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The steep phonon-dispersion curves found in computer-simulation studies on normal and super-
cooled water which have been interpreted as evidence of the existence of “fast-sound modes” of kinetic
origin are considered. From the analysis of the dynamical structure factor of polycrystalline ice it is
shown that such features are present in the solid calculated within the harmonic approximation, and
the anomalous steep increase in frequency is shown to be originated by optical phonon branches,
which cross the acoustical ones at wave vectors below the zone center, and result in a pull-out up to
a maximum frequency at Q,/2, which roughly coincides with that of the sharp translational edge.

PACS number(s): 61.20.—p, 64.70.—p

I. INTRODUCTION

The existence of propagating collective modes in liquid
binary mixtures composed by particles with disparate
mass ratios, which are additional to those of a normal
sonic origin, has been predicted from calculations based
upon kinetic theory [1] and computer simulations [2].
However, the experimental verification of such a predic-
tion is constrained mostly to the hydrodynamic region
where some evidence has been adduced on the basis of
light-scattering studies [3], although some claims of ob-
servation of a similar phenomenon on binary mixtures of
dense gases have also been reported [4].

Liquid water was also expected to show such a behav-
ior due to the different masses of its constituent atoms
[2]. From computer-simulation studies [5-7] as well as
from calculations based on the Mori formalism using a
reduced dynamical variable which does not take explic-
itly into account the intramolecular bonding [7], the exis-
tence of such high-frequency features was inferred. Even
further, experimental evidence for the presence of such
an excitation was also adduced from a rough analysis of
coherent inelastic-neutron-scattering (INS) spectra from
liquid water [8].

From previous experience with the analysis of inelastic-
neutron-scattering spectra as well as molecular-dynamics
(MD) simulations of a related material (methanol) in
its liquid [9], glass, and crystalline modifications [10],
it became clear that, because of the presence of lower-
lying optical branches in the crystalline solid, an appar-
ently anomalous steep frequency versus wave vector curve
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could result from the orientational (polycrystalline) av-
eraging of the single-crystal spectra. That such a fea-
ture characteristic of the polycrystalline solid was also
present in the cold liquid was evidenced from compar-
ison of experimental INS results with MD calculations
for the liquid and lattice-dynamics (LD) results for the
polycrystalline solid [9]. As a consequence, an apparently
acoustical branch appears in the liquid phase when the
frequencies corresponding to the maxima of the S(Q,w)
dynamic structure factors (or the longitudinal current-
current autocorrelation function) are plotted against the
wave vector. Such a plot then shows frequencies far ex-
ceeding those which are a prolongation of hydrodynamic
sound, and therefore, only after a detailed analysis can
the physical origin of such a feature be clarified.

The aim of the present paper is, therefore, to help to
clarify the origin of what is observed in the computer
simulations of liquid water by means of the analysis of
the dispersion behavior of polycrystalline ice. The ratio-
nale of such an approach lies in the noticeable similarity
of the features observed in cold liquids and polycrystals
at the length and time scales accessible to neutron spec-
troscopy and computer simulations, once the differences
in elastic constants and phonon lifetime effects are taken
into account. As a matter of fact, the remarkable similar-
ities between the short-range structure of the cold liquid
and the solid, and the fact that the extent of real space
explored by INS or simulation techniques becomes com-
parable with the correlation length of the liquid phase,
explain the origin of such similitude. For such a purpose
a lattice-dynamical calculation was carried out following

3516 ©1993 The American Physical Society



47 PHONON DISPERSION IN POLYCRYSTALLINE ICE: ...

the same lines adopted in previous work [9], thus aiming
to help to rationalize the rather disparate interpretations
of MD results currently appearing in the literature.

