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The angle and polarization dependence of optical emission and reflection from dense aluminum plas-
mas produced in the release wave of a strong shock is investigated theoretically. It is shown that with
high-speed measurements (few-picosecond resolution), optical probing of the unloading plasma can be
used to examine transport properties and ionization balance of thermodynamic states in the vicinity of
the liquid-vapor critical point. The calculations were performed using data from two wide-ranging
theoretical models of plasma conductivity, a semianalytical model due to Lee and More [Phys. Fluids 27,
1273 (1984)] and a partial-wave analysis due to Rinker [Phys. Rev. B 31, 4207 (1985); 31, 4220 (1985)].
The models predict substantially different values for the conductivity close to the liquid-vapor critical
point (more than a factor of 10 for the electron-ion collison time); the different results obtained for the
two models sugest that experimental measurements could provide new information for improving the

current understanding of dense plasma properties.

PACS number(s): 52.35.Tc, 52.25.Rv

I. INTRODUCTION

The properties of dense plasmas have been under in-
tense study in recent years. Experimental studies on
dense plasmas are usually limited to localized regions of
the density-temperature plane. The regimes accessible by
various experimental methods in the case of aluminum
are shown in Fig. 1. At low temperatures, relatively com-
plete equation-of-state data, including measurements of

T — T MR -
N DENSE % short pulse ]
6 PLASMA ./ laser heating
L < .
10° N E
- E2x102'<n <102 cm™3 § principal 1
< F e | Hugonio 1
e 5| Ny ]
210° F NN E
il E E
“é& i LiQuUID ]
e 4 | shock release i
10" F  isentropes e E
E § melt 3
i LIQUID-VAPOR gitical “points: SOLD 7
3 COEXISTENCE >
10 1 L1 ! Lo gl WA ENE |
0.01 0.1 1 10

density (g/cma)

FIG. 1. Density-temperature sketch for aluminum showing
areas relevant to this study. Labeled on the diagram are the
principal Hugoniot curve, the melting curve, and the trajectory
of a 3-kbar isobar (IEX track) measured in Ref. [2]. Also shown
are two shock-release isentropes computed with the QEOS
equation of state, and the critical point (also computed with
QEOS). The cross-hatched area bounded by the dotted curves
identifies regions where the electron densities yield plasma fre-
quencies equal to visible optical frequencies. The hatched area
bounded by solid curves identifies regions accessible to high-
intensity short-pulse laser experimentation.

electrical conductivity, and sound speed have been made
using the isobaric expansion technique pioneered by
Gathers and co-workers [1,2]. This method appears to be
limited to maximum pressures of a few kbar, and expan-
sions to about 50% larger than the normal volume. An
important method for obtaining dense plasma states with
high thermal energy density is with shock-release experi-
ments. Impedance-match experiments have been used to
determine the release isentropes of metals such as Cu, Pb,
Bi, and Al [3-5]. Another promising approach for ac-
cessing the ultrahigh-pressure regime uses laser-driven
shocks [6-9]. Studies of luminous emission [10] and
rear-surface reflectivity [11] show potential for yielding
information on temperatures and transport properties in
the unloading plasma. A more recent experimental de-
velopment has been the use of femtosecond (fs) laser
pulses to heat a solid metallic surface to temperatures of
several eV in a time short enough that the surface does
not expand appreciably [12]. The reflected light signal
contains information that leads to the determination of
the material temperature as well as the resistivity. Since
the material remains condensed on this time scale, the
technique has the potential to yield nearly isochoric data.

In this paper we investigate the shock-release problem
in detail and examine the utility of optical probing using
emission and reflectivity measurements. The aim of the
paper is to show that (i) such measurements can provide
detailed and complementary information on the electrical
conductivity within a relatively small range of densities
and temperatures in the unloading plasma, and that (ii)
an experimental temperature determination of the emit-
ting plasma layer at early times after the shock breakout
(10—-100 ps) ought to be possible in spite of a large
theoretical uncertainty in the plasma conductivity. The
results of our calculations show that very different bright-
ness temperatures and reflectivities are predicted, de-
pending on the conductivity model used in the calcula-
tions. (The reflectivity calculations are summarized by
Fig. 11, and brightness temperatures by the open symbols
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in Fig. 14.) Brightness temperature measurements alone
would be inaccurate as a means of temperature deter-
mination, especially for early times in the shock release,
because the emissivity is unaccounted for, and a theoreti-
cal estimate for the emissivity is evidently unreliable.
However, by correcting the brightness temperature using
results from a reflectivity measurement one could obtain
quite good agreement with the true temperature of the
emitting region—which is an important objective of the
measurements. This correction produces accurate results
independently of the conductivity model used in the cal-
culations. Thus the two measurements taken together
could be used to provide a temperature determination
which is independent of any calculation. This type of
correction is possible because both emission and
reflection take place within the same plasma layer, as we
show in this paper. Taken individually, the reflectivity of
the plasma depends on the electrical conductivity in the
reflecting layer [11], while the emission (i.e., brightness
temperature) depends on both the temperature and the
emissivity in the emitting layer. Since both processes
take place in the same layer, knowledge of the true tem-
perature in this layer makes comparison of both types of
measurements with calculations far more valuable. Fi-
nally, we show how a spectrally resolved measurement of
the Doppler shift in a reflected probe beam may be used
to infer (with some theoretical input) the density and ion-
ization state of the emitting and/or reflecting plasma lay-
er.

The advantage of shock-produced plasmas is that they
are readily generated by a number of methods including
explosively accelerated flyers, gas-gun accelerated flyers,
laser ablation, and nuclear explosions. Such shock states
are reproducible and can be well characterized. For the
strong shocks investigated in this study the most viable
method of producing the state is with laser-driven abla-
tion [6—9]. The shock release is produced by propagating
a strong shock (typically >5 Mbar for aluminum)
through a solid target so that it reaches a vacuum inter-
face on the rear side. The pressure release of the hot,
shocked-compressed material results in a backward prop-
agating rarefaction wave, and a plasma or vapor cloud
expanding into the vacuum. States in the release wave
have temperatures ranging from <1 eV up to a few eV
and densities ranging from zero up to the compressed
solid densities in the shocked material. The plasma states
in this region are hot enough to produce significant visi-
ble emission. Furthermore, the conductivity is high
enough to produce a reflecting, critical density surface in
the expanding profile, where the plasma frequency
matches the optical probe frequency. The cross-hatched
region in Fig. 1 shows the region of electron densities
(2X10?'-10* cm™3) with plasma frequencies corre-
sponding to frequencies in the optical range of the visible
spectrum (wavelength range: 350-700 nm). For the pur-
poses of identifying this region we have used an average
ionization state calculation by Rinker [13]. The intersec-
tion of this band of electron densities with the liquid-
vapor coexistence boundary also coincides with the ap-
proximate location in density-temperature space where a
metal-insulator transition may be expected to occur. Evi-
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dently, with careful choice of initial conditions and probe
frequency it may be possible to probe near the liquid-
vapor critical point. Initial experiments observing both
the luminous emission and reflectivity from such a
shock-released plasma have already demonstrated the
basic experimental techniques [10,11,14,15].

The shock-release problem was previously surveyed by
Zel’dovich and Raizer [16,17] over 30 years ago. At that
time diagnostic methods achieved only nanosecond reso-
lutions. For this relatively long time scale, optical emis-
sion and absorption in the shock-released plasma is dom-
inated by a cool, optically thick layer of metallic vapor
consisting of neutral and singly ionized atoms, which is
formed at the low-density tail of the release wave. With
modern high-speed instrumentation (up to picosecond
resolution) it becomes possible to probe denser regions of
the shock release, where the optical depth at optical fre-
quencies is limited mainly to the skin depth of the steep
density profile in the release wave at early times after
release. Only at later times (nanoseconds) has the profile
expanded so much that a cool layer of low-density vapor
obscures the high-density high-temperature regions
behind.

If an optical measurement can be performed within
about 100 ps of the shock release, the cool screening layer
is insufficiently developed to hinder probing of the dense
regions behind it. The emission or reflection of optical
radiation will then originate primarily from a localized
region of the expanding profile near the critical density
layer corresponding to the given probe frequency, and
suffer negligible absorption in the lower density regions.
The density of this localized region depends on the ion-
ization state of the sample material along the release isen-
trope, and on the probe frequency. Precise theoretical or
experimental determinations of the ionization state are
not yet available. In general the ionization state is ex-
pected to vary rapidly with density in the vicinity of the
liquid-vapor critical point.

Picosecond time resolution is still insufficient to ob-
serve optical radiation originating or reflecting from the
shocked material at the highest (Hugoniot) densities.
This is because the critical density layer, which is cooler
and of lower density than the shock state, also acts as a
reflecting layer to radiation passing through it in either
direction. Accurate optical characterization of the
Hugoniot state for an initially opaque metallic sample re-
quires at lease subpicosecond time resolution to allow
data collection before the critical density layer expands a
few optical depths away from the hot, shock-compressed
material.

