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Algorithms for molecular dynamics (MD) at constant temperature and pressure are investigated. The
ability to remain in a regular orbit in an intermittent chaotic regime is used as a criterion for long-time
stability. A simple time-centered algorithm (leap frog) is found to be the most stable of the commonly
used algorithms in MD. A model of N one-dimensional dimers with a double-well intramolecular poten-
tial, for which the distribution functions at constant temperature T and pressure P can be calculated, is
used to investigate MD-NPT dynamics. A time-centered NPT algorithm is found to sample correctly

and to be very robust with respect to volume scaling.
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I. INTRODUCTION

The time evolution of a complex N-body system can be
simulated using the molecular-dynamics (MD) technique,
where the classical mechanical equations of motion are
integrated [1-2]. However, since the motions of the in-
dividual subsystems are by nature chaotic, it is, in gen-
eral, of little relevance to try to solve the individual equa-
tions accurately and the criteria an MD simulation must
fulfill is that it scans the phase space dynamically correct-
ly. Recently a series of investigations [3-5] indicates
that, although an MD algorithm results in noisy trajec-
tories due to numerical inaccuracy, some true trajectories
remain close to the noisy one for long times. It is ex-
plained [4] in that the discrete mapping describes the ex-
act time evolution of a slightly perturbed Hamiltonian
system and thus possesses the perturbed Hamiltonian as a
conserved quantity. It is, however, only true for symplec-
tic integrators [3—8] which conserve the phase space and
ensure time reversibility. Thus the individual trajectories
should only be considered as ‘“‘representative” from
which the ensemble behavior is obtained by averaging.
Basically the MD simulation of N objects samples from a
microcanonical ensemble of constant energy, but during
the past decade, a series of other MD ensemble simula-
tions have been developed, among which the canonical
simulation is the most commonly used.

The investigations of symplectic integrators have re-
sulted in a series of higher-order explicit and implicit al-
gorithms [4,6-8]. The particle motions in an MD simu-
lation are, however, generally obtained by simple finite-
difference algorithms due to the (computer) time-
consuming MD simulations. One of the most frequently
used algorithms is a centered-difference Stoermer algo-
rithm, which in MD is named the Verlet algorithm—or
leap-frog algorithm. Another algorithm used in MD is a
simplified version of Gear’s iterative corrector scheme for
stiff differential equations. Also used, but more rarely, is
the Runge-Kutta algorithm.

A criterion an MD algorithm must fulfill is that it
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scans the relevant phase space correctly, leading to the
correct equilibrium properties and (linear-) response re-
gime. However, since the exact functions are usually not
known even for simple statistical models, one needs some
other criterion for an accurate test of different MD algo-
rithms such as time reversibility and symplectic integra-
tion [5-7]. The Verlet algorithm, and its analogy, the
leap-frog algorithm, are both time reversible and sym-
plectic [5] and one might think that the two criteria are
identical. This is, however, not the case for constrained
dynamics as will be demonstrated. Neither the Gear nor
the Runge-Kutta algorithm, presently used in MD, are
time reversible or symplectic [9]. These higher-order al-
gorithms will in general follow the analytic solution of
the differential equations a little bit longer and better
than a simpler version, but they suffer from a drift in the
observed mean quantities, such as the mean energy, due
to the broken time symmetry and nonsymplectic behav-
ior. This article deals with MD ensemble simulations.
For accurate numerical integration of the equation of
motion of celestial mechanics see also Ref. [10].

The different MD-ensemble simulations are performed
by introducing new differential equations [11] which cou-
ple, e.g., Hamilton’s equations to various heat baths,
pressure controller, etc. The corresponding dynamical
equations are still time reversible, and it is possible to for-
mulate simple, reversible finite-difference algorithms
[12~13]; but the symplectic behavior is only obtained in
mean, since the different ensemble averages are achieved
by a “reversible shaking” of the phase space.