II. COMPUTATIONAL DETAILS

For the pressures and temperatures of our interest the
relevant form of ice is hexagonal (Ih), which shows four
molecules in the unit cell [11] where each oxygen atom is
surrounded by four other oxygen atoms with tetrahedral
coordination. The hydrogen atoms are disordered with
an occupancy factor of 0.5 and lie on the lines joining
the oxygens, with one hydrogen atom on every line. Be-
cause of its disordered structure, it is difficult to settle
a lattice-dynamical model for hexagonal ice. There have
been a large number of attempts in the literature to work
out a model able to reproduce the Z(E) experimental
density of vibrational states (DOS) with varying degrees
of sophistication. The first ones treated the molecules
as point masses [12] in order to model the translational
modes. Because of the fact that both hexagonal and cu-
bic modifications present tetrahedral coordination and
that their Raman and infrared spectra are rather simi-
lar, a further model was proposed [13] using the cubic
lattice and imposing order on the hydrogen atoms. A
short-range force field was used and the calculated DOS
showed a remarkable agreement with experiment, surely
because of the similar crystal coordinations of both struc-
tures. We have tried this model using a more sophisti-
cated force field composed of a short-range part plus a
long-range one which accounts for the Coulombic inter-
actions. Although the calculated frequency distributions
(DOS) were found to be in acceptable agreement with
experiment [14] some instabilities appeared for certain
wave vectors. However, this model turned out to be use-
less for calculating the neutron-inelastic-scattering func-
tion S(Q,w) since it evidenced some important disagree-
ments with the available data concerning the dispersion
curves for the single-crystal [15] solid.

Fortunately, an ordered low-temperature, low-pressure
ice structure has been recently found experimentally un-
der special conditions [16], where the oxygen atoms lie
on a lattice identical with that of hexagonal ice. This
structure is orthorhombic and has been used successfully
in this work to model the lattice dynamics and neutron
scattering in hexagonal ice.

Other reported approaches use the fully disordered
structure where the dynamical problem is addressed by
means of computer molecular dynamics [17] or by brute-
force diagonalization of the dynamical matrix [18, 19].
However, there is a widely accepted consensus that, un-
less one is particularly interested in the details concerning
the high-frequency librational band (above 10 THz), the
most relevant features regarding the motions below such
frequency cutoff are reasonably well reproduced by the
LD calculations performed on proton-ordered structures
20].

[ Several potential function models using Lennard-Jones
functions for the short-range part and point charges for
Coulombic interactions are available in the literature for
water molecules [21,19]. We have selected the SPC po-
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tential [21], which has been shown to provide an excellent
agreement with the measured elastic constants of ice Ih
as well as predicts the correct pressure-induced transi-
tions [20], and also, in order to explore the robustness
of our predictions, we have checked that the results are
very similar using some other ones [transferable interac-
tion potential with four points (TIP4P), in particular].
As a first check, the minimum-energy crystal configura-
tion was calculated by means of a Newton-Raphson pro-
cedure starting at the orthorhombic experimental struc-
ture. The maximum lattice-parameter relative change
was only 4.6%, confirming the validity of the adopted
potential model. The LD calculation was carried out us-
ing the optimal (energy minimized) crystal configuration
by means of our own code [22].

The calculated DOS has been obtained by means of
a fine sampling of 40x40 x 40 points in the Brillouin
zone of the crystal and the resulting frequencies have
been binned into a histogram. Figure 1(a) shows both
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FIG.1. (a) Calculated Z(FE) densities of vibrational states
(DOS) for D20 ice (solid line) and H2O ice (dashed line). The
inset shows the translational region on an expanded scale.
(b) A comparison between the experimentally measured heat
capacity C(T) for H2O ice (full triangles) and the calculated
quantity which is shown as a dash-dotted curve.
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frequency distributions as calculated for both light- and
heavy-water ices, and an assessment of the reliability of
the calculated distributions can be made from compar-
ison of the specific heat curves corresponding to calori-
metric measurements [23] with that computed using the
resulting DOS for light-water ice, which are shown in Fig.
1(b) for the the range of temperatures where the anhar-
monic contribution is rather small [14]. As it can be
seen from the figure the computed and measured curves
for the C(T") heat capacity are in rather good agreement,
being the maximum discrepancy located about 10 K. The
origin of such a discrepancy is not understood at present,
but it seems to be an ubiquitous feature in the compar-
ison between calculated and calorimetric heat capacities
reported so far [13].
The coherent inelastic-neutron-scattering intensities
J
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have been calculated within the one-phonon approxima-
tion, where the scattering at a dispersion vector Q is
governed by the momentum and energy conservation laws
Q=G —-qand E—- Ey = +hw(q). F and Ej are the
energies of the scattered and incident neutrons, respec-
tively, G is a reciprocal-lattice vector, and w(q) is the
frequency of the phonon (q;) involved in the process.

