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We examine the fiuctuation-induced interaction energy tsf between the surfaces of a layered hexatic
film within a quadratic-functional-integral approach. Both discrete and continuum formulations are
studied. We find large corrections to the asymptotic behavior b f(1)~1 for finite 1, where 1 is the film

thickness. A small field becomes relevant beyond a length scale g(h), while an enhanced surface Frank
constant is irrelevant above a length g(K). Possible relevance of these results to recent experiments on

layer-by-layer surface ordering in liquid-crystal films is discussed.

PACS number(s): 61.30.Gd, 68.35.Md, 64.70.Md

It is well known that boundaries produce measurable
effects on the global properties of physical systems [1]. In
particular, they cause long-range interactions in systems
whose Auctuations are correlated over long distances.
For example, at a critical point, Fisher and de Gennes
discovered corrections to the free energy of a system of
size l that scale as 1/1 [2]. Since a spontaneously broken
continuous symmetry also leads to long-range correla-
tions, similar forces are present in superAuids or liquid
crystals. The correlated Auctuations in a smectic liquid
crystal lead to a long-range force between the surfaces of
the film that decays asymptotically as 68'~I ~, with
p=2, where I is the film thickness [3—5]. On the other
hand, the forces induced by orientational fluctuations are
of shorter range, with p=3 [4—6]. The magnitude of
these interactions is proportional to kz 7, while their am-
plitudes are uniuersal. There has been recent attention on
fluctuation-induced long-range forces in critical systems
and their connection to such phenomena as wetting [7]
and layer-by-layer surface ordering in free-standing
liquid-crystal films [8,9].

Liquid-crystal films provide an additional interesting
feature in that their surfaces are typically more ordered
than the bulk. This is because of the surface tension be-
tween the film and the surrounding gas which inhibits
fiuctuations of the molecules close to the surface [10].
Recent heat-capacity experiments on free-standing
liquid. -crystal films near smectic-A to surface-stabilized
smectic-I, and smectic-A to surface stabilized smectic-B
transitions reveal a layer-by-layer ordering that starts at
the surface and proceeds into the bulk [9]. On approach-
ing the bulk transition, the number of (bond orientation-
ally) ordered layers close to the surface diverges as
l(t) ~t, where t is the reduced temperature. At the
Sm- A —Sm-I transition [8], v =0.373+0.015, while
v=0. 32+0.01 for the Sm-A —Sm-8 transition [9].

The continuous growth of the ordered hexatic region
from the surface is reminiscent of complete wetting [11].
If the net force between the boundaries of the ordered re-
gion decays as 1/l~, the exponent v takes the value of
1/p. This is obtained by equating the repulsive interac-
tion, which favors thick layers, with the force due to the
additional chemical-potential cost of creating the meta-
stable ordered phase. The latter force is attractive
(prefers l =0), and the chemical-potential difference is as-
sumed to be proportional to t. For example, van der
Waals forces lead to v= —,', which is close to the value ob-

served for the Sm-3 —Sm-B transition, but somewhat less
than that seen at the Sm-2 —Sm-I transition.

A possible explanation of the continuous layering tran-
sitions is that the molecular fluctuations gradually in-
crease from the surface into the bulk. This in turn sets
up a profile of coupling constants for the hexatic-order
parameter that increases on approaching the surface.
Each layer orders at the transition temperature corre-
sponding to that layer. However, the similarity to com-
plete wetting suggests that we may try to identify repul-
sive interactions that favor the thickening of the ordered
layer, even if homogeneous. A difference between the
dielectric constants of two phases will indeed lead to a
van der Waals interaction that could account for the ob-
servations. However, we shall show that the forces in-
duced by the additional bond-orientational fluctuations in
smectics B and I, also falling off as 1/I, are at least as
strong as the van der Waals forces. If these forces are
indeed responsible for the observations, they may also ac-
count for the different exponents observed for Sm-I and
Sm-B ordering: As these forces originate in the
modification of Auctuations by boundaries, the molecular
tilt of the Sm-I phase could result in changes not present
in the Sm B phase. In this paper, we focus on the
fluctuation-induced interaction b,f (1), and investigate its
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dependence on different surface-enhancement operators.
We find that any surface enhancement introduces a
characteristic length scale g [12]. For films much thicker
or much thinner than g, the well-known asymptotic
behaviors Af ~ I are obtained [4,5,6, 13]. However, we
show that large corrections to these asymptotic regimes
appear for finite l/g, and relate our results to the heat-
capacity findings cited above.

