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Coarsening dynamics in uniaxial nematic liquid crystals
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We study the coarsening dynamics of defects in the uniaxial nematic liquid crystal 4-cyano-4-n-
pentylbiphenyl, subjected to a rapid pressure jump from the isotropic to the nematic phase. The defect
tangle formed at the phase transition is dominated by type- —strings (disclination lines), but also contains

type-1 strings and monopoles. We also give a general discussion of the existence of scaling solutions to
the nematodynamic equations for loop collapse and two-dimensional vortex-antivortex annihilation. We
have measured the density of type- —strings and loops and the monopole density as a function of time.
We have also measured the rate at which the intercommutation of two strings takes place. Surprisingly,
although the type- —' string density p scales as expected as a function of time, p-t ', loop densities and

monopole densities do not seem to scale over the time interval studied. A possible explanation is given.

PACS number(s): 61.30.Jf, 64.60.Cn, 05.70.Fh

I. INTRODUCTION

There is growing interest in the coarsening dynamics of
systems undergoing symmetry-breaking phase transitions
involving continuous symmetries, both in condensed
matter and in cosmology. The defects generated by con-
tinuous symmetry-breaking phase transitions have been
invoked by cosmologists in an attempt to explain the
large-scale inhomogeneity exhibited in the matter distri-
bution of the universe [1—4]. The condensed-matter
work for the most part has been theoretical with em-
phasis on calculating coarsening exponents [5—11].
Most of the work has concentrated on the study of mod-
els characterized by the time-dependent Landau-
Ginzburg equations [9] with O(N) symmetry. For sys-
tems with a nonconserved order parameter, such models
generally predict that the disclination line density in
three dimensions and the vortex density in two dimen-
sions should scale with time as t . However, numerical
simulations for three-dimensional systems have shown
different scaling behaviors [9,12,13]. Numerical simula-
tions of vortices in two dimensions find the vortex density
scales as t ' at late times but with a slow approach to
this asymptotic scaling [6,14].

Experimental studies of the coarsening of defects have
been reported for uniaxial nematic liquid crystals. The
symmetry breaking in this case [15] is from global SO(3)
to global O(2), resulting in a vacuum manifold (space of
minimal energy configurations) which is SO(3)/O(2), the
projective two-sphere. The singular defects produced
during this symmetry-breaking phase transition consist
predominantly of type- —, disclination lines. These defects
belong to the m

&
homotopy class of the vacuum manifold

and involve a rotation of 180 in the director field (local
molecular orientation) as one goes around a closed con-
tour encircling the disclination line. We will refer to

these disclination lines as strings. In addition, there are
point defects, or monopoles, which belong to the ~2
homotopy class of the vacuum manifold. One also ob-
serves nonsingular, type-1 disclination lines (strings), with
the director field changing by 360 . These type-1 strings
have a trivial homotopy and are therefore not true topo-
logical defects. Defects belonging to the ~3 homotopy
class of the vacuum manifold are also possible. These de-
fects are referred to as textures and candidate events have
been observed [16]. It can thus be anticipated that the
coarsening dynamics of uniaxial nematics is considerably
more complex than the simple Landau-Ginzburg models
for which the theoretical work has been done.

Orihara and co-workers [17,18] and we [19] have re-
ported studies of the coarsening dynamics of thin films of
temperature-quenched nematic liquid crystals in which
twisted boundary conditions were imposed. In this two-
dimensiona1 configuration the type- —,

' strings form loops
separating regions of opposite twist. This system belongs
to the universality class of nonconserved Ising models
with the strings serving as domain walls. The line density
is expected to scale as t ' . Experimentally measured
coarsening exponents in the range 0.44—0.52 are close to
the theoretically determined value of 0.5. We have also
studied the three-dimensional coarsening of nematic
liquid crystals subjected to pressure quenches [20—23].
We measured a coarsening exponent of 1.02+0.09 for the
type- —, string density, in agreement with theoretical ex-
pectations. Here we give a detailed account of our work
on three-dimensional coarsening and report on observa-
tions that have not yet appeared in print. In particular,
we have measured the type- —,

' string loop density and the
monopole density and find that they do not exhibit scal-
ing over the time interval covered by our experiments. In
addition, we have measured the probabilities of line inter-
commutations, monopole production events, and loop
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collapse events in order to obtain a detailed picture of
how coarsening proceeds. At this stage, theory is not far
enough developed to account for most of our observa-
tions. The coarsening dynamics of a nematic defect tan-
gle appears to be rich, exhibiting an epoch in which loop
production and monopole production is inhibited. This
time period is then followed by an epoch of notable loop
and monopole production.

II. THEORY: SCALING SOLUTIONS

The motion of the director field is governed by the
nematodynamics equations [24]. Here, we demonstrate
that those equations possess scaling solutions for collaps-
ing director field configurations. In particular, we shall
use the nematodynamic equations to show the existence
of a scaling solution describing loop collapse in three di-
mensions and vortex pair annihilation in two dimensions
(i.e. , annihilation of parallel strings in three dimensions).
In a previous paper we used similar arguments to find the
scaling solution for monopole-antimonopole annihilation
in three dimensions [25]. These scaling solutions give
useful insight into more general situations involved in the
behavior of the full defect tangle. For example, we show
that the logarithmic corrections due to the divergence of
the energy density near the core of a string actually can-
cel in three dimensions, but do not in two. This leads to a
possible explanation of the numerical results of Mondello
and Goldenfeld [6] and us [14], where it was found that
the expected t ' scaling for vortex density was only very
slowly approached in two dimensions.