In order to perform a precise investigation of the
influence of various sources of errors and algorithm de-
fects on MD, we need to examine systems for which exact
solutions exist. The (Boltzmann) partition function for a
simple canonical (N, V,T) ensemble can be calculated
easily, and it is also possible to construct constant pres-
sure (N, P, T) systems for which the equation of state and
the partition functions can be calculated with a high de-
gree of accuracy [14]. These circumstances are used to
investigate the sensitivity of MD simulations to various
algorithm defects and numerical errors and inaccuracy.
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II. MOLECULAR DYNAMICS
AT CONSTANT TEMPERATURE

The stability of an MD algorithm is, in the present in-
vestigation, determined by its ability to maintain a regu-
lar orbit in the phase space for a system with intermittent
chaos. It is well know that simple driven pendulum sys-
tems can exhibit intermittent chaotic behavior. Thus, by
choosing a condition for which the system still behaves
regularly, but where it behaves chaotically for a small
change of the dynamics, we achieve a sensitive measure
of the stability of an algorithm, and the influence of vari-
ous numerical errors on the integrator.

The canonical MD simulations are obtained by the
Nosé-Hoover (NH) technique [11] and its extension [15].
The Hamilton’s equations for an N-particle system with
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which varies in time with the total excess of kinetic ener-
gy to its canonical mean value for a system of g degrees of
freedom and governs by a characteristic thermostat relax-
ation time 7,. It is easy to derive simple time-centered
finite-difference algorithms for these equations [12,13],
which ensures time reversibility; but Eq. (2) results in
equations which are only symplectic in the mean. For
simple systems such as harmonic oscillators or a double-
well potential the dynamics can be regular [5,16]. We
have analyzed the dynamics for the two double wells
shown in Fig. 1. There are several reasons for this choice
of potentials. Simple systems with these intramolecular
potentials exhibit intermittent chaotic behavior and
Friedman and Auerbach [5] have investigated the micro-
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FIG. 1. The two intramolecular potentials, used in the MD
calculations. The extremes are (a) (£V'3/2,1.75), (0.4); (b)
(9.28,2.79), (9.97,4.27), (11.06,1.04).

canonical dynamics in a double well and found numerical
introduced stochasticity. Finally we notice that it is easy
to construct simple nontrivial systems of dimers and po-
lymers with intramolecular double-well potentials, where
the partition function and distribution functions can be
calculated accurately [14] for the (N, P, T) ensemble.

The symplectic behavior of an algorithm is achieved by
demanding the Jacobian to be unity for the (discrete)
transformation of variables q"(¢),pM(t)—q™(z +h),
p™(z +h) of the N particles from time ¢ to ¢t +h. In the
case of the simple time-centered algorithm Hamilton’s
equations leads to the reversible time propagator

q,-(t +h)_q,(t)
h
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h

which in MD is called the leap-frog algorithm. If we in-
stead consider Newton’s equations the time-centered al-
gorithm for the second-order differential equations is
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g;(t +h)=2¢,(t)—q;(t —h)+h? 4)
By inserting (3b) in (3a) one obtains (4) so Egs. (3) and (4)
are identical and the two classical mechanical formula-
tions are maintained in the simple time-centered formula-
tions and (4) shows that the dynamics takes place (e.g.) in
the q" space with momentum as a dummy variable and,
from (3) that q" and p” are not known at the same time,
all in close analogy to quantum mechanics.

It is easy [5] to calculate the Jacobian for the nth step
for the leap-frog algorithm (3)
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so the simple time-centered propagator(s) maintains not
only the time reversibility but also the symplectic behav-
ior of classical mechanics. However, from a numerical
point of view Eq. (3) is to be preferred since the roundoff
errors are less important in this version of classical dy-
namics. The integrator (3) or (4) appears under different
names in the MD literature: Leap frog, Verlet [17],
Stoermer, Beeman [18], velocity Verlet [19], and recently,
position Verlet [20]. They all generate identical trajec-
tories except for numerical roundoff errors and thus they
have the same quality with respect to energy conserva-
tion.