The dynamic structure factor corresponding to coher-
ent one-phonon scattering processes S(Q, w) can be writ-
ten in the following way for molecular systems [24]:

8(E;(q) * 3 hw;(a))

F1(Qq)) = ZZ bie”"iQ - [e*(a, k;) +e"(a, k;) x x(ki)]

k
x exp[iQ - x(ki)] exp[iG - x(k)],

where 1 labels the different atoms in the molecule k,
b; is the coherent scattering length of atom i, W; is the
Debye-Waller factor, x(k) is the position vector of the
center of mass of molecule k¥ and x(ki) is the position
vector of atom 7 belonging to molecule k with respect to
its center of mass, and e” (q,k;) and €® (q,k;) are the
rotational and translational components of the polariza-
tion vectors. The calculation has been performed using
thermal parameters compatible with those of ice Ih for
T =88 K.

In order to allow a comparison with optical spectro-
scopic data [25], the limiting frequencies at @ = 0 have
been evaluated and a comparison between experimental
results from INS [14] and Raman and infrared [25] is given
in Table I for the set of 21 modes (the three acoustical
lattice modes at @ = 0 are disregarded). Taking into
account the difficulties in extracting accurate frequency
values from the broad features present in the experimen-
tal spectra [25], the agreement between the calculated
and observed lattice frequencies can be considered to be
quite reasonable.

For the polycrystal, the relevant scattering function
S(Q,w) must be obtained as an average over all scatter-
ing directions Q [26]. This process has been carried out
by dividing the @ space in a fine mesh ( 40 x 40 x 40
points in the first Brillouin zone). In order to provide
a range of Q values compatible with both the MD sim-
ulation and the experiments, the explored extent in the
reciprocal space was set to 0.1 A=1 < Q < 4.5 A~1. This
implies that the range of interparticle distances in real
space will be confined within the interval 1.396 A<r <
62.8 A.

Because of the large number of phonon peaks appear-
ing in S(Q,w) once the polycrystalline average is per-
formed, it is obviously difficult to assign an average fre-
quency to the observed excitations. In order to de-
fine such a quantity, we have evaluated the first even-

S(Qaw) (mOde qj) = w]2(q) [Fl(quJ)lz
(1)
with
(2)

frequency moments of the scattering law which are de-
fined as

pn= [ dow” (@), 3)
—o0

w§ = n2/1(Q), (4)

wi = pa/pa, (5)

1(Q) = po- (6)

TABLE 1. Calculated frequencies (in THz) at

zero-momentum transfers for all the optical modes of light-
and heavy-water ices.

D20 ice H-O ice
IR IR
Mode LD INS Raman LD INS Raman
1 0.96 1.01
2 1.50 1.64 1.64 1.58 1.71 1.70
3 4.82 4.47 4.68 4.97 4.59 4.92
4 5.85 6.05 6.19 6.38
5 7.26 6.63 6.62 7.63 6.87 6.86
6 7.62 7.84
7 7.66 7.94
8 8.77 8.85 8.54 9.35 9.16 8.99
9 9.36 9.91
10 10.57 14.88
11 11.11 15.69
12 11.31 15.76
13 11.33 15.91
14 12.42 12.57 12.74 17.46 16.95 16.64
15 13.14 18.07
16 13.55 18.65
17 14.52 20.47
18 16.17 22.07
19 16.40 16.32 16.64 22.73 22.03 23.08
20 16.98 23.34
21 18.17  21.52 19.18 24.76 29.26 25.19
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The rationale behind the use of moments lies in the
fact that, as shown in recent works on the thermodynam-
ics of highly anharmonic crystals [27], reasonable coarse-
grained approximations for the spectral shape can be ob-
tained from the knowledge of the first even-frequency
moments, and, on the other hand, can be compared
with thermal and mechanical quantities in the long-
wavelength limit. The square root of the second fre-
quency moment, wp, has the meaning of a physical fre-
quency with a hydrodynamic limit given by vegQ, where
veg is the average sound velocity defined in terms of
the longitudinal and transverse sound velocities [28] (i.e.,
3/v3z = 1/v} +2/v3). It should be noticed that the huge
elastic intensity has been subtracted and therefore I(Q)
plays the role of an inelastic structure factor and not of
a static S(Q).
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On the other hand, and in order to compare with the
published results for liquid water, the frequency position
versus wave vector of the main peaks in the dynamic
structure factor S(Q,w) or those corresponding to its
Ji(Q,w) = w?/Q?*S(Q,w) longitudinal current counter-
part have also been evaluated from spectra which were
binned into larger frequency channels in order to remove
their 6-like character. The maxima of the spectral en-
velopes of J;(Q,w) are denoted as wmax. The latter quan-
tity is most commonly plotted in MD works on the lig-
uid phase, and in this case at least two different spectral
bands are clearly seen.