After the hexatic order is established, the fluctuations
of the bond angles, 8;(r), in a homogeneous film are
governed by the quadratic Hamiltonian [14]

Gas

Hexatic

Smectic

Hexatic

K
P&o= I d r g(pg, . (r))2

a 2

The index O~i n labels the layer number, and r is the
location within the two-dimensional layer. The short-
distance cutoff a is approximately the size of a molecule,
while L is the size of the film. K~ is the effective Frank
constant of each layer, and J measures the interplane
coupling, both measured in units of a . [Equation (1)
disregards amplitude Auctuations and topological de-
fects. ] The surface tension between the film and the sur-
rounding gas reduces fluctuations in the neighborhood of
the surface [10], and makes the Hamiltonian inhomo-
geneous. We shall model these effects by adding ap-
propriate enhancement operators to Eq. (1) that act only
on the boundary layers, such as

2

P&s= f d r [%~0(76)o) +K~ „(V'0„) ]
a 2

Gas

tion to enhanced surface Frank constants. The quadratic
Hamiltonian (including the surface-ordering term) is par-
tially diagonalized by Fourier transforming with respect
tor,

n

P&= —,
' I d q g 9;(q)MJ(q)0i( —q)

277/L ' '=0
(3)

where the only nonzero elements of M are

~00=a KAq +"0+J:aQ
n n a K~q +hn+ J=an

FIG. 1. Geometry of a liquid-crystal film that develops a
surface-hexatic-ordered phase. Surface tension inhibits fluctua-
tions in the gas-film interface and its vicinity. The hexatic phase
can be tilted, as in the Sm-I phase, or untilted, as in the Sm-8
phase. We assume that the thickness of the smectic bulk phase
is large enough so that the effective interaction between the sur-
face phases can be disregarded.

+ —,'(ho8O+h„8„) (2)
M, , =a Kzq +2J=b (for i&0 or n ),

For liquid-crystal compounds of the n-alkyl-4'-(n-
alkoxy)biphenyl-4-carboxylate ( nmOBC) homologous
series which develop a Sm- 3 —Sm-B transition, the evolu-
tion of the heat-capacity peaks with film thickness is well
reproduced by a model with enhanced surface Frank con-
stant K„[15—17]. On the other hand, for the compound
4-(n-nonyloxy)benzylidene-4(n-butyl)aniline (90.4) which
undergoes a Sm-3 —Sm-I transition, the tilting of mole-
cules on the surface Sm-I phase generates an ordering
field on the hexatic-order parameter [18]. As the tilt of
the molecules on the surface is much more pronounced
than in subsequent layers, and reinforced by the fact that
the Sm-I phase does not exist in bulk, we consider an or-
dering field that acts only on the surface layer. Such a
field adds a term h 0 /2 to the Hamiltonian density. The
geometry appropriate to the layer-by-layer ordering tran-
sitions is indicated in Fig. 1. It is clear that the environ-
ments of the top and bottom hexatic layers are in fact
very different and the enhancement operator will mostly
act at the hexatic-gas boundary. This is the origin of the
difference between the two boundaries in the above equa-
tion.