In examining the reflectivity and luminous emissions
for aluminum shocked to 10 Mbar, we have performed
calculations based on solutions of electromagnetic wave
propagation in an inhomogeneous plasma profile. One of
the aims of the study is to compare two different wide-
ranging models for plasma conductivity, a semianalytic
model by Lee and More [18], and a partial-wave calcula-
tion due to Rinker [13]. We also show how both the an-
gle and polarization dependence of the reflectivity and
emission may be utilized to provide information on plas-
ma conductivity, temperature, and ionization state.
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II. SHOCK-RELEASED STATES

Arrival of a strong shock at a free surface (vacuum in-
terface) leads to a backward traveling rarefaction wave in
which the material reaches states of reduced density and
temperature. When thermal transport processes (electron
conduction or radiation transport) are insignificant the
release process is adiabatic, and the states attained in the
release wave lie along the isentrope passing through the
initial shock state. We consider an initial state on the
Hugoniot curve brought about by the arrival of a strong
shock traveling in the positive z direction at the rear sur-
face of a target at position z=0, and time ¢t =0. If the
equation of state of the material is known, then the
release wave can be described parametrically through the
following expressions [17]:

=u(p)—cyp), (1)
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The initial density p, and particle speed u, are those on
the Hugoniot curve, and the particle velocity u and all
the thermodynamic quantities in the expanding density
profile are functions of a self-similar coordinate, z /t. The
density and temperature profiles in time and space can be
obtained from an integral which follows a path down the
isentrope leading from the initial state. The integrand
contains the isentropic sound speed c¢,(p) along the isen-
trope. The sound speed and all the thermodynamic pa-
rameters such as pressure and temperature must be ob-
tained from an appropriate equation of state. Integral ex-
pressions relating two states on a given isentrope are easi-
ly obtained using the second law of thermodynamics and
the equation of state. It is evident that accurate
knowledge of the material equation of state (EOS) along
the entire isentrope is essential for producing accurate
release profiles. Moreover, theoretical models of material
properties such as conductivities and ionization state are
usually parametrized as functions of material density and
temperature. This places further importance on accurate
calculations of the density and temperature profiles in the
release wave.

A. Equation-of-state models

Along the Hugoniot curve, the EOS for many materi-
als is well known, both theoretically and experimentally.
However, in the region of expanded states above the
liquid-vapor critical point, which we investigate in this
study, both theoretical and experimental information is
scarce. For practical hydrodynamic calculations it is
necessary to use a wide-ranging model which spans many
decades on the density-temperature plane. To assess the
accuracy of this approach we compare two currently
available EOS models. One is an aluminum EOS avail-
able in the SESAME computer library of Los Alamos Na-
tional Laboratory [19] and the other is based on the quo-
tidian equation-of-state (QEOS) model of More et al.
[20].

The SESAME EOS was generated as a combination of
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seven theoretical models which are expected to be accu-
rate and valid in different regions of density-temperature
space, and is described in Ref. [21]. Four of these models
apply specifically to density-temperature regions relevant
to the release isentropes examined in this study. In the
compressed liquid region with densities near the Hugoni-
ot curve (p>4.0 g/cm’) the variational liquid metal
pseudopotential method was used to compute the EOS
[22]. At the opposite extreme, in the region of the low-
density, high-temperature plasma (p<0.1 g/cm?, T>2
eV) a nonideal plasma statistical expansion model due to
Rogers [23] was used. At low densities and intermediate
temperatures, where the material state is that of a partial-
ly ionized monatomic vapor, a Saha ionization balance
model was applied [24]. Finally, in the low-temperature
liquid-vapor coexistence region a soft sphere liquid struc-
ture model developed by Young [25] was used. This
model contains several parameters which were adjusted
to fit isobaric expansion data. It is important to note that
these models are essentially independent as they are
based on rather different physical pictures. Along the
boundaries joining different models the equation of state
may not be thermodynamically self-consistent. For ex-
ample, various thermodynamic identities relating deriva-
tives on the EOS surface may not hold in these regions.
Furthermore, in the density-temperature range of
0.2<p<2.0 g/cm® and 1<T <20 eV, no appropriate
model was available so that the EOS data were produced
by an interpolation scheme to bridge the gap. It is in-
teresting to note that this is also where the release isen-
tropes pass just above the liquid-vapor critical point. As
with any tabular model the SESAME EOS can produce
noisy derivatives (such as the sound speed) on the EOS
surface.

The QEOS model is based on a simpler scheme. It is
almost analytic and is based on a wide-ranging free ener-
gy description from which all thermodynamic functions
can be obtained in a thermodynamically self-consistent
manner. It combines a Thomas-Fermi description [26] of
the electron free energy with the Cowan model [20] for
the ion free energy that includes an adequate description
of the solid, liquid, and gas (plasma) phases. The Barnes
correction [27] is used to match the cold curve to the
known density and bulk modulus at normal solid condi-
tions. The QEOS model produces accurate results in
various limits or special cases (normal solid conditions,
high-density limit, high-temperature limit, and low-
density limit) while in the more complicated intermediate
regimes its accuracy does not match that of the best
available models. Specifically, in the region of low-
temperature expanded states the QEOS model is not ex-
pected to be accurate. In this study we have used a
slightly modified version of QEOS in which we have in-
troduced an additional parameter, the cohesive energy,
which provides a better description of the low-
temperature region. For this we have modified the func-
tional form of the Barnes correction at expanded densi-
ties such that it matches the bulk modulus at solid densi-
ty and also produces the correct cohesive energy [28] (the
Barnes correction does not do this, additional details are
described in the appendix). This modification affects
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mainly the liquid-vapor coexistence region and the loca-
tion of the critical point. For compressed states the mod-
el uses the standard Barnes correction. In the region of
expanded states below the liquid-vapor critical point the
QEOS model produces van der Waals loops along the iso-
therms. These were eliminated using the Maxwell con-
‘struction [29] to produce smooth isotherms and isen-
tropes within the liquid-vapor coexistence region.

The location of the critical point predicted by our
modified version of QEOS is at a temperature of
T.=8556 K and density p,=0.685 g/cm®. This com-
pares favorably with a number of phenomenological pre-
dictions of the critical point of metals [30—32], which
place the critical point for aluminum around
T,=7000-8000 K and p,~0.6-0.7 g/cm®. However,
more recent isobaric expansion measurements due to
Gathers and Ross [2] have been fitted with the soft sphere
model due to Young [25] to yield a critical temperature
of T,=5726 K. This value is significantly lower, and
probably more accurate since it is based on a fit to experi-
mental results. The SESAME EOS incorporates Young’s
soft sphere results and is therefore likely to be more real-
istic around and below the critical point.

Both the SESAME and QEOS models predict Hugoniot
curves that agree with each other, and with experimental
data to better than a few percent for the mechanical pa-
rameters (density, pressure, particle speed). Much larger
disagreement is evident when temperatures are com-
pared. To assess this disagreement we show a compar-
ison of the Hugoniot curves, and a series of release isen-
tropes on the density-temperature plane in Fig. 2. A
series of shock pressures is indicated for the initial
Hugoniot shock states. Temperatures along the Hugoni-
ot curve and along the release isentropes for various
shock pressures are seen to differ by as much as a factor
of 2. The largest discrepancies occur on the low isen-
tropes and at low densities. The agreement improves in
the limit of ultrastrong shock strengths at high tempera-
ture and high density. However, even for the highest
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FIG. 2. Comparison of release isentropes calculated with the
SESAME equation-of-state model (dashed) and QEOS model
(solid). Release isentropes are centered on Hugoniot states with
the shock pressures in Mbar indicated in the figure. The
Hugoniot curves from both models are also shown.
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isentropes there is a significant difference in temperatures
towards the low-density region. Temperature is the most
uncertain thermodynamic parameter in equation-of-state
theory. It is also a parameter which is difficult to mea-
sure for shock states, particularly in opaque materials.

Aside from the differences between the two models it is
also evident from Fig. 2 that, in the case of aluminum,
the shock strength must be larger than about 5 Mbar in
order to reach isentropes that pass above the liquid-vapor
critical point. For lower shock strengths the isentropes
intersect the liquid branch of the coexistence region. The
exact location of the coexistence region is not well
known, and since it has considerable influence on the
paths of isentropes that pass near or through it, we have
restricted our study to a 10-Mbar shock in which the
release isentrope lies above the critical point, and inter-
sects the coexistence region only at very low densities.
This makes both experimental interpretation and theoret-
ical analysis simpler because it obviates the need for con-
sidering vapor condensation and the formation of a two
phase flow when the release isentrope enters the coex-
istence region from the liquid branch. Alternatively,
high isentropes can be attained by shocking porous ma-
terials at lower pressures, but this method is likely not vi-
able for the high time-resolution measurements intended
in this study. This is because temporal and spatial inho-
mogeneities introduced by the pore scale length are usu-
ally of the order of 1 um or larger for metal powders,
which is too large for thermal and mechanical equilibri-
um to be reached in the shock front on the 10—100-ps
time scales considered here.