In the simplest "one-constant" approximation, and in
the absence of fluid flow, the "nematodynamic" equations
describing the relaxation of the liquid-crystal director in
the nematic phase are given by

y =ir(V n'+(Vn )(Vn )n'),Bn

where n'(t, x) is the three-component director field, con-
strained to have unit length, and y and ~ are the rotation-
al viscosity (viscoelastic) constant and elastic constant,
respectively. This equation is the nonrelativistic analog
of the O(X) nonlinear o model, discussed in cosmology
in connection with the spontaneous breaking of global
symmetries in fundamental particle theory [26]. It also
describes the relaxation of spin systems [27]. For a
nematic liquid crystal n' should be identified with —n',
which will be important later.

Scaling solutions occur in partial differential equations
when the solution loses dependence on the initial condi-
tions. This often happens in the long time limit. In our
case, as the loop radius R shrinks to zero, we expect the
solution to lose dependence on the details of the long-
wavelength modes making up the initial conditions. The
same argument applies to vortex-antivortex annihilation
in two dimensions. Assuming this to be true, dimensional
analysis dictates that n' can depend only on the dirnen-
sionless scaling variable z=V'y/~x/(to —t)'~2 where to
is the collapse time. In this case, the equation of motion
becomes

,'z—V,n'=V, n'+(V, n ).(V, n )n' .

n =cos(8 )x+sin(8)y, (4)

where 8 is independent of the azimuthal angle P. This
describes a loop with no monopole (m2) charge, whereas a
loop produced by rigid rotation of a + —,

' string about the
z axis has unit monopole charge. Now a very helpful
simplification occurs. For this ansatz, we are effectively
reduced to the Abelian O(2) nonlinear o. model, and it is
easily seen that the evolution equation is linear in e. In
the nematic, 8 changes by m around a string, so that n is
not continuous, but possesses a "branch cut. " However,
one obtains this solution from a continuous solution
describing a + 1 singular string by dividing 8 everywhere
in space by two. Since the evolution equation is linear in
8, we still have a solution.

With this ansatz, the energy functional becomes

6 =2m Jp dp dz e """"+"'[(a,8)'+ (a,8)'], (5)

which has a logarithmic divergence at short distances
from the string, which shall turn out to be a considerable
help in determining the exact size of the scaling solution.
We impose a cutoff at distance r, from the string to make
Eq. (5) finite. In a moment we shall relate r, to the physi-
cal core radius.

Now we can make a simple argument that a stationary
solution to Eq. (5) actually exists. Consider the class of
configurations 8(p, z, R) representing closed loops of radii
R. For each value of R we imagine finding the
configuration that minimizes Eq. (5), with minimal value

;„(R).At large R, 6';„(R)falls to zero exponentially
since one can choose 0 to be uniform out to a radius of
order R. At small R, 6';„(R) goes to zero like
R ln(R /r, ). Thus 8;„(R)goes to zero at small or large
R. In fact, R parametrizes a one-parameter noncontrac-
tible loop in configuration space, as long as we identify
the R =0 "vacuum" with that at R = ~. It is then very
plausible that a maximum energy point occurs on this se-
quence of minimal energy configurations, corresponding
to a stationary point of e. At this point we expect to find
a classical solution with a single unstable mode. Note
that the argument is quite general in character. We ap-
ply essentially the same argument to show the existence
of a scaling solution for monopole-antimonopole annihi-
lation [25].

Such a "mini-max" argument, which may be viewed as
an application of Morse theory to infinite-dimensional
configuration space, was used by Taubes to rigorously

This equation follows from the stationarity of the follow-
ing positive definite energy functional

6'= f d ze ' (V,n') ~ (V,n')

in D spatial dimensions, where one imposes the con-
straint n'n'=1 either with a Lagrange multiplier, or by
regarding 8 as a functional only of the two "angular" de-
grees of freedom in n'.

Let us first consider a loop in three dimensions. For a
loop in the z =0 plane centered on the z axis, we make
the ansatz
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R =
S

2ln(R, /r, )

1+in(R, /r, )

1/2

(8)

This corresponds to a scaling solution with the loop ra-
dius given by R =v 2aly& t. This is w. hat o—ne expects
from a naive argument based on string dynamics. The
disclination lines act as strings under a tension T moving
through a viscous Quid so that the friction force per unit
length per unit velocity is given by I . Equating the
viscous force with the tension force per unit length leads
to the equation

dR T
dt R

(9)

where R is the loop radius as before. Integrating this
equation yields

1/2

(10)

where to is the time at which the loop vanishes. One thus
expects the loop radius to shrink with time via

R ~(to t)—
with a=0.5. It is not immediately apparent that this
simple model should adequately describe loop collapse
because the line tension of a static string is logarithmical-

prove the existence of a static monopole-antimonopole
solution to the Yang-Mills-Higgs equations [28]. Manton
then applied an analogous argument to the standard elec-
troweak theory, which led to the construction of the
"sphaleron" [29], an unstable classical solution which
plays a central role in electroweak baryon number viola-
tion, a topic of much recent interest.

Before finding the detailed solution, let us interpret the
unstable mode. It corresponds to a change of scale,

5n'(z) =n'((1+e)z) —n'(z) =ez V, n ' .

However, z V, n' is directly proportional to (dn'/dt), so
the perturbation corresponds to a shift in time, and thus
a shift in to, the annihilation time. From the time
translation invariance of the equation it is clear that if a
single scaling solution exists, there must be an infinite
family related by time shifts. What appears as an insta-
bility in the coordinates t, z merely corresponds to a shift
in the final collapse time t o. This interpretation is
confirmed by considering the analogous equation
(drldt) =1/r, with scaling solution r =&2(to t )'~ . I—n
terms of z = r /( to t )

' —and t, this exhibits the same
"instability" of the scaling solution, z =v'2.

