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Anomalous viscoelastic, diffusion, and heat-transfer phenomena observed in spatially inhomogeneous
simple and complex fluids are analyzed in this paper in the setting of weakly nonlocal hydrodynamics.
Governing equations of this generalized hydrodynamics involve higher-order derivatives with respect to
the position coordinate. The governing equations are obtained on the basis of the following considera-
tion. The time evolution in both local and weakly nonlocal hydrodynamics is generated by a thermo-
dynamic potential in a state space equipped with a Poisson structure and a dissipative potential. The
Poisson structure is an expression of kinematics in the chosen state space. In weakly nonlocal hydro-
dynamics the Poisson structure remains the same as in local hydrodynamics but the potentials are gen-
eralized. The potentials are allowed to depend on higher-order derivatives of the hydrodynamic fields
that are chosen as state variables. This way of introducing the governing equations guarantees that the
equations are intrinsically compatible and that their solutions agree with certain fundamental macro-
scopic observations (e.g. , the observations constituting the basis of equilibrium thermodynamics).

PACS number(s): 51.10.+y, 47.10.+g, 83.50.By

I. INTRODUCTION

The governing equations of classical hydrodynamics
can be introduced and justified on the basis of three types
of arguments. Following arguments of the first type,
called here microscopic arguments, the analysis begins
with a microscopic theory (e.g. , quantum mechanics of all
molecules composing the fluids under consideration).
The governing equations of hydrodynamics are intro-
duced as follows. First, the governing equations of the
chosen microscopic theory are solved for all admissible
initial and boundary conditions. Then the pattern that is
registered in the hydrodynamic measurements is extract-
ed from the solutions. The equations that govern the
time evolution of the pattern are the hydrodynamic equa-
tions. Following arguments of the second type, called
here mesoscopic arguments, we try to understand and ex-
press dynamics of Auids without leaving the level of
description introduced in hydrodynamics. In this way we
introduce, for example, local conservation laws, hy-
pothesis of local equilibrium, and the Lagrangian descrip-
tion in which Quid particles move according to Newton's
law. Following arguments of the third type, called here
macroscopic arguments, we look towards more macro-
scopic (less detailed) theories (e.g. , equilibrium thermo-
dynamics). We require that solutions to the hydro-
dynamic equations agree with some well-established mac-
roscopic experience. For example, solutions of the hy-
drodynamic equations are required to obey global conser-
vation of mass, momentum, energy, and the dissipation
inequality that guarantees agreement with the experience
constituting the basis of equilibrium thermodynamics.

None of these three types of arguments is sufficient by
itself to provide a solid foundation of classical hydro-
dynamics. The difficulties with the microscopic approach
lie in the knowledge of the starting microscopic theory

and, of course, in the task of finding all solutions and ex-
tracting from them the pertinent pattern. The mesoscop-
ic arguments remain always limited in their implications.
They limit the freedom of choice of the admissible
governing equations but do not specify the equations
completely. It is the combination and the mutual interre-
lationship of all three types of arguments that constitutes
the foundation of classical hydrodynamics.

The setting of classical hydrodynamics becomes inade-
quate if, for example, the fIuids under consideration be-
come complex fluids (e.g. , polymeric fluids) and/or the
fluids involve strong inhomogeneities (e.g. , interfaces).
Hydrodynamics that is suitable for this type of Auids has
to be formulated in an extended state space (that includes
also quantities describing the internal structure of the
fluids) and/or has to involve nonlocal (integral) operators
in the position coordinate. We shall use the following
terminology. Hydrodynamics will be called extended if
the set of state variables is enlarged. Hydrodynamics will
be called nonlocal (weakly nonlocal) if its governing equa-
tions involve nonlocal integral operators in the position
coordinate (higher-order derivatives with respect to the
position coordinate). The question arises of how the mi-
croscopic, mesoscopic, and macroscopic arguments
developed in the context of classical hydrodynamics ex-
tend to extended and nonlocal hydrodynamics.

The main objective of this paper is to show how the
mesoscopic arguments based on the Lagrangian
viewpoint lead to the governing equations of weakly non-
local classical hydrodynamics (Sec. II) and weakly nonlo-
cal extended hydrodynamics of one- and two-component
fluids (Sec. III). We recover the well-known and experi-
mentally well-established effects (e.g., appearance of new
stresses in spatially inhomogeneous complex fluids [l —3],
non-Fickean diffusion in two-component complex Auids

[4—6], and migration across streamlines in inhomogene-
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ous fiows of two-component complex fiuids [7—11]) and
show that these effects are necessarily accompanied by
the appearance of other new stresses and reversible heat
cruxes. The mesoscopic and the macroscopic arguments
developed in Secs. II and III are then combined with mi-
croscopic arguments in Sec. IV.

II. WEAKLY NONLOCAL CLASSICAL
HYDRODYNAMICS

In this section we recall first (Sec. II A) the mesoscopic
and macroscopic analysis of classical hydrodynamics that
is based on the insight provided by the Lagrangian view
of Quid motion. This type of analysis is then applied in
Sec. II B to weakly nonlocal classical hydrodynamics and
in Sec. III to weakly nonlocal extended hydrodynamics.

A. Classical hydrodynamics

The Auids under consideration in this subsection are
classical simple fiuids (e.g., water). Following the experi-
ence collected in classical hydrodynamics, we choose
p(r), s(r), u(r) denoting the fields of mass, entropy, and
momentum, to characterize states of the Auids. One set
of mesoscopic and macroscopic arguments that lead to
the governing equations of classical hydrodynamics con-
sists of the requirement of local conservation, hypothesis
of local equilibrium, and the dissipation inequality. The
first two arguments do not, however, extend to more
general settings. An alternative set of mesoscopic and
macroscopic arguments that lead to the same governing
equations of classical hydrodynamics is based on the La-
grangian viewpoint of Quid motion and the dissipation in-
equality. The essence of these arguments is the realiza-
tion that the nondissipative time evolution is Harniltoni-
an. The arguments become particularly well adaptable to
different settings if the canonical Hamiltonian structure
that arises in the Lagrangian description is transformed
into a more general Poisson structure in the Eulerian
description [12—15]. If the nondissipative Hamiltonian
time evolution is combined with the dissipative time evo-
lution (the requirement of the dissipation inequality is
used) [16—21] then the complete time evolution can be re-
garded as a nonlinear extension of the Onsager-Casimir
reciprocity relations [22,23] and also as an extension of
the Cahn-Hilliard equation [24] to a dynamical equation
that takes into account also the nondissipative time evo-
lution. We now recall how the classical hydrodynamic
equations arise from an analysis based on the Lagrangian
description. The sequence of steps that will be estab-
lished in this subsection will be then followed in the rest
of the paper.

Following [16—21] we introduce the governing equa-
tions of classical hydrodynamics as time evolution equa-
tions generated by the thermodynamic potential N. Crra-
dient of this potential is transformed into a vector field by
the Poisson structure (characterized by a Poisson bracket
[ A, B]), expressing kinematics in the state space of clas-
sical hydrodynamic fields, and by the structure provided
by another potential 4 (called the dissipation potential),
expressing the dissipative mechanism in the time evolu-
tion. We shall now introduce @, [ A, B ], and %.