When the classical dynamics is coupled to an NH heat
bath the reversibility is maintained, but not the symplec-
tic behavior. No Hamiltonian exists for the system, but

=1 (5)
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remains a constant of the motion. Both the differential
equations (1) and (2) and its time-centered formulations
[12,13] are not symplectic. The Jacobian transformation
for the leap-frog propagator is
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so the single discrete steps are not volume conserving.
However, since the thermostat variable 7 for time-
centered algorithms is Gaussian distributed with
{m(2)) =0, the total Jacobian

J=11/, ®)

fluctuates around unity.
The NH dynamics of a single oscillator with the
double-well potential (Fig. 1) [5]
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examined by Friedman and Auerbach, were calculated
for various algorithms. The dynamics exhibit intermit-
tent chaotic behavior depending on the thermostat pa-
rameter 7, and temperature 7. One regular orbit for
7,~0.1 and kKT /e =2 was used for the test of stability of
various MD time propagators. For slightly larger 7, the
system behaved chaotically, but the algorithms remain in
the regular orbit for (very) small and discrete time inter-
vals h and for 7, up to 0.11026. Table I gives the results
for the time increment A =0.001, which should be com-
pared with the time required for the oscillation to com-
plete a full circle which is 7=6.57 [21].

The second column in Table I gives the time 7 the in-
tegrators remain in the regular orbit before they jump
into the chaotic regime. The next column shows the
mean deviation from the pseudo-Hamiltonian Eq. (6).
The systems are started at x =0 and for H,=4, and the
averages are for 107 time steps. The fourth column gives
the mean deviation |AH | per step, and column five shows
the mean friction. The last column shows the mean Jaco-
bian, Eq. (8) of the discrete integration. The fifth-order
predictor-(pseudo-) corrector Gear algorithm, most com-
monly used in MD, deviates from the other one by being
the worst to remain in the regular orbit and by having a
drift in the integrator, enough to drive it into the chaotic

regime. This shortcoming of the Gear algorithm is also
known for other systems [22].

None of the integrators showed any strong nonsym-
plectic behavior. The classic fourth-order Runge-Kutta
is nearly symplectic with the smallest drift in H and 7,
but does not remain in the regular solution as long as do
the simple time-centered third-order predictors (with a
time step 4 =10"* it remains in the regular orbit as long
as the others and with a perfectly conserved H and
{n)=0). However, this (kind of) algorithm is not suited
for routine MD of complex systems because one has to
perform the (computer) time-consuming force calcula-
tions four times per step.

The two versions of simple time-centered predictors
derived in Refs. [12] and [13] follow the regular orbit for
the longest time. In the case of the leap-frog integrator
the chaotic behavior first appeared after 771 cycles in the
regular orbit. One remarkable property of the integra-
tors is that the roundoff errors do not play a significant
role for the introduced chaos. A single-precision version
of the Verlet algorithm does not deviate significantly in
the quality of integration from its double-precision ver-
sion. Since some (super-) computers run with double
speed in single precision, one can save a factor 2. We no-
tice that there is no documentation in the literature for
the necessity of performing the calculations in double
precision in MD.

Poincaré maps (PM’s) of sections p vs n at x =0 are
shown in Figs. 2 and 3. Figure 2(a) is the PM for the
Runge-Kutta integrator and for the 141 times it main-
tained in the regular orbit, and Fig. 2(b) is the corre-
sponding PM for the leap-frog integrator obtained from
the 771 loops. A representative PM for the time after the
Runge-Kutta integrator left the regular orbit is shown in
Fig. 3. As indicated from the figure the dynamics is still
not fully chaotic. The distribution of dots shows struc-
tures with a PM dimension of less than 2.

The lack of full chaotic behavior can be shown simply
by plotting the energy distribution which for a fully
chaotic system should be Boltzmann distributed. This is
demonstrated in Fig. 4, which shows a (high-) tempera-
ture state kT /e =4 with no regular trajectories. The dot-
ted line in the upper part (a) of Fig 4 gives the distribu-
tion P(x) for the Verlet algorithm [12] after 107 integra-
tion steps together with the Boltzmann distribution in the
solid line. As can be seen from the figure, the lack of full
chaotic behavior also appears in the energy distribution

TABLE 1. Integration of a regular orbit with various MD algorithms at constant temperature
kT /e=2, a time increment £ = 1073, and a thermostat relaxation time 7,=0.11026.