Now we find the radius of the scaling solution from Eq.
(5). The logarithmic divergence of Eq. (5) near the string
core is of great assistance here. For a small core radius
the region near the string will dominate. Thus we have

—R 48 = (2m ) R ln(R /r, )e

If the logarithm is large, it plays little role in determining
the stationary point of Eq. (5). The stationary point actu-
ally occurs at

dp T
dt IC p (12)

where c is a constant of proportionality. Integrating Eq.
(12), one finds that the scaling solution is given by

p=(I /cT)t (13)

with scaling exponent v= 1.
It is not clear that the nematic liquid crystal should

coarsen according to Eq. (13) since the defect tangle will,
in general, consist of a mixture of defects belonging to the
~„~2,and ~3 homotopy classes of the vacuum manifold.
As we shall now show, the energies of these different
types of defects do not scale the same way with the
characteristic length g. The energy of a defect can be cal-
culated from the Frank free-energy density, given by [24]

V= —,'~[(V n) +(VXn) ], (14)

where the surface term has been neglected. Taking n=r
as the director field of a monopole and integrating Eq.
(14) over a sphere from r, to g gives E =4m.xg for the
monopole energy. Similarly, the director field for a +—,

'

string defect is n=xcos(P/2)+y sin(P/2). Integrating
Eq. (14) over a cylinder of length and radius g gives

ly dependent on a large distance cutoff, set by the loop ra-
dius, and because the director field relaxes diffusively.
The above "mini-max" argument indicates the simple
model is valid. This allows us to identify the drag force
per unit length per unit velocity [30] as (m'/4)y ln(R Ir, )

(four times this for a + 1 singular string), since the string
tension is given by (m /4)~ ln(R /r, ) (also multiplied by
four for a +1 string). The logarithmic divergence in the
tension has cancelled with a similar divergence in the
damping force.

We now use the results for loop collapse dynamics to
construct an argument for how the scaling of a random
tangle of strings should proceed. When a nematic liquid
crystal is subjected to a sudden pressure jump from the
isotropic phase to the nematic phase, defects form as
patches of Quid with uncorrelated order parameter knit
together in an attempt to produce a smooth director field.
This process, called the Kibble mechanism [31—33], re-
sults in a dense tangle of defects. This tangle coarsens as
the Quid evolves toward equilibrium. If one assumes that
the coarsening dynamics is dominated by type- —,

' strings
and that the string dynamics is adequately described by
the line tension T and the damping constant I, then a
simple argument, of the Lifshitz-Slyosov type [34], which
equates the time rate of change of elastic energy with the
rate of energy dissipation, can be made for how the coar-
sening should scale with time. If one considers the defect
tangle to be characterized by a single length scale g then
the line density (length per unit volume) p should scale as
p~g . Equating the characteristic tension force per
unit length, T lg, with the characteristic friction force
per unit length, I U, one finds that u = T/I g where U is a
characteristic velocity. The rate of loss of energy per unit
volume is thus W=Tvplg=T p ll . Equating this to
the time derivative of the line tension energy per unit
volume, 8'~ Tp, gives
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(15)

and the stationary point now occurs because of the loga-
rithm. One now finds

1/2
2

ln(R, /r, )
(16)

The physical core radius R, is constant, so we should ac-
tually replace r„the cutoff in z coordinates, by a time
varying cutoff' R,&y/Ir/(to t)' . This i—s reasonable
since the time dependence of the logarithm is weak.
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FIG. 1. A comparison of defect energies over a volume of
characteristic size g. The energies are given in units of nvr, .
The dotted, solid, and dashed lines are for the monopoles, type-
—,
' strings, and type-1 strings, respectively.

E+
& ~2

=—Icg ln(g/r, ) for the type- —,
' string energy. In a

similar fashion, the director field for an escaped +1 string
is given by [35]

n =x cosy cosP+y cosy sing+ z siny,

where y =2 arctan( r /g ) and r = (x +y )
' . Integrating

over a cylindrical volume gives E, , =2m.leg for the energy
of an escaped type-1 string. Figure 1 compares the ener-
gies of these three types of defects as a function of g, with
the energies given in units of ~~r, . As shown by the solid
line in Fig. 1, the energy of a +—,

' string scales as

gin(g/r, ). The energy of a monopole or an escaped +1
string, shown respectively by the dotted and dashed lines,
scales as g. Since the energies of different types of defects
scale differently with the characteristic length g one ex-
pects that the system will not scale according to a single
characteristic length-scale model. However, experimen-
tally the defect tangle is seen to be dominated by type- —,

'

defects. In such a case one expects approximate single
length scaling for the defect tangle.

We now consider the general scaling solution to the
nematodynamic equations in two dimensions, for vortex-
antivortex annihilation. Consider the two-dimensional
(2D) system to reside in the xz plane. The expression for
the energy, Eq. (5), then loses the factor 2mp. The same
argument of the logarithmic divergence dominating now
leads to

With this "adiabatic" cutoff we finally obtain the scaling
solution

' 1/2 1/2
K

In contrast to the three-dimensional case, the logarith-
mic dependence remains in the two-dimensional case.
While there is no logarithm in the force between a
vortex-antivortex pair (which scales simply as R ), the
drag force does have a logarithm. In the coarsening dy-
namics of the two-dimensional system, one therefore ex-
pects slower evolution at early times, with
g~ &t [In(t/to)]'~ following from the above considera-
tions. At early times the deviation from &t is consider-
able since the logarithm is changing, but at later times
the logarithmic dependence becomes negligible. This ob-
servation may explain the observed time dependence of
the scaling exponents seen in the two-dimensional simula-
tions [6,14]. In three dimensions we expect that the coar-
sening is mainly driven by the string tension straighten-
ing curved segments of string, rather than by string-
string annihilation, and therefore is most analogous to
the loop collapse case above, with no logarithm entering.