Figure 3 shows the release profiles obtained from two
hydrodynamic simulations of the release of a 10-Mbar
shock in aluminum (shock speed ug,, =24 km/s). In
each simulation the initial state was set to the Hugoniot
state, with py=7.1 g/cm’, T,=6.0X10* K, P,=10
Mbar, and u,=15.1 km/s. This represents the standard
initial state for all the calculations discussed in this pa-
per. Both simulations used the same thermal conductivi-

10 E I T T T ‘ T T T I T T T | T T I—.:
1 E -
Q@ E E
.§ r ]
s L i
0.1 E
s P 3

0.01 RN S RN SN TR S 1
2 0 2 4 6 8

position (pum)

FIG. 3. Comparison of release profiles calculated using the
SESAME (dashed) and QEOS (solid) models. Profiles of pressure
P, density p, particle speed u, and temperature T, as a function
of position are shown at £ =100 ps after the shock release. The
position coordinate is fixed to the laboratory reference frame.
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ty model, obtained from Rinker’s transport calculations
[13]. It should be noted that the profiles shown in this
figure are not isentropic because of the inclusion of
thermal conduction in the simulations; this will be dis-
cussed below. Two curves for each parameter are
presented in the figure; the solid curve is {from a simula-
tion using the QEOS model, whereas the dashed curve is
from one using the SESAME EOS. Remarkably the pres-
sure, density, and particle speed profiles agree to within a
few percent. The largest discrepancy is found in the pre-
dicted temperatures with differences amounting to as
much as 30%. This is similar in magnitude to the
discrepancies between the 10-Mbar isentropes on the
density-temperature plane of Fig. 2. This close agree-
ment is somewhat fortuitous, since the 10-Mbar isen-
tropes appear to have the best agreement of all the curves
shown in Fig. 2. Simulations at other shock conditions
would not show as good agreement between the two EOS
models.

In the absence of experimental or theoretical EOS data
in the region above the liquid-vapor critical point, it is
difficult to give an absolute assessment of the reliability of
the calculated release profiles, since both the SESAME and
QEOS models reduce to interpolations in this region. On
the basis of the above comparisons we may conclude that
the EOS descriptions available to us provide a remark-
ably consistent description of the mechanical parameters
(P, p, and u ) of the release density profile. Temperatures
in the release wave appear to be less certain since this pa-
rameter is much more sensitive to the model used. The
main effects of a variation in the temperature within the
release wave will be to change the conductivity and also
absolute emission levels. Absolute emission intensities
(Planck intensities) in the visible wavelengths scale linear-
ly with temperature above about 1 eV; however, the con-
ductivity scales in a more complicated fashion that de-
pends on the particular model. Along the release isen-
trope in the vicinity of the critical point, both the con-
ductivity and the ionization state in the plasma have
significant density dependences (according to the theoret-
ical models discussed below), which are less problemati-
cal since the two EOS models predict very similar density
profiles. We believe that the temperature uncertainties
have a relatively small effect on the main conclusions of
this study, although any temperature uncertainties will
produce quantitative uncertainties that are important to
consider when analyzing experimental data. With no
overriding reason to favor one EOS model over the other,
we have used the QEOS model as the basis for all of the
calculations presented here since it is thermodynamically
self-consistent, and has numerical qualities superior to
the tabular SESAME model.

B. Conductivity and ionization models

In order to calculate the optical properties of the
release wave, we require knowledge of electrical conduc-
tivity and ionization state. More specifically, the
electron-ion collision frequency and ionization state are
needed to construct a frequency-dependent dielectric
function throughout the release profile based on the

Drude model.

Two wide-ranging transport models for plasma con-
ductivity were available. The first is a semianalytical
model given by Lee and More [18]. The second is a
partial-wave calculation by Rinker [13] which is available
from Los Alamos National Laboratory as part of the
SESAME materials properties database (material no.
23713).

The model due to Lee and More is based on an applica-
tion of the Boltzmann transport equation in the relaxa-
tion time approximation, using Fermi-Dirac statistics to
describe the electron momentum distribution. Relaxa-
tion times are computed including contributions from
both electron-ion and electron-neutral scattering. For
electron-ion scattering the standard Coulomb cross sec-
tion is used in conjunction with various prescriptions for
computing the Coulomb logarithm. These are developed
to account for the physical effects of Debye-Hiickel
screening, strong coupling, and electron degeneracy. In
strongly coupled plasmas, the Debye-Hiickel screening
length becomes less than the interatomic separation.
This difficulty is avoided in the model by phenomenologi-
cally limiting the screening length to a minimum value
equal to the interatomic separation. To agree with accu-
rate partial-wave calculations in dense plasmas, the
Coulomb logarithm is also limited to a value greater than
2. In the dense solid as well as the liquid metal regions
where ion-ion correlations attain a much longer range,
the Bloch-Griineisen expression for metallic conductivity
[33] is applied to compute the electron mean f{ree path.
Finally, there is a region in density-temperature space
where the calculated electron mean free path is less than
the mean distance between ions. In this region the mean
free path is limited to a value equal to the ion sphere ra-
dius, and the relaxation time is then obtained from the
mean electron speed. For aluminum this region is locat-
ed in a density-temperature region approximately given
by 0.6<p<1g/cm’®and 2< T <20 eV.

The conductivity model of Rinker is based on an appli-
cation of the z-matrix formulation of the Ziman theory
[34]. For these calculations Rinker adopts the average
atom picture in which the electrons are scattered from a
set of ion core potentials distributed statistically
throughout the medium. In the interstitial regions the
electrons are assumed to travel in plane-wave states,
while the ion cores are assumed to be identical, nonover-
lapping, and spherically symmetric. In this formulation
four ingredients are required, namely, the ion structure
factor, the electron-ion scattering cross section, the densi-
ty of free electrons, and the electron chemical potential.
The latter three quantities are computed self-consistently
from the electron-ion potentials which are generated
from a combination of various statistical mean-field mod-
els including the Thomas-Fermi-Dirac (TFD) statistical
model (to generate the density and temperature depen-
dence), the Hartree-Fock-Slater mean-field atomic model
[35], and the temperature-dependent TFD-like model due
to Liberman [36] (the latter two provide a low-density
low-temperature limit). For the electron scattering cross
section Rinker used a full partial-wave calculation. The
ion structure factors were applied independently. The
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calculations used various choices including the Debye-
Hiickel structure fact, the Perkus-Yevick liquid metal
structure factor, and a third form which interpolates be-
tween the Debye-Hiickel and the hard sphere limits.
Rinker’s application of Ziman theory depends on the as-
sumption of single-site scattering. In strongly scattering
systems this assumption is questionable and has been left
as an open question.

The average ionization state is an important parameter
in our Drude approximation of the plasma conductivity,
because it determines the density range within the release
profile where most of the absorption and emission takes
place. In Rinker’s model this parameter arises naturally
out of the quantum-mechanical solutions obtained in
computing the electronic structure. It is obtained essen-
tially by finding the number of electrons occupying freely
propagating states. Rinker defines the average ionization
state to be the number of unbound electrons per atom oc-
cupying plane-wave states in the region between the ions.
This definition treats any continuum electrons occupying
resonance states as being effectively bound. Lee and
More’s conductivity model requires the ionization state,
as well as the electron chemical potential, to be provided
as input parameters to their model, which have to be cal-
culated separately. The ionization state was computed
with a screened hydrogenic model [37], and the chemical
potential was computed with the Thomas-Fermi statisti-
cal atom model [26].

Both conductivity models provide data for the dc elec-
trical conductivity o, electron thermal conductivity, «,
and average ionization state Z as a function of density
and temperature in a tabular format. To obtain the plas-
ma dielectric function for the analysis discussed in the
next section, a frequency-dependent Drude model is as-
sumed for which the important parameters are the
electron-ion collision time 7,; and the electron plasma
frequency w,. These are given by

1 _ A , 3)
Toi mo,
) 47Zn;e?
=, 4)
m

where n; is the ion density, m is the electron mass, and e
is the electron charge. With these definitions, the
frequency-dependent Drude expression for the conduc-
tivity is

0)2

f
Ar(1/7,,—iw) ’ )

olw)=
which is used to construct a frequency-dependent dielec-
tric function.

We compare the data provided by the two conductivity
models in Fig. 4 along the density-temperature path
occurring at =100 ps after the shock release, as calcu-
lated with the hydrodynamic simulations. The figure
displays curves of the ionization state Z and the
electron-ion collision time 7,;,. In the dense ionized liquid

P. CELLIERS AND A. NG 47
100 —r—rrrrr——rrr——rrrg 10
£ 1ok 1 5

= =.
N 3T 8
2 ok | 3
= E . @
c | B
o i 3013
(2} Ex 7
2 0 e - ) ] N
8 e ",’//Lee&More ]
0.01 y ol ol L0y 001
0.01 0.1 1 10

density (g/cms)

FIG. 4. Comparison of ionization state Z (dashed) and
electron-ion collision time 7, (solid), as a function of density
along the release profile at time =100 ps (see Fig. 3). Data
from the conductivity models of Lee and More and Rinker are
indicated in the figure.

the predicted ionization state is near the expected valence
state of 3, although neither Rinker’s nor Lee and More’s
model produces this value exactly. In the expanded re-
gion below 1 g/cm® both models predict quite different
values for Z, especially at low temperatures. Any varia-
tion in the ionization state shifts the electron plasma fre-
quency, and hence the location along the density profile
of the reflection point for visible radiation where the plas-
ma frequency equals the optical frequency.

