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Self-consistent cluster approach to the homogeneous kinetic nucleation theory
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An alternative, self-consistent formulation of the homogeneous nucleation theory has been proposed.
This approach differs from the classical Becker-Doring-Zeldovich theory in two respects: (i) evaporation
rates are evaluated by referring to the stable equilibrium of a saturated vapor rather than to the con-
strained metastable equilibrium of a supersaturated vapor; and (ii) for the reference stable equilibrium
state the Fisher theory of condensation is used in order to obtain a self-consistent definition of the free-
energy barrier for l-cluster formation, where l is the number of molecules in the cluster. A comparison
of the expressions for the nucleation rate and critical cluster size with the corresponding classical expres-
sions has been made for the different parts of the phase diagram (temperature-supersaturation) and the
domain where both theories are close has been found. Predictions of the present theory have been com-
pared with the experimental results on nucleation of n-nonane for the three sets of experiments (diffusion
cloud chamber, fast-expansion cloud chamber, and two-piston cloud chamber). It has been shown that
the present theory has a much better agreement with experimental results for n-nonane than the classical
theory.

PACS number(sl: 82.60.Nh, 64.60.Qb, 05.70.Fh

I. INTRODUCTION

The theory of homogeneous nucleation from a supersa-
turated vapor has been the subject of intense investiga-
tions since the 1930's. The approach developed in the
early works by Becker and Doring [1] and Zeldovich [2]
is now referred to as "classical nucleation theory. " It is
based on the assumption (known as "capillarity approxi-
mation") that the free energy of a cluster (droplet) is
equal to the bulk free energy plus the free energy of the
cluster surface. Classical theory results in a simple ex-
pression for the nucleation rate as a function of supersa-
turation and temperature. However, in a number of ex-
periments it was found that predictions of classical
theory differed from experimental values by several or-
ders of magnitude [3—6].

Various modifications of the classical theory have been
proposed. Lothe and Pound [7] suggested that a cluster
should be treated as a large molecule and additional con-
tributions to the free energy due to the translational and
rotational degrees of freedom should be taken into ac-
count. Their calculations increased the nucleation rate
by a factor of 10' —10' . Reiss, Katz, and Cohen [8] cri-
ticized this idea (which, as they pointed out, led to the
"translation-rotation paradox"), saying that it counted
certain contributions to the free energy twice. Instead
they proposed a model that assumed that the free energy
of a cluster with fixed boundaries and a center of mass,
which fluctuates over the entire cluster, was equal to the
free energy of that same number of molecules in the bulk
liquid plus a surface free energy without corrections due
to translation and rotation. The result they obtained
turned out to be close to the classical one. Several other
attempts have been made (see, e.g., [9]) which were not
fully satisfactory. So the classical theory still remains the
most widely used method to predict nucleation rates.

The classical theory (as well as the above-mentioned

models) represents a combination of kinetics of cluster
growth and thermodynamics. In the kinetic part it as-
sumes that cluster growth and decay are dominated by
monomer addition (condensation) and monomer extrac-
tion (evaporation). For an ideal vapor the condensation
rate is known from the gas kinetic theory. The evapora-
tion rate is obtained by reference to the so-called "con-
strained steady state" (McDonald [10]),which would ex-
ist for a vapor at the same temperature and supersatura-
tion S„)1 as the vapor in question. Such a fictitious
state was postulated in order to enable the integration of
the Aux equation determining the rate of nucleation.
Constrained equilibrium is achieved by introducing
Maxwell demons —monomers are continually replen-
ished by the artificial dissociation of clusters which grow
beyond a certain size. The necessity of such an artificial
construction clearly follows the fact that a supersaturated
vapor (S„)1) is not a true stable equilibrium but a none-
quilibrium metastable state.

An alternative procedure was suggested by Katz and
co-workers [11,12] in which the evaporation rate was ob-
tained by reference to the stable equilibrium of a saturat-
ed vapor (S„=1) at the same temperature as the vapor in
question. Thus in this procedure, which we shall refer to
as the "kinetic theory of nucleation" [11], no artificial
construction is needed.