E=E(S,M), (2)

where E is the energy. In Mhyd, the fundamental thermo-
dynamic relation is a relation,

E=E(p, s,u)= f d re(p, s, u;r), (3)

where e(p, s, u;r) is the total-energy field. In order to re-
late (3) and (2) we introduce the thermodynamic potential

&b(p, s, u; T,p)=E(p, s, u) TS(p, s,u)—
M(p, s, u),

0
(4)

where T is the equilibrium temperature, p is the chemical
potential, and Mp is the molar mass. Next we look for
solutions of

54 54 6N
5p(r) ' 5s(r) ' 5u(r)

which we shall call thermodynamic equilibrium states
[we denote them by (p, s, u)aT]. The symbols 5/5p(r),
etc. , denote the Volterra functional derivatives. By
evaluating &0 at (p, s, u)FT and equating the result with—PV, where P is the thermodynamic pressure, we obtain
the dual (Gibbs-Duhem) form

P=P(p, , T) (6)

of (2). We shall leave the specification of the fundamental
thermodynamic relation in Mh„d [see (3)] open. In the
mesoscopic approach that we now follow, this relation
enters the analysis as part of the input. We shall return
to this point in Sec. IV, where we shall follow the micro-
scopic arguments.

The second building block of dynamics is the Poisson
structure characterized by the Poisson bracket [ A, B J,
where A, E, . . . are sufficiently regular functionals of
p, s, u. The canonical Hamiltonian structure revealed in
the Lagrangian description transforms in the Eulerian

First, we turn our attention to the thermodynamic po-
tential N. Let the state space of classical hydrodynamics
be denoted by the symbol Mh„d [i.e., (p, s, u)HMh„d].
The state space of equilibrium thermodynamics will be
denoted by MzT. Elements of MFT are S, M, denoting
entropy and mass, respectively. We need now to know
how the thermodynamic variables are expressed in terms
of the hydrodynamic state variables. From the
mathematical point of view, we introduce into Mhyd a
bundle structure: Mh„d=(Mh„d, M&T, IIFT ), where Mh„d
is the total space, MzT is the base space, and HFT:
Mhyd ~MpT 1s the bundle projection. The physical inter-
pretation of the hydrodynamic fields suggests

S=S(p,s, u)= fd rs(r),
(1)

M=M(p, s, u)= f d rp(r),

where the integration is over the space region in which
the Quid under consideration is confined. The volume of
this region will be denoted by the symbol V. The funda-
mental thermodynamic relation in M~T is a relation,
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+sly. (A, )B„—a.(B, ) A„)], (7)

where A —=5A /5p(r) and 8 =8/Br . It can be directly
verified that the bracket (7) is antisymmetric
( t A, B j

= —
I B,A j ) and satisfies the Jacobi identity

( t I A, B},C j+ I IB,C j, A j+ I [C, A },B j =0). We also
note that the base space Mz&- is composed of dis-
tinguished functionals. A functional C is called dis-
tinguished if I A, C j =0 for all functionals A. The equa-
tions governing the nondissipative time evolution of
p, s, u are obtained as follows. We require that

d, F= [F,@j (8)

holds for all functionals F. The left-hand side of (8) can
be written as

f d r(F„B,u +F d,p+F, B,s) (9)

and the right-hand side as

f d r(F„[ d (ur—@„)—u Br(N„)

description into the Poisson structure characterized by
the Poisson bracket [12—15]

[A,B}=fd r[u (8 (A„)B„—p (B )A )
y a

+p(a.(A, )B„—a.(B, )A„)

a, e =e a,p+e, a,s+e„a,u& ."r '

By using (11)—(13) we recast (14) into

a, e = —a,(ee„+pe„) .

(14)

(15)

This means that in classical hydrodynamics the heat Aux
is absent in the nondissipative time evolution of classical
hydrodynamics.

In order to introduce the dissipative part of the time
evolution, we shall follow [25—27, 16] and introduce a
real-valued function of

D.,=-,'(a.c„+a,e„)

cording to this hypothesis p(r) is related to
p(r), e(r), s(r), pointwise for all r, as thermodynamic
pressure is related to thermodynamic mass density, ener-

gy, and entropy. We see that this hypothesis is not need-
ed if the mesoscopic argument based on the Lagrangian
description is followed. The relation (13) arises as a re-
sult. This represents a considerable advantage over the
standard approach since extensions of the hypothesis of
local equilibrium needed in settings generalizing classical
hydrodynamics are far from obvious. We shall appreci-
ate this advantage in Secs. IIB and III. The equation
governing the nondissipative time evolution of the energy
field e (p, s, u; r ) is obtained as follows:

—pa.(e, )
—sa.(e, ) ]

+F [ —8 (p@„)]+F,[—8 (s@„)]), (10)

and Q =8 N„called a dissipation potential %. A poten-
tial %(x ) is called a dissipation potential if it satisfies the
following properties:

provided we use the boundary conditions that make all
integrals over the surface arising in integration by parts
equal to zero. Since (8) is required to hold for all F, we
have from (9) and (10)

a,p= —a,(pN„),

a, u. = —a,(u.e„)—pa.a,—sa.e, —u, a.e„,"y "r

B,s = —Br(s@„).

If we now use the requirement of conservation of the to-
tal momentum U(p, s, u) = jd r u(r), (i.e., a macroscopic
argument) we see that there has to exist a quantity, which
we shall call p, such that

%(0)=0,
reaches its minimum at 0,
is convex in a neighborhood of 0 .

The dissipative time evolution is governed by

a,p ——o,
au =ar+D

ay

a,s=a,~~ +~,
where

o= (D %D +Q Vg —))0.1

S

(16)

(17)

(18)

—a~ = —pa.c,—sa.c,—u, a.e„
and thus

(12) The inequality (18) arises as a consequence of the proper-
ties (16) and e, )0. The time evolution equations (17) im-

ply then

p = —e+pe&+se, +u&e„"r (13)
a, e=a, (e„qD )+a,(e, %& ) .

a ay r
(19)

Equations (11)—(13) become the governing equations of
classical (Euler) nondissipative hydrodynamics if @„is a
fluid velocity (this is indeed the case if e= —,'u /p+ an
internal energy that is independent of u) and p is inter-
preted as a local pressure. The relation (13) is the rela-
tion that is obtained in the standard mesoscopic ap-
proach (that begins with local conservation laws) as a
consequence of the hypothesis of local equilibrium. Ac- a,~=o, a, U=O, a,E=o, (20)

If we now put together (11)—(13) and (17)—(19) we obtain
the complete set of the time evolution equations of classi-
cal hydrodynamics.

We note that solutions of these equations satisfy the
following two properties.

(i) The global conservation laws
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expressing conservation of the total mass, total momen-
tum, and the total energy. Equations (20) follow directly
from the degeneracy of the Poisson bracket (7) and from
(12).

(ii) The global dissipation law

B,+~0 (21)

(p, s, u)

Note that Io I=identity. The state variables p and s are
said to have positive parity and u negative parity (a mag-
netic field is another example of a state variable having
negative parity). If the dissipation potential 4=0 (i.e.,
the time evolution is nondissipative) then the parity
operator I compensates the reversion of time. We see
easily that IFP I= FP = ( FP ) [(—) stands for
' formally adjoint"]. The time evolution is called in this
case time reversible. The presence of the operator P+
makes the time evolution time irreversible. We easily
verify that IFP+I=FP+ =(FP+) . The linearized time

that allows one to interpret the thermodynamic potential
N as a Lyapunov function associated with the approach
to thermodynamic equilibrium states. The inequality (21)
follows directly from (8) (note that B,N= [4,@]=0) and
from (18). The equality sign in (21) [i.e. , the case when
(21) represents an additional conservation law] holds only
if the dissipation potential 4=—0. The time evolution
equations for which the equality sign in (21) holds are
called nondissipative (Euler hydrodynamics equation in
the context of hydrodynamics).