Algorithm T (H)—H, (|AH|) () J
Five-pc Gear 839 1.2Xx107? 8.2X1073 —6.65X107* 1.942
Fourth order Runge-Kutta 928 0.4Xx107° 7.8X107° —1.67X107° 1.182
Verlet single 2411 4.6X1073 7.8X10° 5.72X1073 0.453
precision®
Verlet® 2711 4.6X107° 7.8X1073 471X1073 0.625
Leap frog® 5068 3.1X107° 8.0X107° 9.06X10°° 0.404

? Reference [12].
® Reference [13].
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FIG. 2. Poincaré maps of momentum p vs friction 7 for x =0
at T=2 and 7,=0.11026 and for the regular trajectory at the
start of the integration. (a) The fourth order Runge-Kutta in-
tegrator which maintained in the regular solution 144 full cir-
cles. (b) Leap-frog integrator and for 771 full circles.
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FIG. 3. Poincaré map of the chaotic part of the trajectory
and for the fourth-order Runge-Kutta integrator.

which shows some pattern in the deviation from the
Boltzmann distribution exp[ —Bu(x)].

The ergodic behavior can be achieved by extending the
Nosé-Hoover dynamics in the way proposed by Bulgac
and Kusnezov (BK) [15]. It is, however, in general not
possible to construct time-reversible centered difference
algorithms for the BK thermostats, but it can be derived
easily for linear frictions (see the Appendix). If one, for
example, introduces a friction in the g space by modifying
(1a) to

pi
m;

9;= —&q; (10)

with a &-friction dynamics given by [15]
g=— (S fig+ekT) [(kTd) (an
i

the corresponding dynamics is fully chaotic. The dots in
Fig. 4(a) show a perfect Boltzmann distribution and in
Fig. 4(b) we have shown a log-log plot of the integrated
square of the deviation from exp[ —Bu(x)] as a function
of the numbers N of integration steps. The dots and the
solid line are for the BK thermostat, whereas the crosses

P(x) T ] T [ T [ T

nJ (Pup-Pg) dx

FIG. 4. (a) Energy distributions at T=4. The solid line is
the canonical Boltzmann distribution and the dotted line is the
NH result of 107 time steps with #=10"2 and 7,=0.15. The
full circles give the corresponding BK thermostated values with
7:=1. (b) Log-log plot of the integral of the square of the devia-
tion from the Boltzmann distribution. The crosses and the dot-
ted line are for the NH thermostat, and the solid points and
solid line are for the BK thermostat.
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and the dotted line are for the NH dynamics. As can be
seen from the figure, the distribution is not essentially im-
proved after the first 2.5X 10* time steps in the case of
NH dynamics, whereas the distribution converges mono-
tonically towards the Boltzmann distribution by using
BK dynamics and using the algorithms in the Appendix.
The result is in agreement with a corresponding analysis
by Bulgac and Kusnezov [23].

To conclude this part of the investigation the computa-
tions demonstrate the importance of time reversibility in
the MD dynamics. An algorithm like the Gear algo-
rithm, which is constructed for numerical solutions to an-
alytic, stiff differential equations is not suitable for MD,
since it is either much too costly or, in its simple version,
used in MD systematically wrong. Neither does the nu-
merical accuracy of the dynamics plays a significant role.
There is no difference in the result obtained either by per-
forming the dynamics either in single or double precision.
These results are due to the chaotic nature of the classical
dynamics. However, if the system is not fully chaotic,
the Boltzmann distribution can be obtained by extending
the dynamics in the way proposed by Bulgac and
Kusnezov [15].

III. MOLECULAR DYNAMICS
AT CONSTANT PRESSURE

The MD simulations for N molecules at constant tem-
perature T and pressure P, (N,P,T), are performed by
scaling the volume and using the virial of the intermolec-
ular forces to calculate the pressure. In the past this was
done in a rather ad hoc manner; but with the derivation
of the NH dynamics the procedure can be made more
rigorous by introducing a pressure thermostat with the
friction £(¢). The “Verlet” time-centered finite-difference
algorithm for the (N,P,T) MD is derived in Ref. [12].
The corresponding reversible leap-frog version is given in
the Appendix. Again we notice that the dynamics are no
longer strictly symplectic, but still time reversible.