The crucial point of the theory is the choice of the
model for a Gibbs free energy of cluster formation AGI.
This choice constitutes the thermodynamic part of nu-
cleation theory. Katz and co-workers used the classical,
purely phenomenological definition of AG&, containing
the surface term and the bulk term. Assuming clusters to
be spherical, it reads

AGI /kT=Ol —/ lnS„,
where T is the temperature, k is the Boltzmann constant,
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0 is a dimensionless surface tension, and l is the number
of molecules in the cluster. In case of the saturated vapor
(which is the reference state in the kinetic approach of
[11,12]) the bulk term vanishes and Eq. (1) results in

EGl /kT =Ol (2)

K(l ) = 1+a,l ' +a2l (3)

where a1 and a2 were temperature-dependent quantities
selected to fit the saturated vapor pressure and the second
virial coefficient. The parameter a1 defines the so-called
Tolman length [17). A lot of effort has been made to cal-
culate a, using molecular-dynamics simulations [18,19]
of Lennard-Jones fluids but until now consensus has not
been reached whether ui has a finite or zero value. The
most recent and extensive molecular-dynamics calcula-
tions of Nijmeijer et al. [19] indicate that within the er-
ror a1 cannot be distinguished from zero. This result has
been confirmed by the recent analytical calculations of
Blokhuis and Bedeaux [20]. They studied surface tension
on the basis of the Irving-Kirkwood theory of a micro-
scopic pressure tensor and came to the conclusion that
for a symmetric density profile at the liquid-vapor inter-
face the Tolman length is equal to zero.

Therefore instead of introducing curvature correction
(3) it is reasonable to use the Fisher theory for deriving a
self-consistent expression for the energy barrier (in the
sense of Blander and Katz [13])and combine it with the
kinetic approach. This is the aim of the present paper.

It must be noted that although both approaches ([10] and
[11])use different reference states they yield the same ex-
pression for the nucleation rate and critical cluster size if
for the Gibbs formation energy AGl the phenomenologi-
cal expression (1) is used. Predicted nucleation rates are
typically too low at low temperatures and too high at
high temperatures with errors on the order of 4—10 or-
ders of magnitude in both directions.

As was pointed out by Blander and Katz in 1972 [13],
the classical expression (1) is not self-consistent —a self
consistent definition of b, GI should satisfy the condition
AG1=0. In case of the kinetic approach this demand be-
comes particularly clear: AG, represents the difference in
chemical potential between a molecule in the vapor and a
molecule in the condensed phase for a system at an equi-
librium saturated state; then the condition of phase equi-
librium implies that these chemical potentials are equal,
thus AG, =0. This idea was used by Girshick and Chiu
[14] who suggested writing EGI in the kinetic approach
in the form

b, Gi /k T=8(1 i —1 ) .

Such choice introduces an extra factor e into the nu-
cleation rate.

Another extension of classical nucleation theory has
been suggested recently by Dillmann and Meier [15],who
used the classical McDonald approach [10] and the semi-
phenomenological Fisher cluster theory of condensation
[16] as an ansatz for the energy barrier b, G&. Dillmann
and Meier introduced a curvature correction factor to the
surface tension

II. MODEL

Jl vSI —1PI —1 R 1P l

where p& is number density of l clusters (cm ), v is the
rate of impingement (cm s ') representing monomer
flux to the unit surface, Rl is the evaporation rate of the l
cluster (s '). The rate of impingement is determined
only by monomers in view of assumption (i). From the
ideal gas kinetics [21],

v =p i Q k T /2 Iriil i

where m, is the mass of a molecule. In equilibrium Jl =0
for each l, so from (5),

0
0 Pl —1

Rl v Sl
Pl

where the superscript 0 denotes the true equilibrium state
("reference state") at the same temperature as the super-
saturated state of interest. Following [12] we rewrite (4)
in the form

Pl —1

0 0
vSl —1Pl —1 Pl

v' Pl
v Pl

and introduce a supersaturation coefficient

S„=v/v =p, /p (8)

characterizing the nonequilibrium state. Dividing both
sides of Eq. (7) by S„' ', we get

Jl
0 cl —1vsl 1Pl 15'

1 Pl -1 1 Pl
I —1 0 l 0

~p Pl —1 ~p Pl

If we sum this equation from l =2 to an arbitrary large L
then successive terms in the right-hand side cancel, re-
sulting in

L Jl
o

2 vsl ipl 1SJ

PL
L 0 (9)

The dynamics of the nucleation process is described by
the kinetic equation

Since a steady state is rapidly achieved we are interested

Our theory is based on the following assumptions. (i)
Cluster growth and decay are dominated by monomer ad-
dition (condensation) and monomer extraction (evapora-
tion); (ii) mass accommodation coefficients are equal to
unity; (iii) there is no intercluster interaction (i.e., the ex-
cluded volume effects and long-range interaction terms
are not taken into account); and (iv) the surface area of a
l-cluster sl can be written in the form

s, =s,l, 0(0- (4)

The parameter o. characterizes the geometrical shape of
the cluster. For spherical clusters 0.= 3.