We shall initially derive the results appropriate to an
enhanced field, and subsequently discuss the generaliza-

The total free energy is obtained from

=
—,
' J d q pink =

—,
' Jd q lndetM,

B m

(4)

where

j+1 j+1
T, =b~

7l 7l

and

1+[1 4(J /b ) ]'—
7l+ =

2

(6)

Through numerical integration we confirm that the to-
tal free energy has, as expected, the following functional
dependence on n [20]:

f=nfs+fs+bf(n) .

where A, are the eigenvalues of M. Following standard
matrix algebra [19],

detM=aoa„T„, —(ao+a„)J T„2+J T„3
(n ) 1), (5)
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~(")=(&'&~/J)[~f(n)/k~T]n' vs n for free sur-
faces (triangles), Dirichlet-Dirichlet boundary conditions
(squares), and mixed boundary conditions (crosses).

Here fbi is the extensive part of the free energy, and, in

the limit of n —+ ~, gives the bulk free-energy density.
The surface contributions appear in fs, and b f(n ) is the
fluctuation-induced interaction energy that vanishes as
n~~. We start by analyzing the behavior of the in-
teraction energy as a function of n, for the three possible
limiting cases of (I) h o

=h„=0 (free-surfaces), (II)
ho, h„—+ oo (Dirichlet boundary conditions), and (III)
ho=0, h„~~ (mixed boundary conditions). Note that
in a renormalization-group treatment (see below), these
conditions appear as the only possible fixed points
[2,21]. Figure 2 depicts the n dependence of
h(n)=(a IC~/J)[bf(n)/ksT]n for these cases. In the
limit of n ))1, we recover the asymptotic values of
b(n )=b.;, with b.,=b,„=g(3)/16~ (attractive), and

(repulsive), as previously obtained within

continuum approaches [4—6, 13]. [Here g(x ) is the
Riemann's g function. ) For finite n, there are corrections
to the asymptotic limits, which, in all cases, initially
scales as 1/n

We first concentrate on the symmetric case of equal
finite surface fields (ho=h„). The evolution of the in-
teraction energy with n is nonmonotonic. For small h/J,
we can obtain a universal form for the interaction energy
by using the scaling variable x =n/g(h ) to collapse the
data as shown in Fig. 3, where g(h )

=J/h is the length
scale characterizing a surface field. Note that the limits
of x —+0 and x —+ ~ recover, respectively, the asymptotic
values of cases I and II. However, large deviations are
observed for finite x. There is excellent data collapse for
large x, but only a slow convergence to b,(x ~~ ) =b, ii.
The fixed-point behavior obtained by renormalization-
group techniques is only reached for n ))g(h ), and this
must be regarded as quite a general condition for the ap-
plicability of the renormalization-group arguments to
layered systems. For small x, there are nonuniversal con-

I 1 I
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—O. 025
0

FIG. 3. b(l/g(h))=(a'E„/J)[hf(l/((h))/k~T]l vs
l /g( h ) for discrete layered hexatic films. h /J = 1 (triangles), 0.7
(squares), 0.5 (crosses), 0.3 (stars), and 0.1 (open circles). Here
g(h)=(J/h)d, with d the interlayer spacing, l=nd, and

ho =h„=h. The data collapse for large l/g(h ), but nonuniver-
sal behavior is observed for small l/g(h). The solid line is ob-
tained from Eq. (16) after disregarding all nonuniversal contri-
butions.

tributions, and the data collapse does not work well. The
minimum value of 6 at x =0 is achieved only in the joint
limit of n »1 and nh /J ~0. Note that even for fields as
small as h/J=10 ', large deviations are observed and
the interaction amplitude reaches only to about 5i/3.

Similar patterns are also obtained in the other two
cases. A film absorbed on a substrate that inhibits Auc-
tuations is modeled by hp=0 on the free surface, and a
finite h„at the substrate. This is also the case for the
surface-stabilized Sm-I phase in Fig. 1, where hp=0 at
the interface between the Sm-A and Sm-I phases and h„
is finite at the Sm-I —gas boundary. Figure 4 shows the
corresponding data collapse for the interaction energy.
Note that the x~0 and x~~ limits recover, in this
case, type-I and type-III values, respectively, and in be-
tween there is a film thickness of order n* =((h ), where
the sign of the interaction energy changes. There are
again large corrections to the asymptotic values, and a
breakdown of data collapse for small x. The other situa-
tion of interest corresponds to a film deposited over a
substrate, but with tilted surface phases. Both surfaces
are subjected to hexatic ordering fields, but with h„» h p.
We can model this situation by choosing a finite hp, and
infinite h„. As indicated in Fig. 5, the x ~0 and x ~ ~
limits reproduce type-III and type-II cases, and there is a
similar crossover in between.