The analysis of (N,P,T) ensemble simulations is
difficult since the exact results are in general not known.
The investigations are limited to what can be character-
ized as “stability tests” of the (N, P, T) algorithms and by
comparing the mean results with corresponding data for
other ensembles. It is, however, possible to construct a
simple (N, P, T) system where the configurational integral
and the distribution functions can be calculated. The
present system is a one-dimensional string of dimers with
an intramolecular two-state potential given in Fig. 1(b).
Although the system is too complicated to formulate the
equation of state and the distribution functions in terms
of known analytic functions, its statistical mechanics can
easily be calculated numerically with a high degree of ac-
curacy.

The general derivation of the equation of state for N
one-dimensional molecules in the volume L is given in
Ref. [14]. The present molecules deviate from the mole-
cules considered by Hornell and Halls by also having an
intermolecular potential u;,. and by using periodical
boundaries at x =0 and L in order to avoid wall effects.
The molecules have hard cores (u;,,, and u;,,,) so the

classical configurational integral Z is a convolution.
Since the (N,P,T) configurational integral Y, with the
(additional) exp(—BPL) factor is just the Laplace trans-
form of Z with BP as the Laplace variable, the (NPT)
configurational integral Y is a product of the Laplace
transform of the individual Boltzmann factors. For N di-
mers with an intra- and (short-range) intermolecular po-
tential Yis

A

Y= F(fintrafinter )N (12)

with
fi= fo‘” exp{ —B[Px +u;(x)]}dx . (13)

The (NPT) mean volume (L) is obtained from the
thermodynamic relation and (12) and (13)

dlnY
aP

<L>=_B :N[<Iimer>+(lintra>] ’ (14)

N.B

with
wiexp{ —B[Px +ujp,(x)]}x dx
J 7 exp{—BLPx + g (x)]} dx

<lintra> (15)

The mean intramolecular bond length at constant pres-
sure P =P, and temperature T can be calculated from
(15) with great accuracy. Isotherms of {1,,,,(P)) and for
the potential in Fig. 1(b) are shown in Fig. 5. The in-

N | | T |

PRESSURE P
FIG. 5. Isotherms for the intramolecular bond length /., as
a function of the pressure P, obtained by Eq. (15). Full curve is
for T=0.01; dashed line is for T'=2; and dash-dotted line is for
T =100.
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tramolecular potential is modified from its symmetrical
version in Fig. 1(a) for several reasons. We want to ana-
lyze constant pressure MD for its capability of equilibri-
um sampling and the unsymmetrical potential ensures a
system with different inter- and intramolecular relaxation
times. For the intermolecular molecular potential we
have chose repulsive Lennard-Jones potentials and length
and energies are given in units of its potential parameters
o and e. It is, as mentioned, necessary for the ‘“‘convolu-
tion technique” that the particles (monomers) have a
given order and for the derivation of (14) that the mono-
mer units in the dimers only interact with neighboring
monomers. For this reason the minima positions in u;,
are shifted to a position for which both conditions are
fulfilled for all points of states shown in Fig. 5. The sys-
tem is a fluid (gas) for all points of state and with no
phase transitions. The intramolecular thermal expansion
coefficient

al

intra

oT

-1
Qp intra 1
intra

(16)

P

is negative in some (T, P) areas due to the shift in popula-
tion of the two intramolecular minima. This behavior is
also found in another one-dimensional model [24]. How-
EVET, O, jnyra 18 (very) small at T'~1, as can be seen from
the figure, compared to the intramolecular compressibili-
ty

alintra
aP

1

intra

BT,imra: - Ji (17)

T

The consequence of this fact for MD NPT dynamics is
that the thermodynamics of the system is more sensitive
to the pressure thermostat than to the temperature ther-
mostat. In other words, if the T thermostat does not
sample correctly and gives a slightly wrong mean temper-
ature, the impact on the thermodynamics is small com-
pared to the impact from a corresponding shortcoming of
constant pressure sampling due to the incompressibility
of dense fluids.