An additional insight into the nature of the time evolu-
tion equations (11)—(13) and (17)—(19) can be gained by
linearizing them about an equilibrium state [i.e., about a
solution of (5)]. I.et B,y=P qr+P+y be the equation
governing the linearized time evolution in a small neigh-
borhood UET of the thermodynamic equilibrium state,
yE. UET. By P we denote the linear operator governing
the nondissipative time evolution [i.e., the time evolution
with 4 =0 and thus with the equality sign in (21)] and P +

the linear operator governing the dissipative part of the
time evolution. Let F denote the Hessian of the thermo-
dynamic potential 4 evaluated at the equilibrium state.
The properties of the Poisson bracket and the properties
(16) of the dissipative potential imply that the linear
operator FP is formally skew adjoint with respect to the
L2 inner product and the linear operator FP+ is formally
self-adjoint with respect to the L2 inner product and non-
positive (we have to insist on formal self-adjointness and
skew-adjointness since we do not specify details of the
domains of the linear operators involved). These proper-
ties of FP and FP+ constitute the statement of the
Onsager-Casimir reciprocity relations [22,23]. We can
thus regard the nonlinear time evolution formulated in
terms of Poisson brackets and dissipative potentials as a
nonlinear extension of the Onsager-Casimir reciprocity
relations. We note that P and P+ (and similarly also
the nondissipative and dissipative parts of the nonlinear
time evolution equations) can be distinguished also by in-
troducing the so-called parity operator I;

evolution arising in fully microscopic (particle) descrip-
tion of a macroscopic system is known to be time reversi-
ble with P satisfying IFP I= FP—=

( FP ) and
4=—0. The mesoscopic linear time evolution equations
thus retain this feature of the fully microscopic time evo-
lution in the nondissipative part of the time evolution.
Similarly, the nonlinear fully microscopic time evolution
equations are known to be Hamiltonian. The mesoscopic
nonlinear time evolution equations thus retain this
feature of the microscopic time evolution in the nondissi-
pative part involving the Poisson bracket. The rest of the
time evolution (i.e., the part involving the dissipation po-
tential) is time irreversible. Onsager [22] has introduced
an argument relating the microscopic time reversibility to
the Onsager-Casimir relations on mesoscopic levels of
description. Whether and how the Onsager argument ex-
tends to the nonlinear time evolution and can thus be
used to relate the microscopic time reversibility to the
generalized Hamiltonian structure of the nonlinear time
evolution equations remains an open question.

B. Weakly nonlocal extension of classical hydrodynamics

The Auids under consideration in this subsection and in
Sec. III are Quids that are strongly inhomogeneous (e.g.,
fiuids that involve interfaces) and/or fiuids with long-
range interactions and long-range correlations (e.g. , elec-
trically charged fiuids). The setting of classical hydro-
dynamics becomes inadequate to describe dynamics of
these Auids. To obtain a suitable setting, three
modifications of classical hydrodynamics have been sug-
gested. First, the regions of strong inhomogeneity (e.g. ,
interfaces [28,29]) or a substance, real or fictitious, that
mediates the long-range interactions (e.g. , electromagnet-
ic field in electrically charged fluids or a network of en-
tangled macromolecules in polymeric fiuids [30—32]) is
added as a new component. The state space is thus ex-
tended by the fields characterizing the new component.
In the second modification, the time evolution equations
are allowed to include nonlocal operators (integral opera-
tors in the position coordinate) [33]. In the third
modification, higher-order derivatives with respect to po-
sition coordinates are allowed to appear in the governing
equations. The third modification is thus a particular
case of the second modification. We recall that, accord-
ing to the terminology introduced in the Introduction,
the hydrodynamics arising in the third modification is
called weakly nonlocal. This hydrodynamics has been
discussed by using various mesoscopic and macroscopic
arguments in [34—39,11] and microscopic arguments
(higher-order approximations in the Chapman-Enskog
solution of the Boltzmann kinetic equation) in [40—42].
We now proceed to discuss the weakly nonlocal hydro-
dynamics by using the approach introduced in Sec. II A.

In this subsection, we shall still take the classical hy-
drodynamic fields p(r), s(r), u(r) as the only state vari-
ables. We shall, however, assume that the thermodynam-
ic potential N can be a function of p(r), s(r), u(n) and
also of their derivatives with respect to the position coor-
dinate. The dissipation potential + is also allowed to de-
pend on first and higher derivatives of p(r), s(r), u(r) with
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5N
( )

p(r) a a p(r) (22)

and similarly for other fields. If we now replace in (7) 4&,
etc. , by (22) and follow exactly the same steps as in Sec.
IIA, we obtain, after straightforward calculations, the
following result:

B,p = —Br(p(4&„—Bp4&a „)),
B,u = Bz(u —(@„—B&@a „))—B~ Bzr ~, —

"y 13 r

B,s= —B (s(@„—Bp&ba „)),"r P r

B,e = —Br((e+p )(4&„—B&C&a „)"y

(23)

+ (N„—Bp@ „)+q ),
where

p = —N+pN +s4, +u&@„"r

+~~c'a.p+ ~~@'a..+a.u yea...
r p= pB @a& sB @a& u&B C'a,0"y

(24)

(25)

q = —@a „(B@+Bye p) pea B (@„——Bp@a „)
s@a B (@ Bp@a

u @a,. B,(e„—B~@a,. ) . (26)

Equations (23)—(26) are the equations governing the non-
dissipative time evolution in weakly nonlocal hydro-
dynamics generated by the thermodynamic potential de-
pending on p(r), s(r), u(r) and B~(r), B~(r), B u&(r).
We stress that Eqs. (23)—(26) have arisen as a direct
consequence of the Poisson bracket (7) and the require-
rnent of conservation of total momentum. There are no
other physical considerations and assumptions involved
in the derivation of (23)—(26).

respect to r. For the sake of simplicity, we shall assume
in this subsection that N depends only on p(r), s(r), u(r)
and their first derivatives with respect to r. Specification
of the functional dependence of 4 on p, s, u and their
derivatives is left open. A microscopic analysis leading to
such specification is introduced in Sec. IV. Thermo-
dynamic potentials depending on derivatives of the
chosen state variables with respect to r or on quantities
that become later in the analysis associated with such
derivatives have also been introduced, for example, in
[43,44,24, 1 —3]. We shall focus our attention on the non-
dissipative time evolution. Some of the methods to in-
clude higher-order derivatives in the dissipative part of
the time evolution have already been explored in [37,38].

We recall that the Poisson bracket expresses in
mathematical terms kinematics in the chosen state space.
Since we keep the same state variables as in the previous
subsection, we shall also keep the same Poisson bracket
(7). The derivatives 5/5p(r), etc. , are the variational
derivatives. If @ depends on p(r) and also on B~(r), we
have +c(p, s, u)B u&B u& (27)

of the thermodynamic potential. By N, & h„d we denote the
thermodynamic potential introduced in classical hydro-
dynamics (i.e., in Sec. II A) and a, b, c are functions of
p, s, u. Thermodynamic potentials that bear some simi-
larity to (27) arise, for example, in extended irreversible
thermodynamics [44] [see also (74)]. From (27), we see
that the velocity field [conjugate to the momentum field
u(r)] equals (N, ) h„d)„, which can be interpreted as the

a
velocity of the homogeneous component, minus
Bz(c(p, s, u)B&u ), which can be interpreted as the veloci-
ty of the inhomogeneous component. The quantity c is
related to the mass density of the inhornogeneous com-
ponent. This two-component view is then consistent also
with the generalization (24) of the hypothesis of local
equilibrium. The terms in (24) that are new if compared
with (13) can be interpreted as arising due to the appear-
ance of a new component. The new component then also
makes the fiuid behave as a viscoelastic fiuid [due to the
appearance of the nondissipative extra stress tensor (25)]
and a "heat-elastic" fiuid [due to the appearance of the
nondissipative heat fiux (26)]. It is also important to note
that if N depends on the fields as well as on their deriva-
tives then we cannot pass freely from the energy repre-
sentation to the entropy representation [in which the
state variables are the fields p(r), e(r), u(r)]. Also, the re-
lation between state variables and their conjugates is not
one-to-one.