Also of interest are the different predictions for the
electron-ion collision rate especially in the low-density re-
gion. One may note that at optical frequencies the nor-
malized collisionality is w7,=~1 for 7, in the range
0.2<7,<0.4 fs. In general we see that w7, >1 for
Rinker’s model, and w7, <1 for Lee and More’s model.
Furthermore, Lee and More’s model predicts a collision
time that is nearly two orders of magnitude smaller than
that predicted by Rinker’s model in the regime of ex-
panded states with density less than 1 g/cm?. The reason
for the large difference in the collision time is not obvi-
ous. It may be connected with the approach to the neu-
tral atom limit as the plasma recombines. Lee and
More’s model includes electron-neutral scattering explic-
itly, and it is an important scattering process at these
densities. This effect is further magnified by the fact that
the average ionization state in Lee and More’s calculation
is significantly lower in the expanded states. In Rinker’s
model scattering by neutral atoms is not explicitly includ-
ed, since the model is based on the average atom picture.
However, the approach to the neutral atom limit poses
difficult problems at low temperatures [13]. Additionally
the single-site scattering assumption may also be ques-
tionable in this range. It should be noted that both mod-
els were intended to describe dense ionized plasmas, and
are in better agreement at higher temperature (and higher
ionization states). The strong disagreement between both
models suggests the need for improvement in current
theoretical descriptions in the low-temperature, partially
ionized region of the density-temperature plane.
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C. Thermal transport

The analysis of shock-release states usually assumes an
isentropic release path. However, at very early times
after shock release the rarefaction wave is not isentropic.
In fact, an isothermal release is more appropriate on very
short time scales (z <1 ps). This is because the thermal
conductivity of the shocked state is large enough to en-
force nearly isothermal conditions down the density gra-
dient as the material begins to expand. Eventually, iso-
thermal conditions give way to an isentropic expansion as
the scale length of the rarefaction wave increases. A
characteristic time scale during which this transition
takes place is given by [38]

re~3.75L )
peCs

where « is the thermal conductivity, T the temperature, p
the density, and ¢, the sound speed of the Hugoniot curve
(initial state before release). The 10-Mbar shock state on
the principal Hugoniot curve for aluminum gives a value
of 7,~5 ps. Although heat conduction becomes negligi-
ble for times larger than 7,, the temperature profile is
sufficiently modified by the initial injection of heat that it
is not described accurately by the isentrope until times
t>71,.

Results of simulations which demonstrate this behavior
are shown in Fig. 5. The isentrope leading from the ini-
tial state is shown as the dashed curve. States throughout
the expanding profile at various times are shown as a
series of curves which approach the isentrope with in-
creasing time. One may note that, at early times, temper-
atures in the release wave dip slightly below the isentrope
at the high-temperature high-density end, and are heated
to values far above the isentrope at the cooler low-density
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FIG. 5. Density-temperature plot showing the effect of

thermal conduction on the release states at various times after
the shock release. The isentrope is shown by the dashed curve.
Two curves are shown for each of a series of times showing re-
sults of calculations made with Rinker’s thermal conductivity
(solid) and the thermal conductivity from Lee and More’s model
(dash-dot). The small temperature oscillations are artifacts of
the numerical solutions.
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end. This reflects the transfer of heat from the hotter
high-density part of the release wave to the cooler ex-
panding vapor. On time scales extending to about ¢ ~ 100
ps after the shock release one observes a rapidly cooling
plasma with temperature varying from over 5 eV down to
about 1 eV.

In the interest of maintaining a consistent description
of the release wave, electrical and thermal conductivities
from each of the two models discussed above (Lee and
More or Rinker) were always used together (thermal con-
ductivity in calculating the release profiles and electrical
conductivity in computing the reflectivity and emission).
Two curves are shown in Fig. 5 for each time. These
show the difference between calculations using thermal
conductivities from the model by Lee and More (dot-
dash), and that due to Rinker (solid). Despite the large
differences in the electron-ion collision rates predicted by
the two transport models over much of the density-
temperature plane, as evidenced in Fig. 4, there is re-
markably little difference in the predicted temperature
profiles. The reason lies in the fact that the crucial pa-
rameter which governs this process is the value of the
thermal conductivity in the hot shock-compressed
Hugoniot state. Both transport models tend to agree fair-
ly well in this region; they both predict nearly the same
electrical and thermal conductivities along the Hugoniot
curves, and therefore both result in very similar tempera-
ture profiles. Most of the heat that is injected into the
rarefaction flows out of the shock-compressed region dur-
ing the very short time scale given by Eq. (6), when the
rarefaction wave scale length is very short. At subse-
quent times those plasma elements which were affected
by the initial heat injection expand nearly isentropically,
with trajectories spanning a continuum of isentropes that
lie above the isentrope passing through the Hugoniot
state. As the wave expands, more and more material is
entrained in the wave, and the relative amount of materi-
al contained in the heated fraction diminishes, resulting
in curves that slowly approach the limiting isentrope.
For correct analysis of the release process, it is necessary
to compute the profiles numerically including the effects
of thermal conduction since there is no simple analytical
model that can produce the profiles accurately. Howev-
er, a good assessment of thermal conduction heating in
the release wave requires an accurate value for the
thermal conductivity only along the Hugoniot curve, and
not over the entire density-temperature plane.

III. OPTICAL PROBING
OF THE EXPANDING PLASMA

A. Electromagnetic wave propagation

At very early times in the shock-release process the
rarefaction wave contains very steep density gradients,
yielding a nearly steplike spatial variation in the optical
properties. For such steep gradients an optical probe will
pass through the low-density vapor cloud and interact
with the high-density material, reflecting at the critical
density layer where the plasma frequency equals the opti-
cal frequency. The magnitude of the density gradient at
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early times (10—100 ps) after the shock breakout can be
appreciated by examining Fig. 3 which represents a
snapshot at 100 ps. Here the mass density drops ex-
ponentially by three orders of magnitude over a spatial
scale length of about 5 um. The electron density profile
will be even steeper because of recombination in the
greatly expanded regions where the ionization state drops
to values near zero. The gradient scale length in the rare-
faction wave is proportional to the time elapsed after
release. Thus at earlier times the gradients are corre-
sponding steeper. Reflection from these steep gradients is
similar to Fresnel reflection, but since the gradient scale
length is of the order of one wavelength, effects due to the
structure of the gradient must be taken into account.

We examine the optical probing process by solving the
classical turning point problem of an electromagnetic
wave reflecting from a density gradient containing a criti-
cal density layer. A similar problem has been studied re-
cently by several authors [39—-41] in the context of dense
laser-produced plasmas on subpicosecond time scales.
The technique for solving this problem is well known [42]
and will only be summarized here. The geometry of the
problem is shown in Fig. 6, in which the Maxwell equa-
tions are solved in a Cartesian coordinate system. The z
axis is oriented opposite to the density gradient, denoted
by the unit vector Z which is normal to the expanding
surface. The plane of incidence is in the y-z plane. We
consider a plane wave propagating into the gradient with
angle of incidence 0 and an equal angle of reflection. We
also define a unit vector  , which is directed along the
reflected beam. We assume that the magnetic permeabili-
ty in the plasma is =1, and that the dielectric function €
is described by the Drude model,

e(z)=1+i3m0(@2) )
w

where o(w,z) is the frequency-dependent Drude conduc-
tivity given by Eq. (5), which varies throughout the plas-
ma profile. In the discussion that follows the angular fre-
quency of the optical probe is w=27v=2mc /A and the
vacuum wave number is K, =w /c, where c is the speed of
light in vacuum. The Poynting vector of the incident
wave is Y;; where the subscript i denotes the polarization
state (s and p).

For s polarization, E,=E,=H, =0, where E, and E,

v A >
Q
1
4 >
\\ 6 Zz
\Yi A

FIG. 6. Sketch of the geometry used in calculating the in-
teraction of an electromagnetic wave with the plasma gradient.
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are the y and z components of the electric field vector,
and H, is the x component of the magnetic field vector.
In this case the Maxwell equations lead to the following
differential equation:
2

AU { k3(e—sin?0)U=0, (8)

dz
where U(z) is the amplitude of the x component of the
electric field vector, E, =U(z)exp[ —i(wt—kyy sinf)].
The other two components of the magnetic field vector
can be found once E, is solved for. For p polarization
the magnetic field component is perpendicular to the
plane of incidence, so that H,=H,=E, =0, and the re-
sulting equation is

d*V _ d[loge] dV
dz? dz dz

where H =V (z)exp[ —i(wt—kyysin8)] is the x com-
ponent of the magnetic field vector in the wave. E, and
E, are easily found once the solution for H, is known.

In each case, the integration of these equations leads to
two independent particular solutions which can be used
to construct the spatial profile of the electromagnetic
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FIG. 7. Angular dependence of s- and p-polarized

reflectivities at wavelength A=570 nm. Solid curves are s-
polarized reflectivities and dash-dot curves are p-polarized
reflectivities. The upper and lower frames show results calculat-
ed with Rinker’s and Lee and More’s conductivity models, re-
spectively, at three different times after the shock release.