An MD NPT system was set up with N =200 dimers
interacting with the intramolecular potential in Fig. 1(b)
and with repulsive Lennard-Jones potentials between in-
termolecular neighboring monomer units. The algorithm
used for the integration is given in the Appendix. This
time only the centered leap-frog version was used, since
the conclusion from the canonical dynamics is that it is
the best and most stable algorithm for generating the dy-
namics of chaotic systems. The equations of motion were
integrated with a small time increment A =0.001, and for
various values of 7.. The MD results (O) at T=2 are
shown in Fig. 6(a) together with the exact isotherm
(dashed line). The results are for 10° time steps, and the
MD obtained mean bond lengths converge monotonically
towards the exact value with the increased integration
time. The points connected with the straight lines and
with the ordinate unit to the right show the deviation
from the exact results. Bearing in mind that T and P are
in units of the intermolecular potential parameters the
isotherm T =2, and with P varying a decade is represen-
tative for MD simulations of fluids.
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FIG. 6. (a) The exact isotherm /;,,,(P) at T =2 from Fig. 5
and with the MD determined points (O ) included. Also shown
with the ordinate unit to the right is the deviation
Linira(MD) — I ra(exact). (b) The probability distribution P (x)
of lipa for T=2, and P=1.47. The MD obtained distribution
is for 10° steps with A =1073.

In Fig. 6(b) the NPT ensemble distribution (15) at T =2
and P =1.47 is shown. This state was chosen for further
investigation. The figure gives the exact distribution
[P(x)]exace s well as the MD result of 10° time steps
which only deviates with an integrated square deviation

f0°° [Pup (%) — Py (x) 2dx =1.09X 1075, (18)

not visible on the figure. As in the case of canonical sam-
pling, double-precision dynamics are of no importance.
The corresponding single-precision dynamics also con-
verges monotonically towards the NPT distribution and
with an integrated square deviation 1.5X 107> for 10°
steps at the same T, P point as (18). The mean collision
time at this point of state is 7.,;=1.78 and the mean time
Tintra @ dimer stays in (or near) one of its two energy mini-
ma is Ty, =5.75. The fundamental problem in MD NPT
sampling is how fast can one rescale the volume [25].
One would think that since these two times express the
speed by which excess of inter- (intra-) molecular energy
is dissipated in the ensemble, the pressure thermostat
should be damped with a 7 [in (A3)] bigger than these
two times. This is, however, not the case. The thermos-
tat functions even for much smaller 7, values at the state
I'=2,P=1.47 down to 7,~0.065. The only minor
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shortcoming in the dynamic sampling is a small deviation
between the atomic and molecular temperature at high
pressures, but as mentioned (16), the impact on the ther-
modynamics of this defect is small.

The dynamics of the present system of dimers is ergod-
ic and fully chaotic, even at low temperatures (7 =0.01)
and for attractive Lennard-Jones potentials between the
molecules. However, a line of one-dimensional subsys-
tems interacting through anharmonic forces will at
sufficiently low temperatures exhibit nonergodic behavior
[26]. For this reason the g-space thermostat (10) was in-
cluded in the investigation of MD NPT dynamics, but
with no effect on the convergence of the sampling, mea-
sured by the integrated mean-square deviation (18). Fi-
nally it should be noticed that the virial of the inter-
molecular forces is rescaled to give the P, by rescaling
the mass centers of the molecules and not the atomic cen-
tres, if not the thermostat fails for 7, < 7¢pra-

IV. CONCLUSION

The requirement of time-reversible and symplectic dy-
namics of classical, mechanical systems can be achieved
by using simple time-centered finite-difference algo-
rithms. They give “representative” trajectories and lead
to a correct dynamical scanning of the microcanonical
phase space, as opposed to nonsymplectic algorithms
[3,4]. For other phase-space dynamics such as canonical
dynamics or dynamical sampling at constant pressure,
the differential equations are no longer symplectic, but it
is still possible to formulate simple reversible (time-
centered) algorithms both in Newton’s formulations as
well as for Hamilton’s equations (leap frog).