Weakly nonlocal extension of linear hydrodynamic
equations (linearized about a thermodynamic equilibrium
state) has been discussed in [36]. Let

B,y=P y+P+y (28)

be the governing equation of the linearized classical hy-
drodynamics. Equation (28) thus possesses the Onsager-
Casimir symmetry, (i.e., FP is a formally self-adjoint
linear operator, FP is a formally skew-adjoint operator,
and F is the Hessian of the classical thermodynamic po-
tential that depends on p, s, u but not on their deriva-
tives). Now, linear operators P+ and P are introduced

A few comments concerning the physical interpreta-
tion of (23)—(26) are now in order. We note that if the
thermodynamic potential @ is independent of
B~,B~,B u& then (23)—(26) reduce to (11)—(15) govern-
ing the time evolution in classical hydrodynamics. If 4
depends on p, s, u as well as on B~,B~,B u& then the
conjugate state variables [i.e., 5@/5p( r ), 5N/5s ( r ),
54&/5u (r)] appear as having the form of a sum of two
terms [see (22)]. The first term can be interpreted physi-
cally as the conjugate state variable corresponding to the
homogeneous component and the second as correspond-
ing to another component that we can call an inhomo-
geneous component. To see more explicitly this two-
component view of a one-component inhomogeneous
Quid we introduce a particular form

4(p, s, u, B~,B~,B u&j T,p) =@„i„(p,s, u, T,p)

+a (p, s, u)B~B~

+b(p, s, u)B~B~
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by adding to P and P terms involving higher-order
derivatives. One looks then for F so that FP is a for-
mally self-adjoint linear operator and FP is a formally
skew-adjoint linear operator. The F found in this way is
then interpreted as the Hessian of an extended thermo-
dynamic potential that depends on p(r)s(r), u(r) and also
on B~(r), B~(r), B u&(r). The analysis presented in this
section can be thus seen as a nonlinear extension of the
analysis of linear weakly nonlocal hydrodynamics
presented in [36].

As for the dissipative time evolution, we shall be con-
tent with (17). Since 4&„and 4&, are replaced now by vari-
ational derivatives (22), the dissipative tiine evolution
equation involves fourth-order derivatives with respect to
r. Dissipation potentials involving higher-order deriva-
tives can be introduced, for example, by casting the
analysis in [37,38] into the form involving a dissipation
potential.

III. WEAKLY NONLOCAL EXTENDED
HYDRODYNAMICS

The fluids under consideration in this section are com-
plex fluids such as, for example, polymeric fluids, suspen-
sions, and liquid crystals. Since the internal structure in
these fluids evolves on the time scale that is comparable
with the time scale on which the classical hydrodynamic
fields evolve, the time evolution of the internal structure
cannot be separated from the time evolution of the hy-
drodynamic fields. Consequently, the state space has to
be enlarged by adopting new state variables characteriz-
ing the internal structure. Following Hand [45] (see also
[21])we shall choose a symmetric tensor field C(r), called
a conformation tensor field, to characterize the internal
structure. We could also choose, for example, a
configuration space distribution function g(r, R), where

R is the end-to-end vector of a macromolecule or a
suspended particle [the conformation tensor C can be ex-
pressed in terms of g as c &(r)=la RR R&g(r, R)] or
a vector field n(r) characterizing the end-to-end vector
field of macromolecules or suspended particles (used, for
example, in the Leslie-Ericksen theory of liquid crystals
[1—3]).

In Sec. III A we consider one-component weakly non-
local complex Quids. Kinematics (i.e., the Poisson brack-
et) of the state variables p, s, u, C has been analyzed in
[16,46,47]. The route to the time evolution equations es-
tablished in Sec. II can be thus followed in a straightfor-
ward manner. In Sec. III B we consider two-component
weakly nonlocal complex fluids. Kinematics and the cor-
responding Poisson bracket for two-component complex
fluids is introduced in Sec. IIIB. Having the Poisson
bracket, we can then arrive at the time evolution equa-
tions (describing, among other effects, the nonlinear non-
Fickean diff'usion and migration across streamlines) by
following the same route as in Sec. II.

[ A B]=
[ A B]'""" '+ [ A, B]",

where [ A, B[""" ' is the Poisson bracket (7) and

(29)

A. One-component weakly nonloeal complex Nuids

Kinematics in the classical hydrodynamic state space is
the kinematics deduced from the Lagrangian description
[this part of the kinematics is expressed in the first term
of (7)] and from viewing the scalar fields p(r) and s(r) as
being simply advected by the material ffow [this part of
the kinematics is expressed in the second and the third
term of (7)]. If we now adopt the conformation tensor
field C(r) as an extra state variable, we view its kinemat-
ics also as a simple advection by the material flow
[16,46,47]. This then implies that

M 5W

5cyp 5u
Ia,B]"=fd'rc, ~ a.

cyp u

5A
~

58 5A
~

5B
5c p

~ 5u 5c ~ 5u
5a 5W 5a 5W

5c ~ 5u
(30)

If we now assume that the thermodynamic potential N
depends on p(r), s(r), u(r), C(r) and proceed as in Sec. II,
we arrive at equations governing the time evolution of
p(r), s(r), u(r), and C(r). These are the equations that
have been used extensive1y to model polymeric fluids
[47,48,21] and liquid crystals [48,21].

Similarly as in the preceding section, we can now con-
sider the thermodynamic potential as depending also on
derivatives with respect to r of the fields p, s, u, C and
derive the time evolution equations of weakly nonlocal
extended hydrodynamics. We shall work out here only
the case where N depends on p(r), s(r), u(r), C(r), and
8 c& . Having the bracket, derivation of the time evolu-
tion equations is completely algorithmic [see (8)—(11)].

a, u. = —B,(u.c „)—a~ —a,~., (31)

a,c.,= —a,(c.,e„)+c,,a,e„+c.,a,e„,
B,e= —B (( +pe)@„+ @r„+q ),y

where

We can therefore present only the resulting time evolu-
tion equations:

B,p= —By(p@„),

a,s= —a,(se„),
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+ay 2c&pC c cepBa+8 c +2c&pBe+0 caP p 6P E aP

q = —cp 8,(@ )@s, +2cp Bp(@ )@a

(32)

(33)

(34)

The inequality in (36) holds due to the requirement that
0' satisfies (16). We note that the complete time evolution
equations (31)—(36) imply the dissipation inequality (21)
as well as the conservation laws (20). The thermodynam-
ic potential 4 and the dissipation potential 4' have been
specified for many polymeric Auids and solutions of
(31)—(36) have been compared favorably with results of
rheological measurements [21,50—52].

8 p=0

B,s =0,
(35)

As in Sec. II 8, the new terms arising in (31)—(34) due to
the dependence of N on 8 c&z can again be physically in-
terpreted as corresponding to a new component (called
the inhomogeneous component) that modifies [see the last
term in (32)] the hypothesis of local equilibrium [that is,
however, already modified by adopting C(r) as the state
variable —see the fifth term in (32)], contributes to the
viscoelastic behavior [see the last two terms in (33)], and
brings about the nondissipative heat fiux (34).