III. EXPERIMENTAL RESULTS

A. Experimental apparatus

For the studies of three-dimensional coarsening report-
ed here, the nematic liquid crystal 4-cyano-4'-n-
pentylbiphenyl, also referred to as K15 or 5CB, was used.
This molecule is rod shaped and about 30 A long. Mea-
surements of the splay, bend, and twist elastic constants
a.

, [36] and the viscoelastic coefficient y [37] have been re-
ported in the literature. The material we used was ob-
tained from BDH Limited (Poole, England) and used
without further purification. At atmospheric pressure
the isotro pic to nematic phase transition occurs at
35.3'C. We measured the slope AP/AT of the coex-
istence curve to be 2.47 Mpa/K, between 0.7 and 17
MPa.

Figure 2 is a schematic view of the apparatus, consist-
ing of a pressure cell with two sapphire windows. Pres-
sure was transmitted to the cell through a Kapton dia-
phragrn via a 15 crn length of high pressure tubing with
an inner diameter of 0.75 mm. One side of the dia-
phragm was connected, through a valve, to a hand-
turned piston containing water, the connection again be-
ing made through lengths of 0.75-mm inner-diameter
high-pressure tubing. Pressure jumps were initiated by
opening the valve. With this arrangement pressure jumps
having a duration of less than 8 msec were obtained.

The windows of the pressure cell were treated with the
homoetropic alignment material, n, n-dimethyl-n-
octadecyl-3-aminopropyltrimethoxysilyl chloride (other-
wise known as DMOAP), using standard procedures [38].
The spacing between the windows was 158+8 pm for the
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FIG. 2. A schematic of the pressure jump apparatus.

run having a pressure jump AP of 2.00 MPa. For the
other three runs reported here the spacing between the
windows was 234+23 pm. The diameter of the sapphire
plates and the sample chamber was 7 mm. The view port
into the cell was 3 mm in diameter. The cell was viewed
via a microscope employing backlighting. A X 10 objec-
tive having a depth of field large compared to the separa-
tion between the windows was used so that strings any-
where in the region between the two windows would be in
focus. High-speed video recordings with 5 msec between
frames were made of the coarsening of the pressure jump
initiated defect tangles. Each video frame consisted of a
400-pmX312-pm view of the sample chamber. All the
runs began at approximately the same state, at 37 'C and
3.6 MPa, but differed in the depth of the pressure jump.
A sequence of 10 coarsening runs for each of the pressure
jumps hP of 2.00, 2.28, 2.62, and 4.69 Mpa were record-
ed. The data described here were obtained from these
video recordings.

B. Coarsening of strings

We have measured the coarsening exponent v for the
type- —,

' strings and find that it is close to 1. The data were
obtained by performing image processing on selected
frames of the coarsening sequence. Figure 3 shows some
representative frames from a coarsening sequence taken
during the AP =4.7-MPa run.

The guiding principle behind our application of image
processing to clarify the string tangle pictures was to do
as little processing as possible before estimating the string
density. We used a four-step analysis: 3X3 median
filtering, adaptive background subtraction, Sobel gradient
calculation, and a cleaning algorithm similar to morpho-
logical dilation and erosion [39]. Adaptive background
subtraction was accomplished by dividing the 512X400
images into 128X100 sized subimages, calculating for
each region the average of each of the 32 X 35 subregions
weighted by its standard deviation, fitting a 2D 8-spline
to the subimage points to get 512X400 "background"
images, and subtracting these from the original images.
The grey levels were then rescaled such that the mean

t=2.9 sec t=4.$ sec

FIG. 3. A coarsening showing the strings (predominantly
type- —) visible in our 230-pm-thick pressure cell containing
K15 nematic liquid crystal, at t =1.0, 1.7, 2.9, and 4.8 sec after
a pressure jurnp of AP=4. 69 Mpa from an initially isotropic
state in equilibrium at approximately 37'C and 3.6 MPa. The
evolution of the string tangle shows self-similar or "scaling" be-
havior. Each picture is 360 pm wide.

was a light gray and the standard deviation spanned the
resolution of the display. This successfully normalized
the light intensity across our images. Next, we calculated
the Sobel gradient image. Finally, the string density was
estimated from the processed images by counting the
number of points above a set threshold. Figure 4 shows
the images generated from the frames of Fig. 3 with this
image processing procedure.

The line density was calibrated two ways. In the first
method we chose to calibrate the string density so that it
represented the number of strings per unit area crossing a
plane. The calibration for each data set was obtained by
counting the number of strings crossing a line drawn
across the image, averaged over several lines and images,
and dividing by the cross-sectional area, i.e., the depth of
the cell times the width of the image. In the second
method we chose to calibrate the string density to
represent the line length per unit volume. We selected a
single set of images from the AP =2.28 —MPa run, show-
ing the string network at t =5.8 sec. Using a planometer
for measuring distances on a map, we measured the pro-
jected line length. Assuming that the line segments are
uniformly distributed in orientation in three dimensions
we obtain a line length of 88.5 mm/mm . This is 1.4
times larger than the string density of 55.6 mm ob-
tained by the first method. Note that one does not expect
these two methods of obtaining a string density to give
the same result since they are physically distinct. In this
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last points from each data set, a least-squares fit gives a
scaling exponent v= 1.02+0.04, which is close to the pre-
dicted t ' power law.

t=1.0 sec t=1.7 sec

t=2.9 sec

FIG. 4. Processed versions of the data in Fig. 3. The images
were cleaned using 3 X 3 median filtering, adaptive background
subtraction, Sobel gradient calculation, and morphological
dilation-erosion.

