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Spherical-harmonics decomposition of the Boltzmann equation for charged-particle swarms
in the presence of both electric and magnetic fields
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The Boltzmann equation for reacting charged-particle swarms in neutral gases in the presence of both
electric and magnetic fields is decomposed into a hierarchy of kinetic equations by expanding the veloci-
ty dependence of the phase-space distribution function in terms of spherical harmonics. No limit is set
on the number of spherical harmonics and no approximation is made concerning the mass of the charged
particles related to that of the neutrals species. The space-time dependence is treated by making the hy-
drodynamic assumption which is taken to second order in density gradients. Spherical tensors are used
throughout. The resulting heirarchy of equations has universal validity and is amenable to a range of
numerical solutions. The structure of these equations is discussed and the inadequacies of a Legendre-
polynomial expansion are pointed out. The special configurations of the magnetic field parallel and per-
pendicular to the electric field are discussed in detail.

PACS number(s): 51.10.+y, 52.25.Dg, 51.50.+v, 51.60.+a

I. INTRODUCTION

Since the mid to late 1970s the theoretical analysis of
charged-particle transport through neutral gases under
the influence of a uniform electrostatic field has advanced
considerably. A general overview of this can be obtained
from the reviews of Kumar, Skullerud, and Robson [1]
and Kumar [2]. It will suffice here to make a few general
comments and cite key references. In the case of ions,
this advancement followed the introduction of the "two-
temperature" moment method by Viehland and Mason
[3], before which the theory was in general restricted to
weak fields only. Since then, there has been much excel-
lent work on the theory of ion swarms carried out by
Viehland and co-workers [4] and Skullerud's group [5].
This situation is comprehensively reviewed in the book
by Mason and McDaniel [6]. For electron swarms, the
advancement was fueled by the desire to overcome the
limitations of the "two-term" approximation which had
dominated the theory of electron transport through gases
since the time of Holstein [7]. The first systematic mul-
titerm analysis for electron swarms was given by Lin,
Robson, and Mason [8] and since then a considerable
number of multiterm theories have been published in a
relatively short time [9—17]. The situation up to 1986 is
discussed by Robson and Ness [17]. Monte Carlo simula-
tions have also played, and continue to play, an impor-
tant role in swarm physics —for example, in testing the
validity of the two-term approximation [18,19] and
checking on the accuracy of multiterm solutions [20].
For a discussion of Monte Carlo techniques in swarm
physics, the reader is referred to Refs. [21—23].

In contrast, comparatively little work beyond the two-
term approximation has been done on transport in the
presence of both electric and magnetic fields. This may
in part be due to the lack of a systematic approach in
solving Boltzmann's equation under these conditions. In
the case of electrons, two-term analysis and references to

early work are given in the books by Huxley and Cromp-
ton [24] and Holt and Haskel [25]. For the Maxwell-
Lorentz model, Braglia and Ferrari [26] have discussed
the solution of the spatially homogeneous Boltzmann
equation for an arbitrary angle between the electric and
magnetic fields. More recently, Ikuta and Sugai [27] have
applied the "Aight time integral" method to investigate
electron transport in a model gas for the magnetic field
both parallel and perpendicular to the electric field. This
theory is, however, only suitable to their particular ap-
proach. Biagi [28] claims to have a multiterm Boltzmann
analysis for the Lorentz approximation valid for any an-
gle between the electric and magnetic field. However, a
Legendre-polynomial expansion is used [29]. In the
present work it is shown that such an expansion is strictly
valid only in the spatially homogeneous situation for the
case of parallel fields. Using a Monte Carlo technique,
Brennen, Garvie, and Kelly [30] investigated electron
transport in nitrogen for perpendicular fields. Both com-
ponents of drift and the four components of the diffusion
tensor were calculated. In a kinetic theory investigation
of ion-cyclotron-resonance collision broadening, Vieh-
land, Mason, and Whealton [31] used the two-
temperature moment method to solve the spatially homo-
geneous Boltzmann equation for ions in the presence of
both electric and magnetic fields. Solutions were taken to
the second approximation in their truncation scheme
[3,31]. Early work on the motion of electron and ion
swarms in gases under the inhuence of electric and mag-
netic fields, carried out by Allis, is summarized in Ref.
[32].