Let us now choose the vector field n(r) instead of the
tensor field C(r) as the state variable characterizing the
internal structure. In terms of C(r), the vector n(r) can
be regarded as the principal eigenvector of C(r). In the
particular case of isothermal and incompressible Auids,
the equations governing the time evolution of n(r) have
been worked out, in the setting of Poisson brackets, in
[48]. The additional terms that appear in the expression
for the extra stress tensor due to the dependence of 4 on
8 n& are the same as those introduced originally on the
basis of other considerations in [1—3]. These additional
stresses are called Frank-Ericksen stresses. We shall use
the same terminology also for the additional stresses [the
last two terms in (33)] that arise in the setting in which
the tensor field C(r) rather than the vector field n(r)
serves as the extra state variable. The time evolution
equations with the configuration distribution function
it(r, R) serving as the extra state variable have been intro-
duced in [49].

Now we turn our attention to the dissipative time evo-
lution. By using the experience collected in theoretical
and experimental investigations of polymeric Auids
[21,47 —50] we let the dissipation potential 4 depend only
on +. The dissipative time evolution is thus governed
by

B. Two-component weakly nonlocal complex fluids

The Auids under consideration are now mixtures of two
complex Auids. One possible set of state variables that we
can suggest to describe states of the mixture is
p„si, u&, Ci,pz, s2, uz, C2, where the quantities with the
subscript 1 (2) describe states of the first (second) fiuid.
Kinematics of the mixture is characterized by the Pois-
son bracket [ A, B j = j A, B j"'+ [ A, B j' ', where

[ A, B j'" ( [ A, B j
' ') is the Poisson bracket (29) with the

state variables p„s„u„C, (pz, sz, uz, C2). Now let the
components of the mixture be simple Auids. In this case
the conformation tensors C, and Ci (describing the inter-
nal structure of the components) can be omitted and thus
the set of the state variables that we suggest to describe
states of mixtures of two simple fluids is

p&, s&, u&, p2, s2, u2. Experience with mixtures of simple
fluids indicates, however, that a smaller set of state vari-
ables consisting of p&, p2, s, u, where s and u correspond
now to the mixture as a whole, is often sufficient to de-
scribe states of the mixture. We proceed now to intro-
duce a similar smaller state space and its kinematics in
the case of mixtures of complex Auids.

We shall consider only a special case of the two-
component mixture: one component is a simple fluid, the
second component is a complex Auid. We can think, for
example, about a polymer solution in a solvent that
behaves as a simple Auid. As in Sec. III A, we begin with
the classical hydrodynamic description of the Auid as a
whole. The state variables are thus p, s, v, where the sym-
bol v is now used to denote the momentum field, and the
corresponding Poisson bracket is the bracket (7). The
fact that the Auid is a two-component mixture is ex-
pressed through the internal structure. The state vari-
ables with which we choose to describe the internal struc-
ture are m(r), w(r), C(r) representing mass density,
momentum, and the conformation tensor of the complex
component. Contrary to the analysis in Sec. III A, where
we allowed C to be simply advected by the material flow,
we now allow the internal structure (characterized by
p, w, C) to evolve as a complex fiuid. This means that the
corresponding Poisson bracket is

where the entropy production [ g B j [ g B j(cl.hYd)+
[ g (37)

(36) where [ A, B j'"'"" ' is the bracket (7) (we recall that the
symbol v now denotes the momentum field) and
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5B 5A 5A 5B
5w 5w 5m 5w

5B 5A
5p 5w

5A 5B
5crp 5w

5A
~

5B
5c p

r 5w

5B 5A
5c p 5w

5A
~

5B
5c p 5w

J

5B
~

5A
5c p

r 5w

5B
~

5A
5c p 5w

(38)

Since I A, B I'" "" ' as well as I A, B I' are Poisson brack-
ets, both involving diferent sets of state variables
(t A, BI'" "~ ' involves p, s, v and I A, BI' involves
m, w, C), the bracket (37) is also a Poisson bracket. So
far, the kinematics of the Quid as a whole and the kine-
matics of the internal structure remain separated. We
shall couple them in the same way as in Sec. IIIA. We
shall regard the internal structure as being advected with
the material fiow. We thus introduce the transformation
from the set of state variables p, v, s, m, w, C to another
set of state variables p, u, s, m, w, C by

p p ~

U —V+W,

W —W,
(39)

$=$

m=m,

C=C.

This one-to-one transformation implies that the velocity
with which the complex component moves is the sum of
the total fluid velocity C&„(i.e., conjugate of the momen-
tum u) and the velocity 4& (i.e., conjugate of the momen-
tum w that constitutes a part of the state variables chosen
to characterize the internal structure). Since the trans-
formation (39) is one-to-one the Poisson bracket (37)
transforms under this transformation into another Pois-
son bracket,

5A 5B 5B 5A 5A 5B
5p 5u 5p 5u r 5u 5u

5B 5A

5A 5B+s B~ 5s 5u
5B 6A

~
5A 5B

6$ 5u 6m 5u
6B 5A
5m 5u

5A 5B 5B 5A 5A 5B
5wr 5u 5w~ 5u ~ 5w 5w

5B 5A
5w 5w

6A 5B
+wr

5B 5A
~

5A 68
~

5B 5A

5A 5B 5A 5B
rp 6c r 5u 5c p 5u

5B 5A 5B 5A
5cr~

(
5u~p

5A 5B
+Crp B~

5B 5A
5c p 5w

5A
~

5B 5A
~

6B
5c r 5w 5c p 6w

5B 6A
6C r 5w

5B 5A
Bp (4O)
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We are now in position to write the equations govern-
ing the nondissipative time evolution of p, s, u, m, w, C.
We shall first consider only the thermodynamic poten-
tials @ that depend on p, s, u, m, w, C and are independent
of derivatives with respect to r of these fields. Following
the standard calculations [see (8)—(10)] we obtain

B,p= —8 (pC&„),

B,m = —Br(m+„)—B~(md& ),"y r

B,c &= 'd (c—p4„)+c &0 4„+cr Br/„

(41)

—8 (c &@ )+c &8 4 +c 8 4

B,w = —B~(w 4„)—mB @ —w~B 4„"y "r
—

c~&B @, —B~(w 4& ) —w~B 4&„

+2By(c p4, ),y Q/3 Cp

B,e = —B~((e+p )&0„+r~ @„+q~ ),
where

p = —4+pN +sN, + u "r

+m+ +u N +c &N,
y ap

7 QP= NQ4~ 2CQy4 c )
p rp

(42)

q =(mC& +w @„+c&N, )@ —2c &4,Q Na Q Cap ~a Q Cpr Nr

(44)

If needed, the weakly nonlocal extension of these equa-
tions can be worked out in a straightforward manner by
considering thermodynamics potentials depending also
on derivatives of the fields p, s, u, m, C, w with respect to
r. The Volterra derivatives 4, etc. , are then replaced by
the variational derivatives (22).

We now turn our attention to equations governing the
dissipative time evolution. Following Sec. III A, we shall
first introduce dissipation potentials [see (16)] depending
only on @,@c,@ . The dissipative time evolution is
again required to satisfy the dissipation inequality (21)
and the conservation laws (20). The equations governing
the dissipative time evolution are thus

where

(46)

m' =+
(47)

and choose

w
ql= —,

' Jd r(w*, z*)A
L

(48)

The inequality (46) holds due to the requirement that 4
satisfies (16). We shall end this subsection with three re-
marks.