Most of the above features can be understood by study-
ing the continuum version of the model. It is straightfor-
ward to show that the eigenmodes are obtained from the
differential equation
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boundary conditions h; —+0 and h;~~, but with an
eigenvalue-dependent mixing parameter. The eigenvalues
of Eq. (9) subject to these boundary conditions are

=a K„q +Jco(m )

where co(m ) are the solutions of

co(m )i/d+ arctan(@o)+ arctan(@„)=ma.
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FIG. 4. Same as Fig. 3, with ho=0, and h =h„.

a K~q 8(z) —d J =A8(z),8 8(z)
az2

(9)

and

(a~Kqq +ho)8(0) —dJ =A8(0)
az

(a K~q +h„)8(l)+dJ =A8(l) .a8(i)

(10)

where d is the interlayer distance on the original discrete
model, and z runs from 0 to l =nd. The surface operators
appear in the boundary conditions

The free energy in Eq. (4) is formally divergent in the
continuum limit. The divergences are determined by the
asymptotic distribution of the eigenvalues A, [22], and
appear in the volume and surface contributions. They
can be removed by the introduction of a suitable cuto6'in
the integration over q. The interaction energy can be ob-
tained by standard regularization techniques, such as by
the cutoff [1,23], Crreen's function [24], g function [25], or
the dimensional-regularization [26] methods. Although
there is no analytical proof, all these methods are expect-
ed to be equivalent [27]. We computed the interaction
energy by applying the Poisson summation formula [28],
which naturally removes the surface and volume terms
[3,6], and replaces the discrete summation over m by an
integral over cu. After transforming the integral by parts,
the interaction energy is found to be

4~J 2/~ dq ~ e '" ' 'Bink,
dc'

2 2 gi. (2~)2 —,2min Bc@.

0.02

0.01

The integration over co can be performed by noting
that the integrand has a single pole at co=iaq+K„/J.
After evaluating the pole and some algebra, we finally ob-
tain

ab(x x )=—l0& n

K„bf(l;xo, x„)
J k T

0

a
—0.01

—0.02—

y dy in[1 —e ~G(y, xo)G(y, x„)],4~

(16)

where x; = l /g( h; ), with g( h; ) =Jd /h, , and

y —i /g( h; ) —y d /I
G(y, x, )=

y + I /g(h; ) +y d /l

I I I I I I I I I I The limits of integration in Eq. (16) are

2m ——QK /J (y (2m —QK /Jl a l
A A

FIG. 5. Same as Fig. 3, with ho=h, and h„~~. Note that
the universal line has a large but finite derivative as i/g(h )~0.

The main contribution to the integral in Eq. (16) comes
from the region of small y, and hence the upper limit can
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be put to infinity for 2nl+K„/J /d )) l. As the in-

tegrand vanishes at y =0, we can put the lower limit at
zero. The resulting expression has a universal depen-
dence on ho and h„ in the limit of x, ))d /l. This implies
the existence of another characteristic thickness,
g'=d'I/J/h, below which nonuniversal corrections ap-
pear. (Parenthetically, we point out that these two
characteristic length scales g' and g(h ) = d J /h are small-
er than the thickness gI, that governs the universal non-
monotonic behavior of the mean angle fluctuations [29]).
In Fig. 6, we illustrate the full behavior of Eq. (16) as a
function of l /g(h ) for several values of h o

=h„=h. The
agreement with the results obtained in Fig. 3, even in the
nonuniversal regime, is quite impressive. Disregarding all
nonuniversal contributions (terms of order y ), Eq. (16) is
an excellent fit to the universal line of the data collapse
(the solid lines in Figs. 3 —6). The preasymptotic regimes
of the universal line have the following analytical forms:

(a) When xo=x„=x,
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b(x)= '

+x lnx
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4
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for x ))1 .g(3) 4
1 ——

16~ x

(18)

FICs. 6. The amplitude 6 as obtained in the continuum limit
from Eq. (16). Both universal and nonuniversal behaviors of the
original data of the discrete layered model are reproduced. The
definitions are the same as in Fig. 3.