C. Loop collapse

In order to gain insight into the dynamics of the type- —,

strings the collapse of nearly circular type- —,
' loops were

studied. Loops with ellipticities of less than 0.6 were
selected for study and the loop radius as a function of
time was recorded. Such loops are generated through a
sequence of intercommutation events that detach seg-
ments of type- —,

' strings from the tangle. An example of
the formation of such a loop is depicted in Fig. 6. All the
type- —,

' loops that we have observed during the runs re-
ported here vanish, indicating that the loops are com-
posed both of type-+ —,

' and type- —
—,
' segments. If this

were not the case the loops would leave monopoles
behind upon collapse.

Figure 7 shows the loop radius as a function of time for
a single loop collapse. The scaling exponent in Eq. (11)
for this loop was measured to be a=0.49+0.02. A total
of seven loops suitable for loop collapse studies were
found in our data set. Averaging these results gives
+=0.50+0.03, in excellent agreement with our previous-
ly discussed model.

manuscript the data will be presented using the second
method of calibration.

Figure 5 shows the coarsening data obtained by the
method described above for the four different pressure
jumps 4P. Each data point represents the average over
the 10 coarsening sequences taken at each AI'. The dot-
ted lines scale as t '. At early and late times the data de-
viates from the expected t ' slope. At early times the
string density is sufficiently high that the method used to
measure the string density underestimates the line density
because of string overlap. At late times the data deviate
from the expected t ' behavior due to finite-size effects
which will be described shortly. Omitting the erst and

D. Loop density

As already shown in Fig. 6, during the coarsening pro-
cess type- —,

' intercommutation events sometimes lead to a
closed type- —,

' loop which then collapses. We measured
the time of birth (the time of the intercommntation event
that gave rise to the closed loop) and the time of death of
type- —,

' loops of the AP =4.69 MPa run. We included all

192= .

128 ~ ~& ~
''0

64—
~ W

32—

16—

8
1.0 2.0

+ + +..

4.0 8.0
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I I I
I

I I I I

I
i'''. .&

'i'
s

16.0 32.0

FIG. 5. String density data, accumulated at four different
AP. Plus symbols correspond to AP=2. 00 MPa; triangles,
hP =2.28 MPa; asterisks, AP =2.62 MPa; diamonds, hP =4.69
MPa. The dashed lines depict a scaling of t . By curve fitting
to this data the line length per unit volume p was determined to
scale as p~ t'

t=1.2 sec t=1.7 sec t=2.3 sec

t=3.0 sec t=4.0 sec t=4.6 sec

FIG. 6. Loop formation and collapse sequence. The time la-
bels indicate the time since the pressure jump from the isotropic
phase to the nematic phase. A number of intercommutations of
type- —' strings result in the loop shown in the t =3.0 sec frame.
The loop subsequently collapses and vanishes. The pictures
were obtained from the b,P =4.96-MPa run. The width of each
picture is 29 pm.
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FIG. 7. Typical data showing the loop radius as a function of
to —t, where to is the time at which the loop disappears. The
collapse exponent for this run is o.=0.50+0.03.

FIG. 9. Loop density p& (number of loops per unit volume) as
a function of time for the EP=4.69-MPa run. The data are
complete for t ) 1 sec. The straight line shows the expected
scaling behavior p ~ t expected for the bulk. Note that in the
time interval between 1 and 2 sec there is a deficit in the number
of loops.

type- —' loops that died after 1.00 sec regardless of the2

number of T intersections attached to them. The time
lines of the loops are shown in Fig. 8. From this data one
can evaluate the loop density as a function of time.
Again for a system characterized by a single scaling
length g one would expect the loop density (the number
of loops per unit volume) to scale as g . The loop densi-—3/2ty is thus expected to scale with time as t . Our mea-
sured loop density is shown in Fig. 9. Note that for times
greater than 3 sec the loop density exhibits the expected
coarsening behavior. However, for earlier times there is
a deficiency in loops. We do not attribute this deficiency
to be due to experimental difficulty in identifying loops at
early times. For example, at t =1 sec the scale length is
/=90 pm. However, experimentally one is really looking
at a projected image, with an average, apparent string
separation (scaling length) g, ~ g. The cell thickness D
needs to be considered in order to determine the relation-
ship between the average, apparent string separation ( pp
and the average, actual string separation g. If one is ob-
serving strings in a volume of depth D and area g then

I I I
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I I I I
I

I I I I

150—

P 100—

z
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0
0 5

I ~ I I I I

10 15
Time (sec)

20

FIG. 8. Time lines of loops found in the ten pressure-jump-
initiated phase transitions of the hP =4.69-MPa run. The data
are complete for t ) 1 sec.

3the measured density will be p, —g(D /g) /g
=D/g —I/g,„.Therefore, allowing for the 230 pm
thickness of the cell, the observed strings should, on aver-
age, be separated by an apparent distance of

= [(90) /230]' =56 pm. This distance is largeaPP
1compared to the 4 pm width of the image of a type- —,

string and should be readily distinguishable in our 400-
pm by 312-pm pictures. In addition, the loops are
identified by running the video tapes backwards and for-
wards and looking for a structure that collapses to a
point. Hence, we argue that the deficit in the loop densi-
ty at early times is not due to obstruction by the rest of
the defect tangle but is real.