47 OPTICAL PROBING OF HOT EXPANDED STATES PRODUCED. ..

wave along the plasma gradient. These solutions are con-
veniently described by a 2 X2 characteristic matrix which
can be constructed to describe the optical properties of a
given slice within the plasma gradient. The profile can be
modeled as a series of slices, and the characteristic matrix
of the entire profile can be constructed from the product
of the set of matrices. The solution is obtained by satisfy-
ing the appropriate boundary conditions. For s polariza-
tion the electric field amplitude in the vacuum is com-
posed of an incident and a reflected wave,
U(z)=E,; exp(—ikyz cosO)+E, exp(ikyz cosf), where E;
and E, are the field amplitudes of the incident and
reflected waves, respectively. The field transmitted into
the dense shock-compressed material (with complex
dielectric constant €y, ) is U(z)=E, exp[ —ikyz(€gock
— sin%0)!/2], which represents an exponentially decaying
evanescent field which reaches a small amplitude within a
few optical depths of the critical density layer. Similar
expression involving H; and H, for the incident and
reflected magnetic field amplitudes are used to describe
V(z) for the case of p polarization. From the wave solu-
tions one can define the electric vector within the wave
profile, E;;(0)=E,X+E y+E,z. The parameters i, A,
and 6 indicate that, in general, the solution depends on
the polarization state i (i.e., s or p ), wavelength A, and an-
gle of incidence 6.

The reflectivity of the entire plasma profile is obtained
from the incident and reflected wave amplitudes,
R(0)=|E,|*/|E,|* and R,,(0)=|H,|*/|H,|* for s and p
polarizations, respectively. As the plasma expands a
strong reflection from the critical density layer persists.
The magnitude as well as angle and polarization depen-
dences of the reflectivity are sensitive to the conductivity.

Figure 7 shows snapshots of the angular dependence of
both s and p-polarized reflectivities at various times dur-
ing the release process. Results calculated with Rinker’s
conductivity model are presented in Fig. 7(a), while those
calculated with Lee and More’s model are give in Fig.
7(b). In both cases the angular dependence of the p-
polarized reflectivity shows a minimum at an off-normal
angle. The location of this minimum shifts from large
angles to small angles with increasing time, as the scale
length of the release wave increases. The reflectivity
minimum is related to the driving of a plasma mode at
the critical density layer, which is in resonance with the
incident optical radiation. For both conductivity models
this resonance is damped, although in Rinker’s model it
is somewhat underdamped since w7, > 1, while with Lee
and More’s conductivity it is overdamped. It is evident
that the reflectivity computed with Lee and More’s con-
ductivity model decreases much faster with time than
that calculated with Rinker’s model, over the entire an-
gular range. This is a direct result of the much higher
collisionality (w7,; <1) in Lee and More’s model as com-
pared with Rinker’s model.

B. Absorption and emission
The total absorption in the expanding plasma profile,

A;(08), is easily obtained from the relation
A;;(0)=1—R;;,(0) where R;;(0) is the total reflectivity.
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Alternatively, to find the deposition of energy within the
plasma profile we note that the absorption per unit
volume is given by %Re(o)IEM(O)lz. Integrating over
the entire profile we obtain

1 Re(0)|E;(0)]?

A,»;L(O)=f:° Y 3 dz . (10)
7

The absorbed energy is normalized to the component of
the incident flux which is directed into the surface nor-
mal Z. As a check we have verified for all of our calcula-
tions that A4,,(6)=1—R;;,(6) to better than 0.1% pre-
cision.

We can examine the integrand in Eq. (10) to obtain a
detailed picture of the distribution of absorbed energy
within the plasma profile. For this purpose we define an
energy absorption rate, a;;(z)=d 4,,(0)/dz, which gives
an absorption per unit length (oriented along the z axis),
for radiation incident on the plasma profile. It should be
noted that a;, describes absorption from both the in-
cident and reflected waves and therefore depends on the
details of the particular wave interacting with the gra-
dient. Figures 8 and 9 show the spatial profiles of density
and temperature, as well as the distributions of energy
absorbed in the profile indicated by the effective absorp-
tion rate for various cases. Figure 8 corresponds to =10
ps, early in the expansion process when the release profile
is quite steep and the absorption is distributed over a
large range of densities. In Fig. 9 the same information is
shown for a later time, t =100 ps, when the profiles have
expanded significantly (a factor of 10). In both cases all
of the absorption is localized in space around the critical
density layer in the plasma profile over a spatial extent of
roughly one-half wavelength of the incident radiation.
At the earlier time the absorption profile spans a large
range of mass densities, roughly over a decade of 0.1-1.0
g/cm®. At the later time the absorption profile has be-
come much more localized in a narrower mass density
range as the density gradient scale length increases. The
centroids of this localized mass density range is depen-
dent on the ionization state model, which determines the
location of the critical density layer. The figure show re-
sults for both normal incidence and 45° angle of in-
cidence. The p-polarized wave drives a plasma oscillation
at the critical density layer, giving rise to a prominent
peak in the absorption profiles. This is most evident in
the case of Rinker’s conductivity model, where the
electron-ion collision rate is significantly smaller than the
optical frequency. Such a peak is also evident in Lee and
More’s model at 10 ps, but not at 100 ps, because col-
lisional damping is much stronger in this model.

The critical density layer in the plasma profile plays
the role of being both a reflecting and an absorbing
and/or emitting layer. Since it is reflecting (i.e., its
thermal emissivity is < 1), it screens emissions from
deeper layers. Moreover, emissions from the lower-
density plasma are low owing to the low material density.
Hence we would expect the observed thermal emissions
to originate primarily in the critical density layer. Be-
cause of the effects of reflection and refraction, one can-
not treat the radiation emission from the plasma profile
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using the radiative transfer equation that is usually ap-
plied to rarefied plasmas. This is because the radiative
transfer equation assumes no refraction (refractive index
equal to unity) and that absorption and emission can be
described with an absorption coefficient dependent only
on the local material state. Instead, we calculate the
emission from the absorption profiles using an applica-
tion of Kirchhoff’s law in conjunction with the elec-
tromagnetic wave solutions outlined above. This pro-
cedure automatically takes into account the details of
reflection, refraction, and absorption, and therefore it
gives the correct thermal emissivity of the critical density
layer. Kirchhoff’s law applied to a reflecting metal sur-
face at normal incidence states that [42]
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dotted curve, p polarization at 45° angle of incidence; dash-dot
curve, s polarization at 45°.
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7—IA(T)— e W-——l- , (11)

where S and 4 are, respectively, the radiated spectral in-
tensity and absorption of the material surface, and I, (T)
is the radiative spectral intensity (per unit wavelength) of
a blackbody at temperature 7 and wavelength A. We
generalize this particular case to take into account the
polarization dependence and also an oblique angle of ob-
servation. Specifically the radiative power emitted at an
angle 8 with respect to the surface normal in a polariza-
tion state i is directed with the flux vector
S;»=1A4,,1,(T)Q, where we have included a factor of 1
to account for the fact that we are treating each polariza-
tion state separately. In general, since 4, =1—R;; is po-
larization dependent, the emission will also be polariza-
tion dependent. The flux emerging from the emitting sur-
face is given by S;,(0)=S;; -Z, thus we have

S;(6)="1A4,,(6)I,(T)cosb . (12)
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If the entire plasma profile were isothermal at tempera-
ture T then Eq. (12) would be sufficient to compute the
emission. However, the temperature gradient within the
profile requires a generalized form of Eq. (12),

Sp(0)=lim | [°

Z—

Loz (T(z'))cosbdz’ | . (13)

This amounts to the statement that each plasma layer dz’
at location z’ within the plasma profile contributes an
emissive intensity which is proportional to I,(7(z’)) and
to the local absorption rate experienced by the layer for
the equivalent wave incident from the vacuum.
Throughout the release process the thermal emission
originates from a limited range of densities in the plasma
profile. Plotted in Fig. 10 are locii of density boundaries
of the plasma region yielding 80% of the total emission.
These boundaries are determined by locating the z coor-
dinates (and hence the densities and temperatures) for
which the integral in Eq. (13) attains 10% and 90% of its
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FIG. 10. Localization within density-temperature space of
thermal emission within the release profile. Each pair of curves
(heavy lines) represents density-temperature coordinates for the
10% and 90% levels of the total emission integral [Eq. (13)].
Solid curves A=430 nm, long dashes 570 nm, short dashes 690
nm. The curves span a time range of 2.5-200 ps. Emission
originates along a curve determined by the time-dependent
density-temperature profile spanning the region between these
two bounding curves. Snapshots of such curves (light dotted
lines) at £ =2.5, 10, and 100 ps are indicated in the figure.
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asymptotic value for z— . The boundaries correspond-
ing to emissions at three different wavelengths are traced
out over time, following the cooling of the plasma profile
from about 5 to 1 eV in the duration of 2.5-200 ps for
which the trajectories are shown (compare to Fig. 5). To
aid in interpretation, density-temperature curves for the
release profiles at =2.5, 10, and 100 ps are also shown.
For early times, when the temperatures are higher, the
emission originates over a broader range of densities,
with the upper density bound reaching values approach-
ing that of the Hugoniot state. The emission zone rapidly
narrows to an extent spanning about a factor of 2 in den-
sity ranging about 0.3-0.7 g/cm? for Rinker’s model, and
0.6-1.0 g/cm® for Lee and More’s model. The density
from which the emission originates depends on the wave-
length, with longer wavelengths being emitted from lower
densities. Finally, we note that the temperatures also ap-
proach a limiting value. Within the time scale of interest
in this study, t =10-100 ps, the temperature profile spans
a region of about 1-2 eV. Thus the density-temperature
region responsible for optical absorption and thermal
emission is effectively localized to a relatively narrow
range of densities and temperatures, spanning a region of
roughly a factor of 2 in each variable. Analyses of the
emission regions have also been made for a range of ob-
servation angles, polarizations, and wavelengths. These
yield diagrams similar to that presented in Fig. 10. This
is not surprising since, as already indicted in the Intro-
duction, the location of the emitting region is determined
essentially by the release isentrope and its intersection
with electron densities giving plasma frequencies equal to
the frequencies of the radiation of interest.