I1I. RESULTS

From inspection of Fig. 1(a) it can be seen that
the main effects related to the motion of the hydro-

FIG. 2. Calculated S(Q,w) dynamic
structure factors (left column) and the cor-
responding J;(Q, w) longitudinal current cor-
relation functions for a sample of the low-

est wave vectors within the first Brillouin
zone corresponding to polycrystalline D20
ice. The momentum-transfer value for each

graph is given within each frame in inverse
angstrom units.
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gen (deuterium) atoms are mainly confined to the high-
frequency librational band, which, due to the large differ-
ence in atomic masses between hydrogen and deuterium,
is shifted to higher frequencies in HoO ice. Some values
regarding the isotopic frequency shifts have been com-
puted, and, for the translational band, the ratios of fre-
quencies corresponding to the same peaks in light- and
heavy-water ice are rather close to the square root of the
ratio between the molecular masses. The shifts in this
region are between 1.034 and 1.07, which compares very
favorably with those derived from experimental measure-
ments by Li et al. [14] which range between 1.03 and
1.05. The corresponding ratios for the librational band
are within the interval 1.37-1.41 (close to the square root
of the mass ratio of deuterium to hydrogen), which ev-
idences the strong rotational character of these excita-
tions, and are also in good agreement with experiment
where values between 1.35 and 1.38 were found [14].

The analysis of the mode eigenvectors corresponding
to the main peaks in the Z(FE) was also performed.
As expected, no clear separation between translational
and rotational motions was found, even for the low-
frequency (“translational”) band, since all the modes
show a marked translation-rotation character, except in
the Q = 0 limit.

A set of S(Q,w) dynamic structure factors as well
as the corresponding J;(Q,w) functions for wave vectors
spanning the first Brillouin zone is shown in Fig. 2. As it
can be easily seen, purely acoustic manifolds are clearly
visible in the S(Q,w) spectra as well as in the J;(Q,w)
correlations, although in this latter case most of the spec-
tral power is transferred to the strong optical peak, ex-
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FIG. 3. The wmax frequencies corresponding to the most

prominent peak envelopes of J;(Q,w) for excitations below
20 THz. The hydrodynamic dispersion for longitudinal sound
is given as a straight solid line and that corresponding to
transverse sound by a dash-dotted line. The open squares rep-
resent the apparent dispersion of the most intense peak. The
line with vertical bars has been assigned a mostly transverse-
sound character (see text), and the one with solid lozenges
follows characteristics assignable to longitudinal sound. The
open circles, open squares with crosses, crosses, and open tri-
angles depict the apparent dispersion of peak envelopes of
small intensity appearing in the calculated functions.
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cept for the lowest explored wave vector (Q = 0.1 A~1).
As a matter of fact, from inspection of Table I as well as
from the analysis of the dispersion branches [15] it can
be seen that for wave vectors above 0.1 A~1 (about 0.28
in reduced units) the lowest-lying branches which corre-
spond to those with frequencies at @ =~ 0 of about 1.64
THz cross the three acoustical dispersion relations. At
higher momentum transfers, most of the spectral power
is dominated by the intense peak which is characterized
by a strong frequency dependence and reaches a plateau
value of about 10 THz at Q = 1 A~! and shows a van-
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FIG. 4. The upper frame shows the I(Q) inelastic struc-
ture factor as calculated from Egs. (3)—(6). The lower frame
shows a comparison of the @ dependence of wg, wi, the square
root of the u2, u? spectral moments with the wmax peak
frequencies (see text). The filled triangles and large filled
lozenges show the Q dependence of w; and wo, respectively.
Open squares give the dispersion of the most prominent peak
in Ji(Q,w). Small lozenges and vertical bars denote the
Wmax frequencies of peak envelopes of mostly longitudinal- and
transverse-sound origin. The solid and dash-dotted lines cor-
respond to the dispersion of longitudinal and transverse hy-
drodynamic sound as measured by light scattering by Gagnon
et al. [25].
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ishing intensity for wave vectors higher than 1.3 A~1.