E. Finite-size eff'ects and scaling of X intersections

The analysis of the coarsening data is complicated
somewhat by the finite size of the sample chamber. Be-
cause of the homoetropic alignment material used to coat
the sapphire windows, the defect tangle pulls away from
the windows and collapses towards the center of the sam-
ple chamber. Figure 10 shows a coarsening sequence of a
defect tangle inside a capillary coated with the same
homoetropic alignment material. Note that the tangle
collapses toward the center of the capillary and in fact
eventually becomes a single escaped type-1 string running
along the center of the capillary. In the planar geometry
of the sample chamber used for the coarsening experi-
ments one expects the defect tangle to eventually decay to
a two-dimensional sheet lying halfway between the two
windows. The coarsening exponent for the line density of
this two-dimensional sheet [15,16] will be v= —,'. To ob-
tain the bulk coarsening exponent it is thus necessary to
perform the line density measurements on a time scale
that is short compared to the time scale on which the de-
fect tangle collapses.

To check the degree to which the tangle has collapsed
we measured the number of crossings of type- —, strings1

seen in the video frames. These crossings are not actual
intersections where four string segments come together,
but rather are projected images of two type- —,

' strings
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1 sec

f

-~l
i:,g .

I

35 sec

p, . Using such a procedure, and fitting to the linear re-
gime in the corrected lnp, vs lnt data, a corrected scaling
exponent of v, =0.93+0.06 is obtained. This number
can be viewed as a lower bound on what one would ex-
pect from a more realistic model of the deviation of v
from bulk behavior for coarsening during collapse, and is
thus reasonably incorporated as an additional contribu-
tion to the error bars given for our determination of the
bulk scaling exponent. Our conclusion is that the scaling
exponent for type- —,

' strings in bulk K15 is v= 1.02+0.09.

F. Scaling of T intersections

50 sec 120 sec

FIG. 10. Sequence showing the collapse of a defect tangle to-
wards the center of a capillary.

crossing, one above the other. We will refer to these
crossings as X intersections. These X intersections should
scale as t for the bulk if the string density scales as
t '. Figure 11 shows the density of X intersections as a
function of time from the AP =4.69-MPa run. The error
bars represent the one-sigma scatter of the values for
each of the eight runs analyzed. One sees that there is a
definite deviation from the bulk scaling for times later
than about 3 sec. If one assumes that the thickness, or
path length, of the defect tangle shrinks in such a manner
that the density is constant throughout the defect layer
and that the tangle in this layer retains the properties of
the bulk, then the time dependence of X intersections can
be used to infer the thickness of the defect tangle as a
function of time. This could then be used to correct the
inferred string density to obtain the proper string density

Type-1 strings most frequently terminate on type- —,
'

strings. It is possible to have closed type-1 loops but
these are sufficiently rare that none were observed in the
runs reported here. Figure 12 shows a sequence in which
a type-1 line segment becomes absorbed in a type- —,

'

string. Each end of the type-1 string terminates on the
type- —,

' string. The line tension of type- —,
' strings is higher

than that of the type-1 strings because the type- —,
' strings

have a singular core while the type-1 strings are non-
singular. The junction of a type-1 string with a type- —,

string thus has the shape of a "T." We will refer to these
junctions as T intersections. If the scaling of the defect
tangle is characterized by the single parameter g one ex-
pects the T-intersection density to scale as 1/g . Hence,
if the line density p-g scales as t ', then g scales as
t ' and the T intersections scale as t . Along with
measuring the type- —,

' string density we measured the X-

1000

10=

100

O

t=3.75 sec t=3.90 sec

,4S~

1:=
0.5 =i

s I

1.0 2.0 4.0
Time (sec)

7.0
t=4.13 sec t=4.40 sec

FIG. 11. X-intersection density as a function of time obtained

by analyzing eight of the AP=4. 69-MPa runs. The error bars
indicate the root-mean-square deviation of the data from the
mean. The solid line shows the expected t scaling expected
for the bulk.

FIG. 12. Decay of a type-1 string connected two parts of the
same type-2 string. The figure shows two T-shaped intersec-
tions that each end of the type-1 string makes where it attaches
to the type- —' string. The pictures were obtained from the
AP =4.69-MPa run. The width of each picture is 81 pm.
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FIG. 13. Experimental data obtained from the AP=2. 62-
MPa run showing the time dependence of the type- —' string den-

sity pz (diamonds), the T-intersection density pT (plus symbols),

and the X-intersection density p& (filled circles). The lines de-
pict the expected bulk scaling behavior for these quantities:

pz ~ t ', pT ~ t ', and pz o- t

intersection and T-intersection density for the
AP=2. 62-MPa run. The data are depicted in Fig. 13.
Also depicted are lines exhibiting t ', t, and t
scaling. The scaling exponent for the time dependence of
the T-intersection density was measured to be 1.60+0.06,
which is larger than the expected 1.5, perhaps again be-
cause of the finite-size effects previously mentioned.