C. Applicability of the Drude model

The results of the previous sections show that the
reflection from the critical density layer in the plasma
profile is the dominant process which determines both the
reflectivity and the thermal emissivity of the release wave
at early times. The validity of this result depends heavily
on the validity of the Drude description for the dielectric
function. For condensed matter, the Drude model breaks
down because it takes no account of electronic structure
effects, namely, contributions to the optical properties
from interband transitions and modifications to the elec-
tron dynamics due to the shape of the Fermi surface.
The picture is, however, considerably simplified for liquid
metals where the disordered state washes out much of the
band structure and the optical properties can be fitted re-
markably well to a simple Drude model [43]. For alumi-
num shock melting occurs at approximately 1.2 Mbar on
the Hugoniot curve [44], hence for the strong shock and
release process (10 Mbar) considered in this study the mi-
croscopic state is mainly that of a disordered fluid. We
expect a Drude model to be applicable for the dense
Fermi-degenerate regions along the release isentrope,
namely, for densities larger than about 1 g/cm? It is
likely that a more complicated frequency-dependent
description which takes into account some of the emerg-
ing electronic structure as the density decreases is neces-
sary for the expanded states of <1 g/cm?®. However, no
such model is currently available.
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D. Effect of the vapor screening layer

As pointed out in Sec. I, optical probing of the expand-
ing plasma in a release wave may be hindered by the
low-density vapor in the tail of the rarefaction wave. For
this low-density vapor, the Drude model does not provide
an adequate description of the plasma opacity. The
Drude model describes the low-frequency limit of
electron-ion collisional absorption (or bremsstrahlung ab-
sorption), and within the context of the theory of ideal
plasmas it is valid for Av <<kT [45]. This limit ensures
that the atomic shell structure plays no role in absorption
or emission (bound-bound or free-bound transitions) at
the optical frequencies of interest. However, for plasma
temperatures of around 1 eV (compared with optical pho-
ton energies of 2—-3 eV) as examined in this study, this
condition is violated. Under these conditions highly ex-
cited valence states in the hot vapor can also participate
in the absorption and emission process. This is the
source of opacity in the low-density partially ionized va-
por cloud that forms a screening layer in the tail of the
rarefaction wave [16].

A simple expression for the opacity of this vapor,
which takes into account both free-bound transitions and
electron-ion scattering (bremsstrahlung) in the outer
valence states, is given by the Kramers-Unsold formula
[46],

2
— _mZ —(I—hv)
Kk,(n;, T)=0.96X10 72 eXp |~
kT |’
X W cm™ ! (14)

where the numerical coefficient applies when the ion den-
sity n; is expressed in units of cm ~3, and the temperature
T in K. I is the ionization energy of the dominant ion
species. This formula is valid for photon energies hv <1,
and becomes invalid for photon energies large enough to
ionize atoms in the ground state. This opacity is strongly
temperature dependent, due to the exponential
Boltzmann factor, and is an increasing function of tem-
perature. The Kramers-Unsold formula is based on hy-
drogenic model for the atomic levels in the ion, and
breaks down in the high-density limit.

By folding the opacity formula into the density profile
and integrating to yield an optical depth along the profile,
one can estimate the screening effect of the low-density
vapor layers. Specifically, we can develop a criterion for
the time scale #;, during which the low-density vapor
cloud expands to a sufficient size to screen the critical
surface layer. The density profile in the low-density tail
can be characterized with an exponential fit (see Fig. 3),
and for n; <2X10?! cm ™3 (p <0.1 cm?) is given approxi-
mately by

n;,(z,t)="H; exp forz>z, (15)

ot

where 7, =2X10*! cm ™3, ¢, is the speed of sound in the
rarefaction wave in the low-density tail, and (& —¢, )t
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marks the moving point in the profile where n; =7; (# is
the particle speed at the point Z). The sound speed is ap-
proximately constant because the temperature profile in
the rarefaction tail is nearly isothermal (see Fig. 3). For
our estimates we assume a value of 7=10000 K (which
leads to a conservative estimate for the ;). The optical
depth of the screening layer is then given by

Top=J " k(n;, T)dz
z _ R 3

n — —
=0.96X10"7z,¢ U —hv)

kT

kT
hv

exp

=
(16)

In evaluating this expression we have assumed that the
main variation in the opacity along the density gradient is
due to the density itself, since the temperature is nearly
constant. The expression for 7, increases linearly with
time. This is characteristic of self-similar expansion, in
which the density profile maintains a constant shape but
expands in scale at a constant rate. The dominant ion
species is neutral monatomic aluminum, for which the
appropriate value for Z is 1 in Eq. (16) and the ionization
energy is 1 =5.99 eV. We integrate up to the layer where
the Drude model predicts most of the absorption to
occur, i.e., to p=0.1 g/cm’. In the rarefaction wave tail
the sound speed is ¢,=3.5X10° cm/s. The screening
effect of the opaque low-density value tail becomes im-
portant when 7, approaches unity. Substituting into
Eq. (16) the values for ¢, and 7;, and assuming a photon
energy in the visible with Av=2.5 eV, we find that
ToptlZs)=1 corresponds to a characteristic time of
t,=2000 ps for developing an opaque screening layer.
Similar values are obtained for other photon energies of
the visible spectrum. Thus the time scale of 10—100 ps
pertinent to this study is consistent with the criterion
t <<t,.

IV. RESULTS AND DISCUSSION

A. Reflectivity and emission

The analysis presented above leads to a series of predic-
tions that can be tested experimentally. The localization
of the reflection and emission in the release wave allows
one to obtain experimental measurements which are sen-
sitive to the conductivity and ionization state in a region
of the density-temperature plane located around 0.2-1.0
g/cm® and 10000-20000 K. In this section we identify a
few characteristic features in the angle and polarization
dependence of both the reflectivity and the emission.

We compare in Fig. 11 the temporal dependence of the
reflectivity at various angles of incidence for both con-
ductivity models. These results reveal significant
differences between the models. For Lee and More’s
model, which is more collisional, the normal incidence
reflectivity decreases monotonically at a rate of around
0.05 ps— ! while with Rinker’s model the rate of decrease
is much slower at 0.01 ps~!. A similar behavior is seen
for s polarization at other angles of incidence, with the
main effect being a reduction in the rate of reflectivity de-
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crease with increasing angle of incidence. This exponen-
tial decay may be understood qualitatively from the
WKB solution for normal incidence light interacting with
a plasma gradient in the long scale-length limit. In the
idealized case of an isothermal profile, an electron-ion
collision rate proportional to electron density, and either
a linear or exponential spatial density profile with scale
length L, the WKB result predicts a reflectivity propor-
tional to [41] exp(— A*v;L/A). Here vii=1/w1,, is
the electron-ion collision rate at critical density, 1/7,,
normalized to the light frequency . The constant A *
has a value of 13.4 (16.8) for a linear (exponential) density
profile. For the shock-released state the profile is most
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FIG. 11. Time dependence of reflectivity at three angles of
incidence and optical wavelength A=570 nm. The dashed and
dotted curves are s- and p-polarized reflectivities, respectively,
calculated with Rinker’s model. The solid and dash-dot curves
are s- and p-polarized reflectivities, respectively, calculated with
Lee and More’s model.
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nearly exponential with scale length L =c ¢ that expands
linearly with time, where ¢, is the sound speed. This
linear scale expansion produces the exponential
reflectivity decay. Also apparent from this analysis is the
fact that the decay rate is proportional to v¥, i.e., inverse-
ly proportional to the plasma conductivity. Quantitative
analysis using this idealized WKB result is not viable be-
cause the true profile is not isothermal, and the density
dependence of the collision rate is more complicated than
assumed in the simple formula above. Thus close exam-
ination of the calculated reflectivity decay shows that the
decay is not perfectly exponential. However, this simple
qualitative picture is useful in assessing comparisons of
experimental data with model calculations.
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For p polarization the reflectivity is lower than that of
s-polarized light due to the excitation of the plasma reso-
nance in the release profile. In addition, depending on
the electron-ion collision rate, a nonmonotonic temporal
evolution of the p-polarized reflectivity may result in the
case of Rinker’s conductivity model. For Rinker’s con-
ductivity, o7,; > 1, and the plasma resonance accounts
for a significant fraction of the p-polarized absorption at
early times. It manifests itself in the large peak displayed
in the absorption profiles shown in Fig. 8. As noted pre-
viously, another manifestation of this resonance is the
large minimum in the angular dependence of the
reflectivity, which shifts as a function of time. As the
profile expands, the minimum in the reflectivity shifts to
smaller angles as the scale length of the profile increases.
This causes the p-polarized reflectivity to decrease, and
then subsequently to increase as the minimum shifts
through the observation angle. For Lee and More’s con-
ductivity, wt,; <1, and the plasma resonance is at all
times overdamped. The difference between s and p polar-
ization does not result in nonmonotonic temporal behav-
ior, although there is some residual structure in the p-
polarization time dependence.