Remark 1. Equations (41)—(46) represent a complete
set of nonlinear equations governing the time evolution of
a mixture of a simple fluid and a complex fluid. Equa-
tions of this type have been introduced before (for exam-
ple, in the context of extended irreversible thermodynam-
ics [6]) but not as fully nonlinear equations. For this
reason we see in (41)—(46) new terms as, for example, the
diffusion contribution to the extra stress tensor [the first
term on the right-hand side of (43)] and the nondissipa-
tive heat fiux (44).

Remark 2. Equations (41)—(46) describe non-Fickean
diffusion since the diffusion flux w enters dynamics as an
independent state variable. We can show easily that un-
der some simplifying assumptions the non-Fickean
diffusion reduces to the usual Fickean diffusion. We as-
sume that w evolves in time much faster than the rest of
the state variables so that, after some time, we can set
B,w=0 in the sixth equation of (41) and the sixth equa-
tion of (45). We shall assume moreover that @ is a quad-
ratic function of w so that N -w. If we then neglect in
the sixth equation of (41) and the sixth equation of (45)
the nonlinear terms, we obtain w -8 N, that is, the
Fickean diffusion law.

Remark 3. Observations of polymeric solutions in
strongly inhomogeneous flows indicate that diffusion cou-
ples in an interesting way with higher-order gradients of
the flow. In particular, we have in mind observations of
the migration across streamlines [7—11]. In order to see
these effects in the setting introduced in this subsection,
we have to choose a dissipation potential that is different
from the one introduced in (45). In this remark we shall
limit ourselves only to the simplest dissipation potential
allowing display of the migration across streamlines. We
introduce the notation

Btp=o,

a, u. ——O,

Bts =o,
8 m= —4

(45)

where

A, 5 A25=
A5 A5 (49)

B,c p= —4@
ap

8 mt Q

is a symmetric positive-definite matrix, 5 denotes the
3 X 3 unit matrix, and A, , Az, A3 are constants. With the
dissipation potential (48) the equations governing the dis-
sipative time evolution are
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B,p=O,

B,m =0,
a,c.~=o,
B,m = —%'

a

where

(7 =—(z *(Il, +w *4, ) ~ 0 .1
z* & w*

(50)

(51)

We now assume, as in Remark 1, that w evolves in time
much faster than the rest of state variables to that, after
some time, we can set B,w=O in the sixth equation of
(50). Since

~ =A&m* +A2z*,

the sixth equation of (50) implies to* -z*, which in turn
implies

W Z (52)

if 4 is a quadratic function of w. The diffusion Aux z* is
the Aux across streamlines. Indeed, let us consider a How
in the x direction between two horizontal parallel plates.
This means that only the x component of the velocity and
only its z-direction gradient are different from zero. Con-
sequently, only the z component of z* [see (47)], that
equals c3,03+„ is different from zero. By looking at the

1

second equation of (50) we see that in addition to migra-
tion across streamlines we also predict the appearance of
a new viscosity term (proportional to the third-order
derivative of the material velocity) that has to always ac-
company the migration across streamlines.

IV. WEAKLY NONLOCAL THERMODYNAMIC
POTENTIAL

In the context of the rnesoscopic and the macroscopic
approaches to the derivation of hydrodynamic equations
that we followed in previous sections, the thermodynamic
potential N and the dissipation potential 4 remain
unspecified. We recall that it is in these potentials that
the individual features of Auids are expressed. If we
remain only with the mesoscopic and macroscopic argu-
ments we can specify N and 4 only by making a cornpar-
ison with experimental results. The comparison consists
of first finding solutions of the governing equations for all
N and 4' and, second, choosing one particular pair of
these potentials for which the predicted and the mea-
sured results show the best fit. All other ways to specify
(4&, %') require the use of a more microscopic point of
view. We can either introduce an insight into the micro-
scopic nature of the macromolecules composing the Quids
and use for example Gibbs's equilibrium statistical
mechanics to specify @ (for examples of this approach see
[48,21,52]) or extract (4&, 4) from solutions of the govern-

( v )
—e (P /T) —( —

( (/2T)v (53)

where T and p are real numbers that will be interpreted
below as thermodynamic temperature and chemical po-
tential. The submanifold BERET is noted since fET are
fixed points of the time evolution. To prove it, we note
that fET is a solution of

Bf(r,v)

where [compare with (4)]

(54)

@ET(f;T,p)=E(f ) TS(f ) pN(f—), —

N(f)= f d rf d v f(r v),

S(f)= —fd r f d v f(r, v) lnf(r, v),

(55)

(56)

E(f)=f d rf d r ,'U f(r, v) . — (57)

Since the potential NET introduced in the Boltzmann ki-
netic equations (A2) and (A7) is the potential (55), we see
that the distribution functions (53) are indeed the time-
independent solutions of the Boltzrnann equation. The
functional N(f) has the physical meaning of the total
number of moles (or the total mass, since we put the mass
of one particle equal to 1), S(f ) is the Boltzmann entro-
py, and E(f ) is the total energy if there are no interac-
tions among the particles. From the mathematical point
of view, it is useful to interpret (56) as an introduction of
a bundle structure into Mj,„i.e., Mk, —= (Mk„MET, IIET),

ing equations formulated on a more microscopic level of
description. We shall follow here the latter route. The
process of extraction can be regarded as a pattern recog-
nition process in the set of solutions of the microscopic
governing equations found for all admissible initial and
boundary conditions. The more microscopic theory that
we choose in this section is kinetic theory.

States of Auids are characterized in kinetic theory by
the one-particle distribution function f(r, v), where (r, v)
denotes the position and the velocity of one particle. The
state space composed of one-particle distribution func-
tions will be denoted by the symbol Mk, (i.e.,f(r, v ) EMk, ). We shall consider Mk, as a linear vector
space equipped with the I.2 inner product. Contrary to
the analysis in the previous sections, we shall narrow our
attention to a specific Quid, namely, an ideal gas whose
time evolution is governed by the Boltzmann kinetic
equation (see Appendix). To simplify the notation we
shall set the mass of one particle equal to 1. We are in-
terested in extracting the thermodynamic potential used
in weakly nonlocal hydrodynamics from solutions of the
Boltzmann kinetic equation.

Let us assume that the Boltzmann equation has been
solved for all initial conditions and we are looking at the
resulting set of trajectories in M«. The first feature that
we note is the two-dimensional submanifold of M«,
denoted by the symbol JRET, AtETC: Mk„ formed by the
Maxwell distribution functions
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where MET ~s the base space and HET: M« ~MET, is the
bundle projection specified by (56) [compare with (1)].
The relation (57) is interpreted as the fundamental ther-
modynamic relation in M« that characterizes in M«an
ideal gas. The potential, @ET, introduced in (56), is the
potential that arises in Legendre transformations corre-
sponding to the fibration (56) and the fundamental ther-
modynamic relation (57). If we now evaluate @ET at fET
and equate the result with —PV, where P is the thermo-
dynamic pressure and V is the volume, we obtain the fun-
damental thermodynamic relation P =P(p, T) [compare
with (6)].

4 ET(fET; T,p, ) = —Tf d r fd v fET

Boltzmann kinetic equation. If collisions play the dom-
inant role in the time evolution then the submanifold
JKhyd wil 1 be close to being an invariant submanifold.
This is the reason why the submanifold Afh„d is noted.
Similarly as in the preceding paragraph, we note that
fh„'d are solutions of

g@ktO

5f(r, v)

where

@h&d=E(f )—f d r[T(r)s(f;r)+p(r)p( f;r)

= —T&e'" ' '(2vrT)' = PV— (58) + u ' (r}u(f;r)] (61)

characterizing, now in the thermodynamic state space
MET, an ideal gas.