J I I I I I I I I
I

I I I I
)

I I I I
(

I I I l~

rying a monopole. There are also several mechanisms by
which monopoles can be destroyed. The most commonly
observed, depicted in Fig. 14, is that in which the mono-
pole travels along a type-1 string to a T intersection and
is annihilated at the T intersection. Again, if the coarsen-
ing is characterized by a single length scale g one would
expect the monopole density to scale as g or as t

We have recorded the time of birth and the time of
death of all the monopoles in three of the four AP runs.
From this data one can determine the monopole density
as a function of time. Figure 15(a) shows the monopole
density versus time for each of the three runs AP =2.28,
2.62, and 4.69 MPa. Figure 15(b) shows the three curves
superimposed by rescaling in log-time so that the cen-
troid of each curve is centered on that of the 4.60-MPa
data. As with the loop density, the monopole density
does not scale as expected. There is a relatively sudden
initiation of monopole production at early times. The
monopole density reaches a maximum and then decays
more quickly than the p ~t expected from a one-
scale model. In fact, a scaling of p ~ t more accurately
characterizes the late time scaling. There is thus an
epoch during which monopole production turns on and
an epoch during which the monopole density rapidly de-
cays. Since type- —,

' loop collapse provides a major mecha-

G. Monopole density

Figure 14 shows the formation and annihilation of a
monopole. In this particular sequence the monopole is
created by the collapse of a type- —,

' loop with two type-1
strings coming off it. Monopoles are created by other
mechanisms as well. For example, two neighboring T in-
tersections on a type- —,

' string can merge, resulting in the
detachment from the type- —,

' string of a type-1 string car-
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FICx. 14. Creation of a monopole from the collapse of a

type-2 loop and its subsequent annihilation at a T intersection.

The pictures were obtained from the EP=2.28-MPa run. The
width of each picture is 96 pm.

FICi. 15. (a) Monopole density p as a function of time for
the runs; AP =4.69 MPa (dashed line), AP =2.62 MPa (dotted
line), and AP=2. 26 MPa (dot-dashed line). (b) Rescaled and
superimposed curves of (a).
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nism by which monopoles are created perhaps the deficit
in monopole production is due to the deficit of type- —,

'

loops at early times.

~~12
0~10
0

H. Scaling violations

dn C t=+ ln
dt rf3 t,

(18)

C is an unknown constant of proportionality, and t, is the
critical time. We use the fact that the only length and
time scale are provided by go-r' . This equation is
solved to obtain the total accumulated number of mono-
poles at time t,

3/2
3 t1+—ln
2

(19)

with C' a constant. We have calculated the accumulated
number of monopoles in each run, ignoring annihilations,

It was previously argued in Sec. II, and summarized in
Fig. 1, that the energies of different types of defects scale
di6'erently with g and hence the system may not exhibit
scaling. In this section we propose a possible explanation
for the observed deviations of the monopole and loop
densities from scaling. This argument relies on the coin-
cidence that the attractive force between two strings,
with a logarithmic dependence on their separation, dom-
inates their repulsive force soon after the point where the
defect tangle becomes clearly resolved. If confirmed, it
will provide a rather remarkable instance where a very
large length and time scale is produced in an otherwise
"scale-free" system through a logarithm.

The main point is that the formation of a new mono-
pole requires the self-intersection of a type- —,

' string, thus
forming a loop having a monopole charge. The resulting
closed loop collapses to form the monopole. However,
type- —,

' strings, separated a distance d, actually repel [24],
with a force per unit length, F„~a/d. The attractive
force per unit length, F, ~ T/R, pulls a string towards a
self-intersection, where R is the radius of curvature of the
string. Since the tension T is the energy per unit length
along the string, the attractive force is F, ~ (Ir/
R )ln(d /r, ). At any time, the typical configuration would
have d-R -g, the characteristic scale on the network.
However the tension scales logarithmically with
whereas the repulsive force does not. The "crossover"
scale length g=r, e occurs when F„=F„whereA is a
proportionality constant. For larger scale lengths,
F, &F, and closed loops and monopoles will start to
form. Usinq the value of /=90 pm at t =1 sec and set-
ting r, -30 A for the length of the liquid-crystal molecule
gives A —10.

Close observations of video recordings of the network
show the process rather clearly. At times before 1 sec,
the string appears to avoid itself when a self-intersection
seems imminent, but after this time self-intersections
occur readily. We can write down an equation for the
production of monopoles, with a number density n, as

6—
Q

4

2
u Q—
V

0 1 2 3
Time (sec)

FIG. 16. The cumulative number of monopole births as a
function of time for the rescaled data of Fig. 15(b). The curve is
a fit to Eq. (19).

from the data, rescaling the time in each run by a con-
stant factor. This factor is chosen so that after rescaling,
the string densities shown in Fig. 5 are equal in all runs to
the string density in the AP =4.69-MPa run. With this
rescaling of the time, and the scaling hypothesis, we
should remove all dependence on the pressure used in
each run. Figure 16 shows the scaled results of the data
shown in Fig. 15, taken for three different pressure
jumps. The curves are the fits of Eq. (19) to the data sets.
The fit is quite good, but we have used two free parame-
ters, the constant C' = 14.5 and the time t, =0.66 sec.

We do not regard our proposed explanation as
definitive, but it does bear further investigation. If it
turns out to be correct, it will provide a remarkable in-
stance of a large length scale being dynamically generated
through a logarithm. Similar phenomena could well
occur in cosmological theories.

I. Event statistics

The motion of strings in a defect tangle is one that
reduces the total line tension energy. Hence the strings
generally move to increase the local radius of curvature
and straighten themselves out. Also, as in loop collapses,
the strings move in a manner that shortens line length.
Both these processes continuously reduce the line length
of the defect tangle. Besides this continuous motion
there are events that take place at well-defined instances
of time, such as the intercommutation of two strings, the
creation of a monopole, the collapse of a loop, etc. We
have constructed a classification of these discrete events
and have measured their relative probabilities of oc-
currence. The data was obtained for the AP=4. 69-MPa
run. All events occurring later than 2 sec were recorded.
For times earlier than 2 sec only one-fourth of the video
frame area was searched for events. In this data set we
have identified 16 different types of events, listed in Table
I. Note that type-1 strings are depicted as a pair of paral-
lel lines. This is not an exhaustive list of the kinds of
events that can be observed in uniaxial nematic liquid
crystals. Therefore, Table I is only a list of the 16 most
abundant types of events. For example, not included in
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TABLE I. Event classification list. The first column gives the identification number we have given each type of event.