Let J& be the net rate of 1-cluster formation (cm s ').
Using assumptions (i) and (ii) it can be written in the form
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By introducing an auxiliary function

H(l ) = ln(vs(p(S„' ),
the integrand can be written in an exponential form:

H(()dl
0

Expanding H(l) in a Taylor series around I=l„corre-
sponding to a minimum of H(l ), and truncating after the
quad. ratic term

2

H(l ) =H(l, )+——,
' (1—1, )

1=I

we obtain for the nucleation rate:

I= [H"(1,)/2m ]'~ exp[H(l, )] II

dl

The quantity l, represents the critical cluster size.
In order to proceed it is necessary to specify the equi-

librium number-density distribution pI. In the absence of
intercluster interaction [assumption (iii)] it can be ex-
pressed in the following form [16]:

(12)

where qI is the configuration integral of the l cluster, Vis
the volume of the system, z is the fugacity

z = exp(Pp )/1, (13)

P= 1 /kT, )Lt is the chemical potential in the equilibrium
reference state, A, =(2vrfi /m, kT)' is the thermal de
Broglie wavelength. The Helmholtz free energy of the l
cluster FI reads

PF, = —ln(q, /A, ') .

Combining Eqs. (12)—(14), we obtain

pi =—exp( —PQ) ),p 1

(14)

in the stationary solution when J& is constant, irrespective
of cluster size J& =I. The quantity I is called a nucleation
rate. As shown by Katz and Donohue [12] pL in Eq. (9)
is a slowly decreasing function of L, whereas S„pL is a
rapidly increasing function of L. Therefore, for
sufficiently large L the second term on the right-hand side
of Eq. (9) becomes negligible. Replacing summation by
integration we obtain

I= I ( vs(p(S„' ) 'dl

X I exp[ —Psiyo(1 —T/T, )]j' 1 'q(), (18)

where p (T) is the chemical potential at the saturation
point (i.e., on the binodal),

y =y()(1—T/T, ) (19)

is the "microscopic" surface tension, T, is the critical
temperature, and qo and ~ are constants related to the pa-
rameters of the critical state. Parameter ~ satisfies the
equation [23]

Z, —:p, /p, kT, =g(r)/g(r —1), (20)

where p, and p, are the critical pressure and critical
number density, respectively, g(x ) =g," ii

' is the
Riemann g function. r can vary in the limits: 2&v&3.
Using thermodynamic relations (14) and (15) we find for
the energy barrier

Pb 0, =0(l —1)+r lnl P(p p—)(l —1)—,
where

0( T ) =/3s, y (21)

is the dimensionless surface tension. Introducing a di-
mensionless temperature t = T/T„we can rewrite it as

0=0,(1/t —1),
where

0, =s&yo/k r
characterizes a particular substance. The quantity s,
may be calculated, assuming sphericity of a monomer,
given molecular weight M (g/mol) and mass density in
the liquid phase pi;q (g/cm ): s, =(6v m.m, /pi;q)
m, =M/N~ (N„ is the Avogadro constant).

Until now we have not yet specified the equilibrium
reference state characterized by the chemical potential p
[)M

& p (T)]. It is convenient to choose as this state the
saturation point at given temperature T (although any
other point on the corresponding gaseous isotherm could
be used). Then p =)M (T) and

EQI =0) —0)
plays the role of an energy barrier for l-cluster formation
(or activation energy). It can be shown on the basis of
simple thermodynamic arguments [22] that b.Q( is equal
to the Gibbs free formation energy AG& used in classical
theory. The configuration integral derived by Fisher [16]
on the basis of assumptions (iii) and (iv) reads

q(= Vt exp[ Pp —+ ink, ] j'

where Pbf), (=0(l —1)+rlnl . (22)

0)—FI p l

is the grand potential of an I cluster. We can rewrite this
result introducing the equilibrium number density of
monomers p, :

p( =p, exp[ —0(l —1)—r lnl ] . (23)

One can see that the energy barrier defined by Eq. (22)
vanishes at /=1, satisfying therefore the condition of
self-consistency [13]. From (16) and (22) the equilibrium
number-density distribution reads

p(=p, exp( —Pb, QI ),
where

(16)
Substituting this result into the function H(l ) defined in
Eq. (10), we obtain
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crOl, 1,—lnS„= (r—cr—) . (25)

It has a unique solution for each value of the supersatura-
tion S„)1. Near the binodal (where S„~1) l, tends to
infinity. On the other hand the restriction l, 1 gives,
somewhat arbitrarily, the extreme "limit of metastabili-
ty p

S„'"(T)=exp[crO(T)+r cr] .—

H(l }= 1n(vpis& )+ lnl —8(l —1)—r lnl + l lnS„. (24)

Differentiation of H(l) with respect to l gives the equa-
tion for the critical cluster size I, :

binodal

"Classi
Regio

C)

CB0 2

0
0.2 04 0.6 0.8

Values of 8( T ) for different substances range within wide
limits: from -3 for methanol at 350 K to —50 for mer-
cury at 290 K [14]. Thus S„'"varies from -e to -e

The second derivative of H at l =l„

FIG. 1. Phase diagram. The data used are those of n-nonane
(see the text).