The canonical dynamics of simple systems exhibit in-
termittent chaotic behavior and by choosing a regular
solution close to a chaotic region one obtains a sensitive
measure of stability for different algorithms. Further-
more, the double-well system is known to be sensitive to
numerical roundoff errors which can drive a regular sys-
tem into numerical introduced stochastic behavior [5].
The simple time-centered algorithms (Verlet, leap frog)
are the best at remaining in the regular trajectory as op-
posed to the simple version of the Gear algorithms for
stiff differential equations, often used in MD. Numerical
accuracy of the MD arithmetic, however, plays an
insignificant role, compared with the accuracy of the in-
tegration, since the same mean behavior, as well as the
persistency to remain in the regular orbit is independent
of whether the calculations are performed in single or
double precision. However, if the system is not ergodic,
it can easily be overcome by introducing a second ther-
mostat as proposed in Ref. [15].

The constant pressure thermostat for a system, for
which the equilibrium statistical mechanics can be calcu-
lated, works excellently and appears to be remarkably
robust with respect to the speed by which the space is
rescaled to give constant pressure.
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APPENDIX: TIME-REVERSIBLE,
CENTERED-DIFFERENCE ALGORITHMS

An example of the canonical dynamics proposed by
Bulgac and Kusnezov [15] is

. P:
qi=7’i_§qi >
pi=f,—np;,

. (A1)
-3 f,.q,.+ng]/(ngf§) :

Pi2

m;

n= —gkT

> / (gkTT2) .
1

Due to the linear frictions one can derive a reversible cen-
tered difference algorithm by expanding the functions to
first order; the result is as follows.

From a set of the variables q(¢),p(t —h /2),§(t —h /2),
7(t) an updated set is obtained after the forces f,(z) are
calculated as follows:

pi(t +h/2)={p,(t —h/2)[1—n(D)h /2]
+hf ()} /[1+n(Dh /2],

p,(t+h/2)?
0t +M=n(0)+h | = —gkT /<gk:rf$,),
' ' (A2)
Et+h/2)=E(t —h/2)
—h | £,(0)q,(1)+gkT /(gkrfg),

q;(t +h)

_q(O[1—E(t +h/2)h /2] +hp(t +h /2)/m;
N 1+E&(t+h/2)h /2 :

This reversible algorithm is used to integrate the dynam-
ics of the double-well oscillator. The result is shown in
Fig. 4.

The Nosé-Hoover (N, P, T) dynamics are obtained from
Hamilton’s equations by scaling the coordinates
xN=q"V~1/P, where V is the volume and D is the di-
mension, and by introducing a new friction £(¢) as fol-
lows:

xi:Pi/("'liVl/D) ’ f’i:fi_(§+77)Pi ’

. (A3)
E=V/(DV), (=(P—P)V/(NkT7E)

[the dynamics for the T friction 4 is unchanged and given
by (2)]. The acceleration of the volume friction § is given
by the excess of the instant pressure P (t) to the external
pressure P, and governed by a characteristic thermostat
relaxation time 7,. A leap-frog algorithm for these equa-
tions is as follows.
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From x™(2), pM(t —h /2), V (1), V(t —h), £(2), £t —h),
and 7(¢) the moments are updated as

_pt—h/D{1—=[E&D)+ )]k /2} +hE(D)
1+ [ED+n(0)]h /2 ’

(A4)

The T thermostat friction 7(?) is updated as in (A2). The
volume and the P thermostat parameter § as

Vit +h)=V(—h)+2RENV(L), (A5)

h[P(t)—P. 1V (1)
NkT’Té

. 2
St +h)=E5(t —h)+

, (A6)

where the instant pressure P(?) is

N p(t+h/22+p,(t —h/2)
DP()V()=3,

i 2m;

+q;(6)f;(¢) (A7)
and finally the coordinates are updated as

V(t+h) P
. =q.(t) | ————=
q;(t +h)=q;(1) VD)

1/D
+P,-(t—I—h/Z) 2V (t+h)
m; V(t+h)+VI(e)
(A8)

(In case of an ensemble of molecules only the center of
masses are volume scaled.)

The algorithm (A4)-(A8) ensures a time-reversible
propagator with pressure fluctuating around P,,.
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