(b) When x o
=0,x„=x,

h(x)= '

1

4m

g(3) x
4 2

+—lnx for x «1
(19)

3g(3) 2
1 —— for x ))1 .

64m x

(c) When xo ~ ~,x„=x,

b(x)= '

3 (3) —x ln2 for x «1
16

1 —— for x ))1 .g(3)
16~ x

(20)

Note that there are divergent derivatives at x =0 in the
cases where a uniform fluctuation mode is present (free
surfaces). If one takes into account the finite size of the
layers, the derivative at x=0 becomes proportional to
ln(L/a), and diverges only in the thermodynamic limit,
L/a ~ oo. Logarithmic divergences are characteristic of
systems with quasi-long-range order [30]. For x ) 1, the
corrections to the asymptotic behavior are quite large for
the symmetric case, and can be disregarded only for
x ))4 [l ))4$(h)]. The asymptotic decay, f(l) ~l, is
similar to that of the van der Waals interaction [11]. The
Auctuation-induced force between the surfaces of the film
is obtained from b,F= —I)Af (l )/Bl, which asymptotical-
ly has the form AF =BI&/l . For typical liquid
crystals, parameters d=30 A, a =4 A, Ez /J= —,', and

kz T=4X 10 ' J, the coeScient BIII; is approximately
0.5X10 J. This estimate indicates that these forces
are comparable to the van der Waals interactions be-

tween the surface layers of free-standing liquid crystals,
where B,d~ = 10 J [31].

The above analysis can be extended to enhanced sur-
face Frank constants, a more appropriate description of
the 3(10)OBC compound which undergoes a Sm-A —Sm-
B transition. The interaction energy has the same form
as in Eq. (16), except for the absence of nonuniversal
corrections. The scaling variable in this case is
x =I /g(K), with g(K ) =dK& /Kz, Kz being the surface
Frank constant. (Note that this length is again different
from length scales identified in earlier works governing
the universal nonmonotonic behavior of the mean angle
fluctuations [29], or the bulk transition temperature [17].
Actually it is the same as the distance from the surface
for which the angle Auctuation profile has a maximum
[29]). The general expression for the interaction energy
in the presence of both enhanced surface Frank constants
and surface-ordering fields is obtained from Eq. (16) after
replacing G(y, x, ) by

y —l/g(h;) —y g(K, )/l
G'(y, (h;), (K;))=

y+l/g(h;)+y g(K;)/l
(21)

The above equation indicates that in the presence of both
types of surface enhancement, it is the surface field that
controls the true asymptotic behavior, no matter how
weak. The effects of an enhanced Frank constant are felt
only for films with a thickness smaller than

d 1/( Jh/)(K~ /K„) =&/(h )g(K ). This observation
is easily explained by carrying out a scaling analysis of
Eqs. (1) and (2). The homogeneous Hamiltonian is invari-
ant under a rescaling of distances by a factor of b, and the
field 0 by b ' . Under such rescaling, the surface opera-
tors transform as K~ =b 'K„and h'=bh. The surface
field is a relevant operator that grows under rescaling and
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asymptotically leads to Dirichlet boundary conditions.
By contrast, the enhanced Frank constant is an irreleuant
operator, and only an infinite enhancement can cause
such a boundary condition. The two operators have
comparable effects at scales of the order of g'.