Another submanifold that is noted in M« filled with
solutions of the Boltzmann equation is the submanifold
(denoted by the symbol Af'h„'d, A,fz„'dC,Mk, } composed of
local Maxwellian distribution functions

and

p(f;r)= f d v f(r, v),

s(f;r)= —fd v f(r, v) lnf(r, v),

u(f;r)= f d vvf(r, v) .

(62)

p, (r) [u*(r)]'
T(r) 2T(r)

X exp
[v —u'(r)]

2T(r)
(59)

The quantities p(r), u*(r), and T(r) will be interpreted
below as thermodynamic duals of the hydrodynamic
fields. We note that the distribution functions fh„d are
solutions of A =0 [see (A6)] and thus the time-
independent solutions of the dissipative part (A7) of the

We interpret (62) again as an introduction of a bundle
structure into M„„ i.e., Mk, = (Mkt —Mhyd, llh~y~d) wllele

Mhyd is the hydrodynamic state space serving now as the
base space and IIhyd M«Mhyd is the bundle projection
specified in (62). The potential Nh„'d introduced in (61)
can be seen again as arising in Legendre transformations
corresponding to the fibration (62) and the fundamental
thermodynamic relation (57). If we now evaluate @h„'z at

fh„d and equate the result with —f d rp(r), where p(r)
is the local pressure, we obtain

+„"yd(f'„y'd, T(r),p(r), u"(r)):—4'„'„',= —f d r f d v T(r)fh„d(r, v)

= —f d rT(r)exp ~ +
T(r) 2T(r)

= —f d rp(r),

—1 [2mT(r)] ~

(63)

that is, the fundamental thermodynamic relation in Mhyd.
The thermodynamic potential C&(p, e, u; T,p) used in Sec.
II is obtained from (63) by Legendre-transforming (63)
into a potential depending on the hydrodynamic fields
that are dual fields to the fields p(r), T(r),u'(r). The
thermodynamic potential @(p,e, u; T,p ) obtained in this
way is then a specific example of the thermodynamic po-
tential (4) that in hydrodynamics characterizes an ideal
gas.

Finally, we introduce a third submanifold in M« that
distinguishes itself in M« filled with solutions of the
Boltzmann equation. We shall denote it by the symbol
JRh'd, and its elements by fh'„d. In order to introduce
JRh„d we shall return to the submanifold JKh„d. As we
have noted in the previous paragraph, Jkhyd is close to be-

ing an invariant submanifold if collisions play a dominant
role in the time evolution. We shall now examine more
closely the invariance of JKz„'d. The Boltzmann vector
field attached to Jkf, z„'d is

x(o)
Ua& Jhyd ~ol"~

(64)

while the vector field that is tangent to JKhyd is

BT(r) ' Bp(r) '
gg '(r) (65)

where the time evolution of T(r),p(r), u'(r) is governed
by the Euler hydrodynamic equation (11) with 4& being
the dual of @'„„~d introduced in (63) and p(r), e(r},u(r) be-
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g (v —u') + g &(v —u*)D &,
1 ~ 8T 1

(66)

where

ing dual [again with respect to the potential (63)] of the
fields (M(r}, T(r), u*(r). If the two vector fields (64) and
(65) were identical then the submanifold JK(h„)d would be
invariant. It is easy to calculate that the difference be-
tween (64) and (65) is

where

1 BT 1+ P—apDap
Br~ T

g =8 'g; gp=B (70)

and 8 is the Boltzmann collision operator [see the right-
hand side of (A5)] linearized about fh„d. As in the two
preceding paragraphs, we note that (68) are solutions of

1
' BQ BQp

g (v)=( —,
'u' —

—,'T)u

g &(v)=(u u& ,'v—5—p).

&+hyd =0,
5f(r, v)

67
where

4h„'d=E(f )
—Id r[T(r)s("(f;r)+p(r)p( f;r)

(71)

Since (66) is not identically equal to zero, the submanifold
A, h(„)d is not an invariant submanifold. Now we shall try
to deform A, hyd to arrive at a submanifold that will be
closer to being an invariant submanifold. Following
Chapman and Enskog [53,54] we deform JR&„'d into A, h'„'d

by requiring that the vector field (66), which is sticking
out of At'h 'd, is exactly compensated by the dissipative
vector field (A5) evaluated at JM, h( )d In this way we shall
not guarantee that 9th'„'d is an invariant submanifold. The
complete Boltzmann vector field attached to Jkf'h~'d wi, ll
still not be tangent to JRh'„d. However, if collisions play a
dominant role in the time evolution then the part of the
complete Boltzmann vector field that is sticking out of
A,h'd will be smaller than (66), which is sticking out of
A, h„d. After some calculations (see, e.g., [41])we find that
(up to and including the terms linear in y) JRh(„)d Bf I,'„)d,

f(1) (r v) f(0) (r v)ey(r, v) (68)

+u*(r)u(f;r)]; (72)

p(f;r), s(f;r), and u(f;r) are the same as in (62), and

s"'(f;r)=s(f;r)+ f d vg(r, v)f(r, v) . (73)

Again, we interpret the introduction of p(f;r), u(f;r),
and s'"(f;r) in (62) and (73) as an introduction of a bun-
dle structure in M«and +hyd as the thermodynamic po-
tential that arises in Legendre transformations corre-
sponding to the fibration (62), (73), and the fundamental
thermodynamic relation (57). If we now evaluate 4„"„'dat
fh"d and equate the result with —fd rp(r), we obtain
an example of the thermodynamic potential used in
weakly nonlocal hydrodynamics. If we limit ourselves
only to the terms proportional to y, k ~ 2, we obtain

0 hId( fhII(', T(r },)((,(r), u'(r) )—:0 hI,d

= —J d3r Jd v T(r)f'„'„d(r, v)

= —ld r T(r) exp + —1 [2m.T(r)] ~)((,(r) u*(r) '
T(r) 2T(r)

Jd r
2 &g, g ) + &g ~, g p)(D) = —J d rp(r),2T'(r) "

Or 2T r (74)

where

(a(u ),b(v ) ) = Id v fP'd(r, v)a(v )b(u ) .