Code Event pictograph Description

Intercommutation of two +2 strings

(The two initial strings are separated in space)

Decay of a +1 across two +—,
' 's into two +—,

' 's

Decay of two +1's across two +2 s into two +2 s

Intercommutation of a +—' and a +1 resulting in a +—'

with two 1 intersections

Intercommutation of two +—''s resulting in two +—''s
connected by a +1

Unlinking of two +1's from a +—,
'

Unlinking of two +1's from a +—' resulting in a single +
~

and a monopole carrying +1

Decay of a +1 connecting two parts of the same +
2

into a single +—'

~ ~et~
0 ~t~oego+

Decay of a +1 connected at both ends to a straight
segme t of a

10
s — ~~ ~ ~ ~

o+ Decay of a monopole carrying +1 connected at both ends

to a straight segment of a +
2

Decay of a monopole sitting on a +1 by absorption into
a +—'

12 Collapse of a +—,
' loop (no end products)

Collapse of a +—,
' loop with a +1 across it

14 Collapse of a +~ loop with two +1's coming out at either

end, resulting in a single +1

CoHapse of a +2 loop, with two attached +1's, resulting

in a monopole carrying +1

16 Collapse of a +—,
' loop with four attached +1's resulting

in a four-(+1} vertex which escapes



3354 CHUANG, YURKE, PARGELLIS, AND TUROK 47

this list is the annihilation of a monopole and an an-
timonopole. We have observed such events to be quite
common in cylindrical geometries [25], but here they
occur at a suKciently low frequency that no examples
were found in the runs reported here. Another example

is the collapse of a type-1 loop. This is very rare even
when, through doing a slow pressure or temperature
quench, conditions are optimized for type-1 loop
creation.

We have created a classification scheme for these

TABLE II. Events, their probabilities, and associated classification numbers. The event probabilities for t (2.0 sec were deter-
mined from a total of 131 events. The event probabilities for t & 2.0 sec were determined from a total of 354 events. The data were
from the hP =4.60-MPa run.

Code Event % Prob.

26.6

AnM anz An), ~n (1/2)s

10.3

1.0

0.2

0.2

8.9

0.6

25.8

10 0 e g ~~ ~ ~ ~
~~ 0.8

2.3

12 8.9

13 1.2

5.8

15 1.4

0.4
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events based on the changes these events make to the de-
fect tangle. This is depicted in Table II, which also
displays the relative probability that an event takes place
for the time interval 1.0 & t & 2.0 sec and for the time in-
terval 2.0~t (5 sec. All events (a total of 354 events)
occurring in the 440-pm X 312-pm view area of the video
frames were recorded for the time interval from 2.0 to 5.0
sec. For the time interval between 1.0 and 2.0 sec only
one-quarter of each frame was examined for events; a to-
tal of 131 events were found in this interval.

The classification scheme is defined as follows. AnT is
the difference in the number of T intersections before and
after the event takes place. AnM is the change in the
number of monopoles after the event takes place. An„
and An~, &2~, are the change in the number of type-1 and
type- —, lines in the local vicinity of the event. Note that
events 8 and 9 are not topologically distinct but are gen-
erally easy to distinguish depending on whether the type-

FIG. 17 The number of occurrences of events of type 1 and
type 8 as a function of time for the AP=4. 69-MPa run. The
type-1 events are intercommutations of type- —' strings. The
type-8 events are the annihilation of type-1 line segments by
type-2 strings as depicted in Fig. 13.

—,
' or the type-1 string exhibits greater curvature. A total
of 485 events were observed. Of this number only 3.9%
were unclassifiable due to obscuration. Over the time in-
terval from 1 to 5 sec the most abundant event, event 1 in
Table II, consists of the intercommutation of type- —,

'

strings. The second most abundant event is event 8 in
which a type-1 and a type- —,

' string combine to form a sin-

gle type- —,
' string. The number of these two most abun-

dant events as a function of time is shown in Fig. 17. In
this figure, the events occurring earlier than 2 sec have
been multiplied by 4 to normalize them to the data for
times greater than 1 sec.

IV. CONCLUSIONS

We have studied the coarsening of the defect tangle in
a uniaxial liquid crystal. The type- —, string density scales
as expected from simple models and from theoretical
work that has been done on the coarsening of strings.
This is perhaps due to the fact that the type- —,

' strings are
the most energetic and dominate the dynamics of the de-
fect tangle. However, the loop density and monopole
density do not appear to scale in a simple way. This is
surprising since there is only one characteristic length
scale in the liquid crystal, the core size of a type- —, dis-
clination line which is of the order of 30 A, much smaller
than the length scales observed in our experiment. As we
argued in Sec. III H, there is a possible mechanism
through which the 30 A length scale can generate a much
larger length scale, provided by the logarithmic depen-
dence of the string tension on the correlation length scale

We have seen that a rate equation built on this ex-
planation provides a reasonable fit to the data.

Modeling and explaining the detailed results including
those of the last section is a task for the future. In partic-
ular, more and better data are desired in order to improve
our understanding of the event statistics of liquid-crystal
defects.
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