We now reexamine the experimental findings on layer-
by-layer ordering in the light of the above results. As in
the case of wetting a repulsive potential, U(l ) is neces-
sary to overcome the chemical potential cost of creating
the ordered layer. First note that the interaction induced
by the smectic fiuctuations (suggested in Ref. [9]) is not
appropriate to the experimental geometry of Fig. 1, as
smectic fiuctuations are present in both phases. (Such an
interaction should be quite important for Auid to smectic
transitions as it is longer ranged than the van der Waals
interaction. ) The van der Waals interaction has the right
sign, but is proportional to the difference between the po-
larizabilities of the phases. Since this difference is prob-
ably much smaller between two smectic phases than be-
tween a smectic phase and the surrounding gas, the mag-
nitude of this interaction should be less than the estimate
of B,~w

——10 I presented earlier. Thus if the inhomo-
geneities in the coupling constants can be ignored, the
Auctuation-induced forces due to the additional hexatic
ordering will be quite important. Such interactions are
only repulsive for mixed boundary conditions. As the
fluctuations at the hexatic-smectic boundary are free, the
surface-enhancement operators must be sufficiently
strong to suppress the fIuctuations at the hexatic-gas in-
terface. We shall examine the cases of Sm-B and Sm-I or-
dering separately.

The appropriate surface operator for the Sm-B phase
has h =0 and Kz /K ~ ) 1. (The Sm- 3 —Sm-B interface
will be treated as a free surface. ) Heat-capacity measure-
ments show that the peak bulk-transition temperature
turns around at thickness of about 20 layers [16]. Al-
though not quite the same, we shall use this length scale
as an estimate of g(K)=dK& /Kz. The experimental
measurements of Ref. [8] correspond only to the ordering
of the first four layers. This is clearly not a sufhcient
range for the identification of a power-law behavior.
Nevertheless, the results are likely to correspond to the
regime of x =l/g(K) «1. The ordered region experi-
ences mixed boundary conditions leading to a repulsive
interaction favoring further growth of the hexatic phase.
However, at longer length scales [of the order of g(K)],
the surface enhancement becomes irrelevant, and the in-
teraction changes sign as in Fig. 5. If correct, this
scenario predicts that the Sm-B film may grow continu-

ously only up to a finite thickness as in incomplete wet-
ting phenomena [11]. The fact that only the ordering of
the first four layers is experimentally observed may be re-
lated to this picture. Further experiments may thus shed
light on this point.

Reference [9] identifies the successive appearance of
Sm-I order in up to ten layers. The effect of the Sm-
I—gas boundary is described by Eq. (2), with both opera-
tors present. We have no a priori estimate of the magni-
tude of these enhancement operators, and hence of g(h )

and g(K). Due to the relevance of h, the interaction is
indeed repulsive for thick films, and continuous growth
of the film is possible. For films of thickness l & g(K ), the
enhanced Frank constant takes over, again leading to a
repulsive interaction. The two regimes overlap for
g(h ) & g(K), and the interaction should be well described
by a power law. On the other hand, if g(K) «g(h ),
there is an intermediate regime where the potential is at-
tractive, with a minimum around g'=v'g(h)g(K). The
continuous growth of the Sm-I phase up to ten layers
seems to rule out the latter possibility, and suggest
g(h ) & g(K). The deviations observed from the —,

' power
law could be due to preasymptotic corrections. Better es-
timates of the ratios J/Jt, K~ /K„, and K„/J are neces-
sary to settle the behavior of the interaction.

In conclusion, we studied the interactions induced by
fluctuations of orientational order in layered liquid-
crystal films. Finite-surface enhancement operators lead
to large corrections in the asymptotic power-law
behavior and cause nonmonotonic forces. The results
can be summarized in terms of universal functions of the
scaled thickness l/g, where g is due to the appropriate
surface-enhancement operator. We obtained analytical
expressions for the interaction energy in the continuum
limit, in excellent agreement with the data obtained by
direct numerical integration. The results were further
discussed in the context of layer-by-layer surface ordering
in the Sm- 2 —Sm-I transition of 90.4, and the Sm-
A —Sm-8 transition of 3(10)OBC compounds.
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