We recall (see, e.g. , [41]) that the heat conductivity
coefficient A, and the viscosity coefficient q are expressed
in terms of g' and g as

, (g., g.),3T2
(75)

An additional insight into the nature of the approxima-
tions (59) and (68) of solutions of the Boltzmann kinetic
equation can be gained by asking the following question.
What are the kinetic equations (modifications of the
Boltzmann equations) that have (59) and (68) as exact
solutions? In other words, how must Boltzmann vector
field be modified in order that Afhyd or Jkhyd is an exactly
invariant submanifold? The answer will not be, of course,
unique. The additional requirement that should single
out the kinetic equations is that the modified kinetic
equations are required to remain as close as possible to
the original Boltzmann equation. Leaving aside the prob-
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lem of uniqueness, the answer to the above equation is
the following. The kinetic equation that has (59) as its
exact solution is (A7), in which @h'd [see (63)] replaces
4F~ in A [see (A6)] and the time evolution of p, T, u* is
governed by Euler hydrodynamic equations. Similarly,
the kinetic equation that has (68) as its exact solution is
(A7), in which Nh„'d [see (74)] replaces @Fr in A and the
time evolution of p, T, u is governed by Navier-Stokes-
Fourier hydrodynamic equations with the kinetic
coefficients given by (75). We note that in both
modifications of the Boltzmann kinetic equation the ther-
modynamic potentials Whyd or +hyd play the role of the
Lyapunov functions corresponding to the approach to
the invariant submanifolds Jkg~d and At&„'d. The thermo-
dynamic potential @~~ plays the same role in the context
of the Boltzmann equation and the invariant submanifold

ET'

V. CONCLUDING REMARKS

Appearance of new stresses in spatially inhomogeneous
liquid crystals [1—3], non-Fickean diffusion [4—6], and
migration across streamlines [7—11] in spatially inhomo-
geneous polymer solutions are examples of experimental
observations that cannot be adequately explained in the
setting of local classical or extended hydrodynamics. The
goal of this paper is to formulate a weakly nonlocal clas-
sical and extended hydrodynamics that provides an ap-
propriate setting for an analysis of the above observa-
tions. We call hydrodynamics weakly nonlocal if, its
governing equations involve higher-order derivatives
with respect to the position coordinate r. Local hydro-
dynamics is extended in this paper to a weakly nonlocal
hydrodynamics as follows. We note first that local hy-
drodynamics can be regarded as dynamics generated by a
thermodynamic potential in the state space equipped
with a Poisson structure and a dissipative potential. The
Poisson structure expresses in mathematical terms kine-
matics in the chosen state space. The Poisson structure
is thus fixed if the state space is fixed. The individual
features of the Auids under consideration are expressed in
the thermodynamic and the dissipation potentials. The
thermodynamic potentials are in local theories indepen-
dent of derivatives with respect to r, and the dissipation
potentials depend only on derivatives of zero and first or-
der. We now pass from local hydrodynamics to a weakly
nonlocal hydrodynamics by generalizing the thermo-
dynamic and the dissipation potentials. The state spaces
and thus the Poisson structures in both local and weakly
nonlocal theories are the same. The thermodynamic and
the dissipation potentials are allowed to depend, in weak-
ly nonlocal hydrodynamics, on higher-order derivatives
with respect to r. In Secs. II and III, these two potentials
are left unspecified. The governing equations of the
weakly nonlocal hydrodynamic derived in Secs. II and III
are thus families of equations parametrized by the two
potentials. A method allowing one to derive these poten-
tials from an analysis of kinetic equations is introduced in
Sec. IV.

More specifically, results of this paper are the follow-
ing. In See. II we worked out the governing equations of

weakly nonloeal hydrodynamics in the state space of clas-
sical hydrodynamics (i.e., the state variables are the five
hydrodynamic fields of mass, energy, and momentum).
The Poisson structure of this state space is well known.
We showed that the weakly nonlocal fluids (i.e., the fiuids
characterized by thermodynamic potentials depending on
derivatives of the hydrodynamic fields with respect to r)
behave as viscoelastic and "heat-elastic" fluids. In Sec.
III we considered complex Quids and thus we studied the
extension from local to weakly nonlocal in the extended
hydrodynamic state space. We have chosen a tensor field
(called a conformation tensor field) as the extra state vari-
able characterizing the internal structure of the Auids.
The Poisson structure of this state space has been derived
previously in [47] for one-component fiuids, and in Sec.
IIIB of this paper the structure is extended to two-
component Auids. Among the new terms that arise in the
governing equations of weakly nonlocal complex Quids
we recognize the extra stresses that play the role of the
extra stresses derived previously in a different state space
(in which the director vector field instead of the confor-
mation tensor field serves as the extra state variable) and
by using different arguments in [1—3]. In addition to the
extra stresses we showed that an extra reversible heat Aux
arises in weakly nonlocal complex fluids. The equations
governing the time evolution of two-component weakly
nonlocal complex fluids provide a setting for an analysis
of nonlinear non-Fickean diffusion and migration across
streamlines. In Sec. IV we have shown how thermo-
dynamic potentials depending on derivatives of hydro-
dynamic fields with respect to r arise from an analysis of
solutions of the Boltzmann kinetic equation.
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APPENDIX: MESOSCOPIC DERIVATION OF THE
BOLTZMANN KINETIC EQUATION

The purpose of this appendix is to demonstrate that
the mesoscopic arguments that have been used in this pa-
per to introduce hydrodynamic equations can also be
used to introduce the Boltzmann kinetic equation. We
begin with kinematics in M«. The one-particle kinemat-
ics that is known from classical mechanics induces in M«
[13,55] the Poisson bracket

[A,B]= f d r Jd v f(r, v) (Af) (Bf)
Bfa BVa

(Bf) (Af)
8

la Va

(A 1)

By A, B, etc. , we denote su%ciently regular functionals of
f(r, v). The functional that generates dynamics is taken
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to be the thermodynamic potential (55). So far, we thus
proceed exactly in the same way as we did in the context
of hydrodynamics. We can also verify by direct calcula-
tions that [ A, N ] = [ A, S]=0 for all A (i.e., the func-
tionals X and S are distinguished functionals as in hydro-
dynamics). The equation that governs the nondissipative
time evolution is thus

atf= f (@ET f +
Br Bv V~ f~

and if we use (55)—(57)

(A2)

(A3)

This is indeed the nondissipative part of the Boltzmann
kinetic equation.

We now proceed to introduce the dissipative part of
the Boltzmann kinetic equation (i.e., the Boltzmann col-
lision term). We want to introduce it in the same way as
we introduced in this paper the dissipative part of hydro-
dynamic equations. I.et us co~sider the gas under con-
sideration as composed of an infinite number of com-
ponents. Gas particles having different velocity are con-
sidered as belonging to a different component. Collisions

I

are regarded as chemical reactions in which the com-
ponent v interacts with another component v2 producing
the components v' and v2. We require, of course, that

v+v2=v +vp

v2+ v2= v'2+ v'2
(A4)

The mass action law leads to the following time evolution
equation:

B,f(1)=fd2f dl'f d2'W(f;1, 2, 1',2')

A(1, 2, 1,2 ) —(NET)f(])+(0ET)f(2)
kt kt

(@ET)f(1') (+ET)f(2')

If we introduce now the dissipative potential

(A6)

X [f(1')f(2') —f ( 1)f(2)], (A5)

where 8' is the rate constant that is symmetric with
respect to 1~~2, (1,2)~(1',2') and different from zero
(positive) only if (A4) holds. We use the notation
1—:(r, v), 2=(r, v2), 1'=(r, v') 2'H(r, vz). Equation (A5)
is indeed the dissipative part of the Boltzmann kinetic
equation written in the form introduced first by Wald-
mann [56]. It remains to express (A5) in terms of the
thermodynamic potential (55) and a dissipative potential.
The chemical affinity corresponding to collisions is

%(A )=f d 1 f d2 f d 1'fd2'W(f;1, 2, 1', 2') exp A(1,2, 1', 2') + exp A(1,2, 1', 2') —2 (A7)

we can easily verify that the time evolution equation

(A8)

quirement (16) and that the dissipation inequality (20),
which has the form

r), @Ek'T= —f d 1 f d2 f d 1 fd2'A(1, 2, 1',2')

X+~() 2 ). 2)
is indeed the same equation as (A5) provided (p (A10)

1 8'
2T [f(l)f(2)f(1')f(2')]'i~ (A9)

Note that the dissipative potential (A7) satisfies the re-

is the statement of the Boltzmann H theorem. The de-
generacy of the Poisson bracket (Al) and (A4) imply then
the conservation laws (21).
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