H"(l, )=—[o(1—o )Ol, +r cr]—,
1

C

4 0I =vs p 'v'8/v—r expcl 1 13 271'n
(31)

is positive corresponding to a minimum of H as expected.
Combining Eqs. (10},(11), (23), and (26), we obtain for the
nucleation rate

1/2
cr(1 —o )Ol, +r cr-

I=vs, p', S„l, "+-'
2'

X exp[ —8(l, —1)],
with the critical cluster size I, given by Eq. (25).

(27)

III. PHASE DIAGRAM

o.Ol, 1+ = l, lnS„,
[

crOl,

where we set cr =
—,
' (spherical droplets). For sufficiently

large l, the second term in brackets becomes negligible
and the solution reads

l, = [—', (8/ lnS& ) ] (28)

which is identical to the critical size in the classical
theory. In the present theory this result is valid provided
that (r—

—,
' )/( —', Ol, ) « 1. In order to use this solution in

the calculation of the nucleation rate given by Eq. (27) we
need a slightly stronger inequality, namely,
(r——', )/( —,'Ol, r

) «1 which after substitution of Eq. (28)
gives

81 (r—2/3) ln S„
8 g3

" «1. (29)

Provided this inequality is valid we obtain the following
result:

In order to compare the results obtained with those of
the classical theory we rewrite Eq. (25) in the form

is the classical result for the nucleation rate and

3 lnS„f,(8( T),S„)= S„2 t9

37.

IV. RESULTS AND DISCUSSION

In order to calculate the nucleation rate from Eq. (27)
and compare it with available experimental data one
must define the nonequilibrium number density of mono-
mers p1. In case of nucleation from the vapor p1 is much
greater than the sum of number densities of all other l
clusters, 1=2,3, . . . [24]. Thus one can derive p, from
the vapor pressure via the relation p =—p1kT. Combining
it with Eqs. (6), (8), and (27) we obtain

2
1Psat S +

l (1+~ g )

kT"}/2rrm, kT

Thus in the "classical" region [corresponding to inequali-
ty (29)] of the phase diagram ( T S„)(Fig.—1) the present
theory and the classical one predict the same result for
the size of the critical nucleus, whereas the nucleation
rates differ by a factor f, . [Note that by setting formally
r =0 one comes to the result I= (e /S„)I,&, which Girsh-
ick and Chiu [14] have obtained recently on the basis of
phenomenological considerations. However the value
7 =0 is beyond the range of validity of the present theory,
which is 2 & r & 3.] Within the "classical" region one can
find an area where the difference between I and I,1 is not
large. It depends on the value off„e.g. , within the area
bounded by the lines f,= 10 and f,= 10 this
difference is not more than 2 orders of magnitude.

In the "nonclassical" region of the phase diagram, lim-
ited from above by the maximal value of supersaturation
at given temperature S„'"(T), relation (30) does not
hold.

I=f I,i,
where

(30)
1/2

o(1—cr)Ol, +r cr-
exp[ —8(l, —1}], (32)

2n
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FIG. 2. Comparison of experimental nucleation rates for n-

nonane with the predictions of the classical theory (open circles)
and the new theory (closed circles). Triangles, experimental
data of Hung, Krasnopoler, and Katz [6]. The labels are tem-
peratures in K.

which is used in the calculation of the nucleation rate in
the classical theory [Eq. (31)].

The present theory in its equilibrium thermodynamic
part is based on the Fisher cluster model in which the
surface tension is given by Eq. (19). This form of temper-
ature dependence is essential for the relations between
critical indexes. Therefore in order for our theory to be
consistent we have to use Eq. (19) for y. The unknown
free parameter yo can be then found with the help of the
best-fit procedure (linear regression) given the experimen-
tal data on surface tension [Eq. (33)] over the temperature
range [To, Tf ]. It results in

M=128.259 g/mol,

T, =594.6 K, Z, =p, /p, kT, =0.26,

p&lq 0 733 50 7r 875 62 10 TCe]s

—9.689 37X 10 T~,i,
—1.296 16X 10 Tc,» g/cm Tf Tf

go= f (a bT)(1 —T/T, )—dT J (1—T/T, ) dT .
0 0where Tc,» = T—273. 15.