The wave-vector dependence of wpayx, the frequency of
the most relevant maxima in J;(Q,w) is shown in Fig. 3.
The most noticeable feature regarding this figure is the
clear manifestation of the sound modes which are seen
as small peaks in Fig. 2 at frequencies well below those
of the most prominent band (up to 3 THz at Q = 0.8
A-1), and show a dispersion behavior with characteris-
tics rather well known from studies in simple polycrys-
talline fcc solids [26]. Also shown in Fig. 3 are the Q
dependences of peak frequencies appearing at large wave
vectors, and which can also be identified with pertinent
features appearing in Z(E), as well as the dispersion of
higher-lying peak envelopes.

The wave-vector dependence of the reduced frequency
moments is shown in Fig. 4, where the I(Q) inelastic
intensity is depicted in the upper frame and the square
roots of wg and w? are shown in the lower frame along-
side with lines which mark the longitudinal and trans-
verse sound velocities as measured by means of Brillouin
light scattering [25]. As it can be clearly seen from the
graph, both wg and w; show a steep increase in frequency
up to Q = 0.9 A~ where wg reaches a maximum value
of 8.6 THz, which closely corresponds to the frequency
of the highest-lying peak in the translational manifold of
the Z(FE) shown in Fig. 1(a). The minimum at @, [i.e.,
around the position of the maxima of I(Q)] corresponds
to a frequency slightly above that of the first peak of the
density of states (2 THz versus 1.6 THz), and the oscil-
lations from such a minimum up to the largest explored
wave vectors are confined within a frequency region of
about 2-4 THz which basically corresponds to the ex-
tent of the acoustic peaks appearing in Z(E) [13, 14].

From what is shown in Figs. 3 and 4, it seems clear
that the approach towards hydrodynamic sound occurs
at fairly low wave vectors (below 0.1 A~1) which makes
it extremely difficult to follow such a transition by means
of INS or MD approaches.

The higher-lying modes are also compared with the
spectral moments in Fig. 4(b). It can be seen from
the figure that up to about Q = 0.6 A~!, the disper-
sion behavior of the most intense peak in Ji(Q,w) ba-
sically coincides with wp. Again, from comparison with
the straight lines which extrapolate the dispersion laws
of hydrodynamic sound it is clear that, although within
this region of wave vectors this “dispersion curve” can be
interpreted as arising from the propagation of an excita-
tion defined by a well-defined average frequency, no con-
sequences regarding the deviation from the sound modes
can be adduced since the whole of the translational band
participates in such motions. From a comparison be-
tween the wg spectral moment with the dispersion curves
corresponding to the lowest-lying peaks as shown in Fig.
4(b), the following points become clear.

e A truly sound-mode manifold appears at low Q val-
ues in J;(Q,w) but remains visible in the S(Q,w)
all along the Brillouin zone, showing up to Q ~ 0.6
A-1 a quasilinear behavior. At the lowest explored
wave vectors such a dispersion curve joins the linear
dispersion law corresponding to transverse sound.
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FIG. 5. A comparison of the wmax characteristic frequen-
cies of the main peak in the polycrystalline J;(Q,w) (dashed
line with squares) with that resulting from MD calculations
of supercooled water [6] (dotted line with filled lozenges), or
normal liquid [7] water (dashed line with open circles). The
straight lines correspond to longitudinal sound for the poly-
crystal and normal liquid, respectively.

e Above Q,/2 the wave vector dependence of the
above-mentioned excitation shows a nearly Q-
independent behavior, and its characteristic fre-
quency becomes rather close to that of wg, and from
its asymptotic value at high Q it may be assigned
to mostly transverse sound waves, on the basis of
its identification with a characteristic singularity
appearing in the Z(F) density of states at such a
frequency.

