g
parameter, which describes the intensity of correlation
effects with respect to the completely uncorrelated
motion:
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FIG. 5. The y parameter as a function of 8 for (a) lb = 10, (b)

lb =20, with the parameters as in Fig. 2. Solid line, y=y„~~', A,
g =g„~~+y;„d computed for 8 & 10 .
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FIG. 6. Comparison between the g parameter within the two
approximations X= —1/g2 —3/g (solid line) and X= —1/g'
(dotted line) as a function of U~ with lb =50 and with (a) 8=0,
(b) 8= 30'. The plasma parameters are T= 10 eV and n o

= 10'
cm, with Z,&=10 for the projectiles.
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In Ref. [12] the X parameter is called the uicinage func
tion. In that case the y parameter has been calculated
with a statistical average on the orientations of the pro-
jectiles. Even the y parameter can be split into a collec-
tive contribution and an individual one, and following the
same arguments as above we shall assume y =g„&&.

In Fig. 5 the values of the parameter X„II(8)are shown
for different projectile velocities for (a) l& =10 and (b)

lI, =20. In particular, X„,I (solid line) is compared with

X=X„II+X;„d( & ) for small angles; the approximation
adopted improves with increasing l&.

Figures 6 and 7 show the comparison between the col-
lective contribution to the y parameter evaluated in the
two different approximations, i.e., X= —1/g —3/g
(solid line) and X= —1/g (dotted line) for different an-
gles.

In Fig. 6, g„&& vs U is shown for l& =50, while Fig. 7
shows g„&& vs l& for U =7. Here the difference between
the two approximations is remarkable for small angles,
that is for 0 (yc—-arctan(&3/u ), when the trailing ion
is inside the Cerenkov cone excited by the leading ion
(yz ——15' for u =7).

On the contrary, the cold-plasma picture well describes
the slowing down of the ion pair when 6 )yc (outside
the cone). The reason for the disagreement when inside
the cone is connected to the lack of the spatial dispersion
effects in the description of the plasma, caused by the use
of the cold-plasma limit. The formation of the Cerenkov
cone is not described at all.

Due to the tendency of close projectile ions to align
with each other (see the discussion at the end of Sec. II), a
good evaluation of the stopping power can rely on the re-
sults of Ref. [10], dedicated to the aligned particles. The
results obtained here justify the main results presented in
Ref. [10] for the collinear case.
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IV. DISCUSSION OF THE RESULTS
AND CONCLUSIONS

The purpose of this work is to extend the analysis of
the slowing-down process of a two-ion system in collinear
motion in a Maxwellian plasma performed in a recent pa-
per [10] to the more general situation of arbitrary relative
positions of the two projectiles. Indeed, we have studied
the ion-plasma interaction process, allowing the trailing
ion to be disaligned with respect to the leading ion. The
disalignment is described by the angle between the pro-
jectile velocity v and the interionic vector l&.

The first result that emerges from our study is that the
characteristics of the correlated motion of a two-ion sys-
tem are direct consequences of the plasma dispersion
properties, which are necessary to correctly describe the
Cerenkov cone. The cold-plasma approximation matches
the correct solution only outside the Cerenkov wake, and
our solution for the stopping power coincides in this case
with the result presented by Basbas and Ritchie [14].

The analysis of the forces acting on the projectiles has
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FIG. 7. Comparison between the g parameter within the two
approximations, as in Fig. 6, as a function of lb for v~ =7. (a)
6=0', (b) 6=5', (c) 6=30', (d) 6=60. The parameters are the
same as in Fig. 6.
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been done by taking into account the dispersion effects.
The main result shows that, when I& and v are not
aligned, the two-ion system gains a net momentum in the
direction perpendicular to v, proportional to the angle
between Ib and v; as far as we know, this effect has never
been discussed before. This transverse momentum has
obviously great importance in the dynamical evolution of
the whole plasma-projectile system and is expected to
influence either the dynamics of the particles or the pro-
cess of dissipation of the ion energy into the plasma (plas-
ma heating).

Furthermore, the mutual forces acting between the two
ions give rise to an angular momentum which tends to ro-
tate the system. In particular, our results show that there
is a net aligning angular momentum when the trailing ion
is in the first potential well of the oscillations excited by
the leading ion, inside the Cerenkov cone. On the other
hand, when the trailing ion is on one of the peaks of the
oscillations or outside the cone, we expect that the angu-
lar momentum is misaligning. Besides this effect, we
must add the motion created by the transverse momen-
tum which shifts the motion axis. Obviously, the effect of
this transverse momentum decreases in the case of an
aligning action of the angular momentum.

The global effects of the forces acting on the two-ion
system could be fully described by means of a dynamical
particle code for the projectile-plasma system, which is
out of the context of this work.
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APPENDIX: DISCUSSION OF THE
CERENKOV CONE

Let us recall the linearized potential created by an ion
in a plasma

ikr
P, (r)= d k

(2~)3 k e(k, k v~)
(Al)

XJo[kp(1 —p )' ], (A2)

where p=k v~/ku~.
The k integration can be split into two contributions,

k ( 1 and k & 1, relevant to plasma collective and
individual-particle aspects, respectively. Since here we
are mainly interested in analyzing the Cerenkov cone ex-
cited in the plasma by a fast projectile, in evaluating Eq.
(A2) we shall retain only the collective oscillating (or res-
onant) contribution to the potential, P„,(r) (cf. Peter
[16]). By taking the expansion of X for large arguments,
X(g ) = —1/g —3 /g, we get

where e(k, cu) has been defined in Sec. II. Using spherical
coordinates for k and cylindrical ones for r(x, p, y), with
v~=u e, Eq. (Al) becomes

ikpx
ch = dkk dp

4 2 o
p k2+x+lY

P„,(r) = Z

2' Up

e( —x)f dg sin
(1+3/U ')'/2

'9 Jo 9 — 1+
Vp Up Vp

1/2

(A3)

Far away from the projectile trajectory (p))0) Eq. (A3)
becomes

—Z Pui e "~' cos[Y(x,p)]
2~r v'3 u Y(x p)

(A4)

where

Y(x,p) =
1/2

3x p
4 2

Vp Up

(A5)

and e "~"
~ takes into account the Landau damping of the

excited Langmuir waves. In Eq. (A4), the Heaviside
function e describes a Cerenkov cone (x (—pu /&3) in
the trail of the projectile with semivertex angle
pc=arctan(&3/u ). It is important to notice that the
structure of the cone depends strongly on the spatial

dispersion properties of the medium. In fact, if we con-
sider the cold-plasma limit by taking X(g)= —I/g, the
wave cone vanishes. In this case Eq. (A2) takes the form

Z
P„,(r) = 8( —x )sin

27TUp Vp

(
2 1)1/2

X I dg Jo
0 /+1 uz

(A6)

On the projectile trajectory (p =0) Eq. (A6) becomes

Z x
P„,(r) = e( —x )sin lnu

2&Up Up

(A7)

The gradient of this expression yields the collective con-
tribution of the stopping power of the particle. On the
other hand, far away from the ion trajectory (p))0) Eq.
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