An important complement to the reflectivity measure-
ment are observations of the plasma emission. The com-
bined measurements of both provides a strong consisten-
cy check on the theoretical models. Shown in Fig. 12 are
curves for the temporal evolution of the plasma emission
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at 0°, 45°, and 60° incidence. In general, Rinker’s model
with higher conductivity predicts higher reflectivity and
lower emission intensities than Lee and More’s model.
The difference between the emission intensities for the
two models varies between a factor of 2 and 4 for obser-
vations normal to the free surface and a factor of 8 at ob-
lique angles (60° from the normal) of observation. At late
times the s- and p-polarized emissions converge to similar
values.

In Fig. 13 we show detailed results of the angular
dependence of the emission for both polarization states.
This information might be obtained experimentally with
a fairly simple arrangement such as angle-resolved streak
pyrometry. The top frames show the angular dependence
at time =0 ps (at the moment of shock release). This
time zero calculation is presented for completeness only.
Such a measurement cannot be made, since the state be-
comes obscured by the lower-density material within 1 ps
of the release. Here both Lee and More’s model and
Rinker’s model predict similar conductivities and the cal-
culated results are thus similar. At early times during the
shock release the p-polarized component is strongly
enhanced at oblique angles of observation consistent with
the diminished reflectivity at these angles. One may note
how the large enhancement in p-polarized emission rela-
tive to s-polarized emission evolves with time. As noted
above, the strong enhancement in emission is related to
the plasma resonance at the critical density layer. A
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much stronger asymmetry between the s- and p-polarized
emission components at oblique angles is found for
Rinker’s conductivity model. Such an asymmetry is thus
a characteristic of high conductivity, that is, w7, > 1.
This may be contrasted with the results calculated using
Lee and More’s model, in which the enhancement of p-
polarized emission is less significant and almost disap-
pears entirely by =100 ps. For late times the angular
distribution of the emission calculated with Lee and
More’s conductivity is almost Lambertian, with emissivi-
ty approaching unity.

B. Temperature determination

The results presented here are all based on a combina-
tion of several theoretical models, specifically the
equation-of-state and conductivity models, as well as the
assumption of a Drude model for the frequency depen-
dence of the conductivity. The models used in these cal-
culations are uncertain to some degree. For example, the
predicted temperatures in the expanding profile differ by
a magnitude of up to 30% depending on the EOS, as pre-
viously discussed in Sec. II A, and shown in Fig. 3.
Therefore it is important to extract experimental infor-
mation that is, as far as possible, independent of theoreti-
cal models. An accurate experimental determination of
the temperature within the emitting and absorbing plas-
ma layer could provide important information for im-
proving theoretical models. We describe next how this
may be possible by combining the results of a time-
resolved reflectivity measurement with those of a time-
resolved emission measurement. This method exploits
the fact that the optical absorption and emission are both
localized to the same region in the plasma profile, in
much the same way as reflection and absorption are local-
ized to the skin depth layer of hot solid metal surface.

Experimental measurements of temperature in unload-
ing plasmas have been made previously, based on a spec-
tral fit of an observed thermal spectrum using a gray-
body function [10,15]. This method assumes a
wavelength-independent thermal emissivity, which is gen-
erally not true over the visible range. Alternatively,
brightness temperature measurements, which use abso-
lute emission levels, will not indicate the true tempera-
ture of the material if the thermal emissivity of the emit-
ting layer is small (or unknown). A key improvement is
to use a measurement of reflectivity at the emission wave-
length to infer the thermal emissivity. Accurate
reflectivity measurements should be possible as long as
the initial surface is of optical quality, and the shock
front is smooth and planar. The plasma profile behaves
much like a specularly reflecting metal surface, where the
emissivity of the reflecting layer can be obtained purely
from the corresponding reflectivity through the relation
(for normal incident) e=1—R, where € is the emissivity
and R is the (experimentally measured) reflectivity. To
infer a temperature we use Eq. (11), replacing S and 4,
respectively, with the measured emission intensity, and
with ¢ inferred from reflectivity measurements at the
same wavelength. This leads to the equation (for normal
incidence, unpolarized radiation)
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Sexpt(t) — 2hC2 1
I_Rexpt(t) }\5 ehc/}‘kTexpt“)_l

(17)

Implicit in this analysis is the assumption that no other
processes (e.g., scattering or absorption in the low-density
vapor) are significantly present to modify the observed
reflectivity. At early times in the release the emission and
reflection are not localized in a narrow density range.
However, due to the isothermal nature of the wave profile
at these early times it is clear from Fig. 5 and 10 that the
emission is localized in a narrow range of temperatures.
As a check on this procedure we show in Fig. 14 a plot
of temperatures “inferred” from the absolute emission
levels and reflectivity calculated using both conductivity
models. The top frame shows results obtained with
Rinker’s model, and the bottom frame with Lee and
More’s model. A set of error bars is plotted on each
frame. The upper and lower bounds of these error bars
show the temperature spread within the central 80% of
the emitting region. These temperature bounds corre-
spond to temperature coordinates located on the density-

10° BRI B s I B s L e B
: o _-O-Bm
< - ] 3
- i 1 a
g —_10.65.
% | ] -
g ; 404 "
2 i m] i -
éiiiiiiggg'o.zv

st | poooooooan

pa s b o by v b v baa s by a s Ly o by o

10° e —y 1
N i {08 o
o i dos z
@ ] ™
g | ééé o4 r
® Xy ' EXYXX ‘
—_O.ZV

10* | 1

I BT BPETEE ETUTET IS BT SPETEE ATATr AT 0

-20 O 20 40 60 80
time (ps)

100 120 140

FIG. 14. Temperature assessment from reflectivity and emis-
sion measurements at optical wavelength A=570 nm (a) com-
puted with Rinker’s and (b) Lee and More’s conductivity mod-
els. The solid symbols show temperature “inferred” from
reflectivity and emission. The error bars show the temperature
spread across the central 80% of the emitting region. Open
symbols show brightness temperature inferred from the emis-
sion intensity, assuming an emissivity e=1. The solid curves
show the emissivity e=1—R which is used to correct the emis-
sion intensity to obtain the “inferred” temperature.
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temperature locii defined for Fig. 10, where they intersect
the release curves at various times. The upper and lower
temperature bounds are also associated, respectively,
with the upper and lower density bounds of the emitting
region. Since the emitting region is not exactly iso-
thermal, these error bars show the precision to which a
temperature measurement can be expected to yield a
meaningful value. More importantly for the discussion
which follows, these temperature bounds show the ““true”
set of temperatures spanned by the emitting layer as it
evolves in time. An accurate temperature determination
ought to yield mean temperatures inside this temperature
span. The open symbols in the figure show uncorrected
brightness temperatures, i.e., temperatures inferred from
Kirchhoff’'s Law assuming an emissivity e=1. These
points differ strongly from the “true” values, especially at
early times. It is clear that for release profiles that are
highly reflecting, the correction for emissivity is critical
for inferring an accurate temperature. The solid curves
show the emissivity € as a function of time which is used
to correct the emission measurements. Finally, the solid
symbols in the figure show the ‘“‘corrected” temperatures.
The “corrected” temperatures reflect the average temper-
ature in the emitting region quite accurately, since they
sit quite close to the average between the upper and lower
bounds of the “true” temperatures. This close agreement
indicates that reflectivity measurement indeed can be
used to infer an effective emissivity for the purpose of
correcting brightness temperature measurements. The
magnitude of the correction to the emission is propor-
tional to 1/¢. In the case of Lee and More’s conductivity
the correction factor 1/¢ is much closed to unity (hence
less critical in determining temperature) since the
reflectivity drops quickly to small values (<0.1 after
about 30 ps for normal incidence).

C. Doppler-shift measurements

The localization of the emission and reflection to a
fixed density within the plasma profile suggests that a
Doppler-shift measurement of the reflected light spec-
trum may be used to obtain the average particle speed of
the material in this layer. The density and ionization
state may then be inferred using the particle speed ob-
tained from the Doppler-shift measurements. However,
inferring these latter two parameters requires some
theoretical input, since an EOS is required to infer a den-
sity from the particle speed. Doppler-shifted reflections
have been used in high-intensity femtosecond laser-
produced plasma measurements to determine plasma ex-
pansion speeds, and hence to infer the plasma tempera-
ture [12]. We discuss next the basis for inferring these
parameters from optical measurements.

In the ideal case of a perfectly isentropic release wave
(centered rarefaction), all of the hydrodynamic variables
are functions of the self-similar coordinate z /t. There is
no explicit time dependence other than through this self-
similar parameter. Hence the density and particle speed
throughout the profile are related through a single time-
independent monotonic function, which can be calculat-
ed easily using the equation of state of the material (along
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the release isentrope) using Eq. (2). The important conse-
quence of this fact is that the particle speed associated
with any given density in the release profile is a time-
independent quantity, and varies smoothly throughout
the release profile. Since the reflection is localized to a
particular density layer, the average observed Doppler
shift will be nearly constant in time. This function relat-
ing mass density p to particle speed u is shown by the
solid curve in Fig. 15. This curve is derived from the
isentrope passing through the 10-Mbar shock state on the
Hugoniot curve in aluminum.