¢ A second peak becomes visible from about Qp/2 up
to about 2.2 A~!. It shows a vanishing frequency
at @, and its slope gives a sound velocity of about
3800 ms~! which becomes close to that character-
istic of longitudinal sound (3914 ms™! [25]). From
such considerations it can be assigned to a mostly
longitudinal sound wave which, due to the over-
lap with the other manifolds, only becomes well
resolved within the second Brillouin zone.

A comparison between the results found in the present
work with those previously reported for liquid water in
its normal [7] or supercooled [6] states is finally made in
Fig. 5. As can be easily seen from comparison of the
curves corresponding to the polycrystal with those of the
liquid, the steep, high-frequency curves which have been
observed in the MD simulations are of a similar shape
to the one of the polycrystal. It seems clear that if al-
lowance is made for the strong softening of the elastic
constants after melting, as evidenced by the linear dis-
persion depicting the hydrodynamic sounds, both curves
corresponding to the polycrystal and liquid may be scaled
to a common one [29)].

IV. DISCUSSION AND CONCLUSIONS

Although the remarkable similarity between collective
dynamical phenomena taking place in hot solids with
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those of the same system upon melting at time and length
scales accessible to INS or computer simulations has long
been recognized, it has not been possible until very re-
cently to quantitatively relate these excitations at both
sides of the freezing transition. With the recent devel-
opments within the density-functional theory of freezing
[30] it has become possible to establish a quantitative re-
lationship between the phonon-dispersion curves in the
crystal and quantities encompassing the liquid dynam-
ics, at least for the simplest crystalline structures [31].
If such an endeavor still becomes impractical for com-
plex fluids as the one we are dealing with, it is clear that
conventional approaches based upon LD and MD com-
putations as well as experiments can provide important
insights into the intricate dynamics of these systems at
microscopic scales.

Although a large number of calculations have been re-
ported for either proton-ordered or -disordered ice poly-
morphs, the present communication constitutes an at-
tempt to calculate the orientationally averaged dynamic
structure factor on a realistic basis.

The collective dynamics of liquid water has been a con-
troversial subject for a number of years, and it seemed
difficult to reconcile the observations made with different
theoretical or experimental tools. In comparison with
other liquids studied up to the present moment [9, 32],
the dynamical characteristics of this liquid even at mi-
croscopic scales manifest strong anomalies such as the
ones described in the present paper, which has led to a
number of speculative statements regarding the origin of
the high frequencies appearing in computer simulation
[6, 5] or in experimental contributions [8]. A remarkably
similar behavior to the one found from the analysis of
the polycrystalline dynamical structure factors was pre-
viously noticed for other associated liquid [9], where the
wave vector dependence of the high values of the average
excitation frequencies for wave vectors above 0.6 A~! for
both experimental and simulated spectra were found to

CRIADO, BERMEJO, GARCIA-HERNANDEZ, AND MARTINEZ 47

be originated from the strong buildup of an optical peak
which dominates the spectral power from such Q values
onwards. On the other hand, and contrary to the case
of liquid water, the transition to the regime where the
acoustic modes are well separated from the optical ones
occurred in such a liquid at larger wave vectors (Q =~ 0.35
A-1) which enabled INS and MD studies to follow this
crossover in detail.

From the data and arguments exposed in the present
paper, the physical origin of the steep “dispersion curves”
has been clarified, and as a consequence, it seems clear
that the dynamic response of such a liquid should be
reexamined under a rather different light.

The results presented in this work are in agreement
with the recent reinterpretation of the “fast-mode” fre-
quencies in binary liquids, which are based on an analysis
of the mode frequencies in terms of renormalized quanti-
ties due to damping effects, rather than the bare frequen-
cies [33]. Once it is done, the dispersion curve for the fast
mode appears as an opticlike excitation approaching a fi-
nite frequency at lim @ — 0, thus being characteristic of
the motion of the light and heavy particles which exert
out-of-phase oscillations [33].

The data reported herein also evidence the difficulty
of approaching the problem from an experimental side,
since rather large incident wave vectors would be required
to cover a large dynamic range at small scattering angles,
as required to follow the steep excitations up to Q =
0.9 A—!. With the advent of high-flux spallation neutron
sources it should become possible in the near future to
test the predictions made in the present work.
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