For p„,(T) we use the King-Najjar equation [26]
Integration gives yo =46.224 dyn/cm.

In Fig. 2 experimental data of Hung, Krasnopoler, andp„,( T ) = exp[ —17.568 32 ln T+ 1.525 56 X 10 2T

—9467.4/ T+ 135.974 ] dyn /cm

which most accurately fits experimental data on equilibri-
um properties of n-nonane [6]. The solution of Eq. (20)
reads ~=2. 190; for o. the classical value o.=—', is used.

The best available surface tension is well described by
the linear relation (Jasper isobaric equation) [28,29]
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where a =50.2513 dyn/cm and b =0.09347 dyn/cm K.
We must note that all the measurements of surface ten-
sion were made at —20'C and higher [28]. That is why
in order to cover the whole range of nucleation data from
To=203 K in experiments of Wagner and Strey [27] up
to Tf =315 K in experiments of Hung, Krasnopoler, and
Katz [6], we have to extrapolate the linear law (33) to the
lower range of temperatures. As was pointed out in [6]
the total uncertainty in surface tension is no more than
0.5 —1 %%uo over the temperature range [To, Tf ]. It is this
relation (33) and its extrapolation to lower temperatures

~ o
~ p

o ~
i I

~ 0
o 0

10'
1O' 1O*

Supersaturation

FIG. 3. Comparison of experimental nucleation rates for n-

nonane with the predictions of the classical theory (open circles)
and the new theory (closed circles). Triangles, experimental
data of Adams, Schmitt, and Zalabsky [3]. The labels are tem-
peratures in K.

where p„,(T) is a saturated vapor pressure at tempera-
ture T.

We compare predictions of the present theory with the
experimental results for n-nonane (C9Hzp) for which reli-
able experimental data exists and with predictions of the
classical theory. During the last decade new experimen-
tal techniques have been developed which make it possi-
ble to measure directly the nucleation rate as a function
of supersaturation and temperature in the different
domains of the phase diagram. n-nonane has been stud-
ied by three research groups —Hung, Krasnopoler, and
Katz [6], Adams, Schmitt, and Zalabsky [3], and Wagner
and Strey [27]—and consistent results have been ob-
served. Hung, Krasnopoler, and Katz [6] used the
thermal-diffusion cloud chamber and made measure-
ments in the range of low to intermediate rates
(10 cm s 'I & 10 cm s '). A second technique,
which uses a fast-expansion piston cloud chamber, was
applied by Adams, Schmitt, and Zalabsky [3] in the range
of intermediate to high rates (10 cm s ' & I & 10
cm s ') and by Wagner and Strey [27] in the range of
high rates (10 cm s '&I & 10' cm s ') (in [27] the
two-piston expansion cloud chamber was used). We com-
pare our theoretical results with these three sets of exper-
iments.

The following values of the physical properties are
used in our calculations [25]:
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Katz [6] are compared to the predictions of classical
theory and of our alternative theory in an (I S„)-plot for
different temperatures; labels correspond to temperatures
in K. Figures 3 and 4 do the same with the experimental
data of Adams, Schmitt, and Zalabsky [3] and Wagner
and Strey [27], respectively. It can be seen that the classi-
cal theory gives satisfactory predictions in a rather nar-
row temperature range, approximately between 258 and
285 K. For T)285 K classical results are 3 —4 orders of
magnitude higher than experimental nucleation rates.
For T(258 K the tendency is the reverse: classical re-
sults are 3—8 orders of magnitude lower than experimen-
tal data. The present theory gives much better predic-
tions in the whole temperature range studied except for
the measurements with high nucleation rates ( T ~ 10
cm s ') in the experiments of Wagner and Strey; for
I ~ 10 cm s ' our theoretical results are 2 —4 orders of
magnitude higher than the experimental data.

In order to make a comparison between different
theories and experiment more vivid we show in Figs. 5 —7
a plot of experimental data versus predictions of theory
for different temperatures. Perfect agreement between
theory and experiment would be demonstrated if all the
data fell on the same ("ideal" ) line I,„,=I,„„,. The best
agreement between the alternative theory and observa-
tions is obtained for the experiment of Hung, Krasno-
poler, and Katz (Fig. 5).

In Fig. 8 the ratio of critical cluster sizes (l, „/l, )
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FIG. 6. Nucleation rate: experiment of Adams, Schmitt, and
Zalabsky [3] vs theory (classical theory, lower part; new theory,
upper part). The labels are temperatures in K.
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