In the calculations we have shown here the situation is
not quite so simple, because the high thermal conduction
at the beginning of the release results in an initially iso-
thermal release profile. This means that the initial parti-
cle speed u for a given density is significantly larger than
that expected from an isentropic release, but relaxes
quickly to smaller values. However, even at ¢t =100 ps
the isentropic release does not describe the p-u relation-
ship adequately. The other two curves in Fig. 15 show
snapshots of the p-u relationship at time =10 p and 100
ps after the shock release. In the 0.1-1.0 g/cm® density
range this will introduce a time-dependent correction of
the order of (0.2-0.4)X10°% cm/s. Figure 16 shows a
calculation of the Doppler shift AA/A=2u /c evaluated
for the particle speed at critical density (at A=570 nm
and normal incidence) for both conductivity models. The
different results arise from the different ionization state
models. In Rinker’s model the larger ionization states
means that the critical electron density is located at a rel-
atively lower mass density, and correspondingly higher
particle speed. Nearly constant Doppler shifts of
AL/A~2.5X10"* can be expected for a 10-Mbar shock
in AL

One can use the Doppler-shift measurement to infer
the mass density by using a hydrodynamic simulation
with a reliable equation of state and thermal conductivity
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FIG. 15. Density vs particle speed in the release profile. The
solid curve shows the stationary curve predicted from a perfect-
ly self-similar isentropic flow. The dash-dot curve and dotted
curve show snapshots of the p-u curves at =10 and 100 ps, re-
spectively, from calculations of the release profiles including the
effects of thermal conduction.
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to provide an accurate p-u curve along the release profile.
As we have shown earlier, the mechanical parameters in
the release profiles calculated with the different EOS
models (QEOS and SESAME) agree remarkably well, and
indicate that these curves may be relatively insensitive to
variations in EOS models. Furthermore, the discussion
in Sec. IIC indicates that an accurate assessment of
thermal transport effects, which govern the time-
dependent corrections, requires an accurate thermal con-
ductivity only in the vicinity of the Hugoniot state, where
current theoretical models are fairly sound. This strongly
suggests the possibility of inferring accurate mass densi-
ties from the Doppler shift in reflectivity.

Inferring the ionization state from such measurements
is also possible using the fact that the electron density at
the reflecting layer is determined by the wavelength of
the optical probe used (since the reflection occurs at the
critical density layer in the profile, where the plasma fre-
quency equals the optical frequency). The fixed and
known electron density, combined with the inferred mass
density, can then yield the ionization state. Further in-
formation, such as density gradients within the reflecting
region, might also be inferred from the spectral width
and shape of the Doppler-shifted reflected signal. This
assumes, naturally, that the incident probe spectrum is
sufficiently monochromatic.

Accurate calculations of the Doppler-shifted spectrum
will of course require a time-dependent solution of the
Maxwell equations in the moving release profile. The
current calculation assumes only a static profile (no time
dependence in the electromagnetic wave equations).

V. CONCLUSIONS

In the analysis presented in this study we have
identified the possibilities of obtaining information on the
transport properties as well as temperature, mass density,
and ionization state in dense shock-released plasmas us-
ing optical measurements. These plasmas are obtained by
shocking solid samples to isentropes lying above the
liquid-vapor critical point. Such measurements are possi-
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ble if the temporal resolution of the experiment is
sufficiently high to allow the examination of the release
process during times in the range of 10—100 ps after the
release of the shock. On this time scale the release wave
presents a very steep density gradient, in which an optical
probe interacts primarily with the critical density layer.
Thermal emission, absorption, and reflection will all
occur predominantly at this layer, thus providing a de-
gree of localization, in the density-temperature plane of
the material state responsible for the observed optical
properties.

Specifically we have shown that both emission and
reflectivity measurements will exhibit characteristic
dependences on time, angle of observation, and polariza-
tion state. Such dependences are all sensitive to the con-
ductivity of the plasma. Theoretical models of plasma
conductivity in the low-temperature region of dense plas-
ma states disagree to a sufficient extent that further ex-
perimental investigations will yield new information on
the subject. The basic experimental techniques for per-
forming these measurements have already been demon-
strated, although they require further refinement to ad-
dress the possibilities suggested in this study. At this
time, laser-driven shocks provide the most viable method
for producing the strong shock pressures required for
these experiments (to reach release isentropes above the
critical point), and because such methods are easily
adapted to the high temporal resolutions required.

Further information may be obtained by combining
reflectivity and emission measurements to infer the plas-
ma temperature within the emitting and reflecting region.
Measurement of the reflected light spectrum may also
lead to determination of the particle speed within this
layer, and allow an assessment of the mass density and
plasma ionization state with the help of an equation-of-
state model. From Fig. 14 and 16 it is clear the experi-
mental determinations of the density and temperature of
the localized region of absorption and emission will yield
data that are nearly constant in time from about 20 ps to
more than 100 ps. A successful measurement of these pa-
rameters within this time range would provide specific
experimental constraints on the density and temperature
of the emitting and absorbing plasma layer, and thus al-
low meaningful comparison with theoretical results.

Progress in this area requires close interactions be-
tween theory and experiment. Proper interpretation of
experimental results is dependent on accurate theoretical
models. It is, however, also evident that the present
theoretical picture is not complete. In the current situa-
tion, ionization states may be computed from one model,
equation of state from a second (or a combination of
several), and conductivity from a third. The various
models are not necessarily self-consistent. Yet in all cases
the desired physical parameters such as ionization state,
scattering cross sections, and thermodynamic functions,
should stem from a common microscopic model. We be-
lieve that the next step in producing a clearer theoretical
picture would be to provide all of the thermodynamic
and transport data from a common theoretical frame-
work describing the microscopic dynamics. Thus such a
model would provide equation-of-state data, transport
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properties, and ionization state (and perhaps a
frequency-dependent conductivity) all self-consistently
calculated from the same microscopic description. This
self-consistent model could then be used as input data for
hydrodynamic simulations as well as reflectivity and
emission calculations for comparison with experiment re-
sults.
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APPENDIX:
MODIFIED BONDING CORRECTIONS IN QEOS

In this appendix we describe the modified bonding
corrections we used to obtain a more realistic cohesive
energy. This modification changes the density-
temperature coordinates of the location of the critical
point. The original Barnes correction uses a two-
parameter expression [27,20]. The two parameters are
determined by requiring that the bulk modulus at stan-
dard density match the experimental value, and that the
total pressure is zero. The cohesive energy corresponds
to the change in internal energy required to expand from
standard density to infinite volume on the cold curve, i.e.,
E,=E(V—«, T=0)—E(V,,T=0), where V, is the
specific volume at standard density. With no further pa-
rameters for adjustment the standard Barnes correction
produces a cohesive energy that does not necessarily
match the experimental result. For the region of expand-
ed densities we replaced the Barners correction with a
four-parameter empirical correction to account for chem-
ical bonding and also produce the correct cohesive ener-
gy. (For compression ¥V <V,, the standard Barnes
correction is still applied in our calculations.) The ex-
pression for the bonding pressure is

P (f)=3K,(1+2f )V Ha+f+EF+EfY), (A1)
where
f=HVy/Vy3—1]. (A2)

As with the Barnes correction, this expression is added to
the other pressure contributions in the EOS to produce a
total pressure. The parameter a takes on a negative
value, hence the pressure correction describes a negative
tension to cancel out the positive electron pressure pro-

duced by the Thomas-Fermi statistical model. This func-
tional form is inspired by the Birch-Murnaghan equation
of state which has been used successfully to fit the cold
compression curves of many solids [47]. However, it
should be noted that this expression is used in the present
context in a purely empirical manner. The compression
parameter f spans the interval 0= f > —1 as the volume
ratio ranges from 1= V,/V =0. The correction to the
internal energy (relative to standard conditions) corre-
sponding to the bonding pressure in Eq. (A1) is

14
E,(f)=— fVOPde=9Kb Volaf +1f2+L1ef3+ 1614 .
(A3)

There are four free parameters in these expressions, K,
a, &, and &, which are determined by four conditions.
Three of these conditions arise directly from physical
constraints, which are (i) the total pressure at normal
solid density is zero; (ii) the bulk modulus at normal solid
density matches the experimental values; (iii) the cohesive
energy E. matches the experimental value. These three
constraints can be satisfied using Eq. (A1) truncated be-
fore the cubic term in f (i.e., {=0). However, this ap-
proach leads to the unphysical result that the bonding
pressure P, becomes positive at some finite volume. This
occurs because for {=O0 the polynomial in f passes
through a zero somewhere in the interval 0= f = —1.
Therefore we impose a fourth constraint which explicitly
sets this polynomial to zero in the limit of infinite
volume, i.e., a + f+Ef*+{f?=0 for f=—1. This gives
the physically plausible result that P, <0 at all volumes
V=V, From these four conditions it is easy to deter-
mine the coefficients in Eqgs. (A1) and (A3).

K, =K1po—Ko+35P1ro » (A4)
_ Prp
a= 3Kb ) (AS)
16 E. +Ergo
=—2|——>———3-—18 A
£ 9 KV, al, (A6)
16 E. +Ertgo
(=—4|——F——+2+20a (A7)
9 K, V,

The input constants required for evaluating these expres-
sions are V,, the bulk modulus at standard density K,
and cohesive energy E.. In addition the Thomas-Fermi
electron pressure Pyg,, energy Er gy, and bulk modulus
K 1o evaluated at zero temperature and standard density
are required to complete the determination of the param-
eters.
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