The knowledge of charged-particle transport in the
presence of both electric and magnetic fields has a num-
ber of practical applications —for example, in high-
precision tracking detectors used in high-energy physics,
where the configurations of both parallel and perpendicu-
lar fields are used in detectors designed to determine both
the energy and the momentum of high-energy particles
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[33,34]. Application is also found in devices such as
high-current switches, cold-cathode rectifiers, and plasma
preparation [30]. The configuration of perpendicular
fields is discussed from an engineering perspective in the
review by Heylen [35], where the effects of the magnetic
field on gas breakdown and its applications are con-
sidered in some detail. It is believed, however, that the
investigation of charged-particle transport in electric and
magnetic fields has more fundamental implications. Solu-
tion of Boltzmann's equation in conjunction with
charged-particle experiments is a well-established pro-
cedure for verification or determination of low-energy
electron (ion) -molecule cross sections (potentials) [6,36].
The essence of the technique is the comparison of
theoretical and experimental transport coefficients. Start-
ing with some initial set of cross sections (or potential), a
theoretical calculation is made of the transport
coefficients and a comparison is made with experimental
values. If the comparison is unsatisfactory, the cross-
section set (or potential) is adjusted in a controlled
manner and the transport coefficients are recalculated
and the comparison is made again. This iterative process
is continued until satisfactory agreement between the
theory and experiment is obtained. So far, this process
has been carried out only when an electric field is present.
When, for example, a magnetic field is applied perpendic-
ular to the electric field, there are additional transport
coefficients, which could in principle be used to provide
additional tests for a cross-section set [37]. This may be
of value when questions of uniqueness concerning the
cross-section set arise.

The aim of the present work is to develop a systematic
approach to the multiterm solution of Boltzmann's equa-
tion for "reacting" charged-particle transport in gases in
the presence of both electric and magnetic fields to the
point where a range of numerical techniques can be im-
plemented. Working with the irreducible-tensor formal-
ism introduced into kinetic theory by Kumar [38], this is
done by decomposing the Boltzmann equation into a
hierarchy of kinetic equations using spherical harmonics
and the gradient expansion. It is found that although the
addition of the magnetic field itself is relatively straight-
forward, the effect it has on the structure of the equations
is a significant factor. With regard to the nature of the
interactions between the charged particles and the neu-
tral molecules, only the assumption of central forces is
made. No assumptions are made concerning the isotropy
of the scattering or the mass ratio of the colliding parti-
cles. The two configurations of parallel and perpendicu-
lar fields are considered in detail. We discuss, however,
how the present approach can be applied to an arbitrary
configuration of the fields. In the case of perpendicular
fields, we compare with the earlier "two-term" theory
and point out shortcomings resulting from the use of a
Legendre-polynomial expansion. The situation of paral-
lel fields leads to complex equations when considering
transport perpendicular to the fields.

II. THEORY

where

is the acceleration due to a uniform electric field of
strength E and

0=e8/m (3)

is the charged-particle cyclotron frequency in a uniform
magnetic field of Aux density 8. The charge and mass of
the charged particles are denoted by e and m, respective-
ly, while r and c denote the position and velocity, respec-
tively, at some time t. We note the identity

(cXQ) 8,= —Q L,
where

(4)

I.=cXa, (5)

is an operator similar to the angular momentum operator
of quantum mechanics. This connection is useful in con-
nection with calculation of the matrix elements, as dis-
cussed below.

The spherical-harmonic decomposition of f(r, c, t) is
written as

f(r, c, t)= g g f'"(r, c, t)Y(I)(c),
I=0m = —I

(6)

where c denotes the angles of c. The irreducible-tensor
notation used in the present work is discussed in I. Sub-
stituting expansion (6) into Eq. (1), multiplying on the left
by Y'"(c), and integrating over all c yields

g (Im ~B, +c.B,+a c),—Q.L~l'm') f".'(r, c, t)
I', m'

= —g (Im
~

J~l'm') f".'(r, c,t),
l', m'

where we have used identity (4) and set

(Im~0~1'm')—:IY (c)OY ~ (c)dc,

with 0 denoting any of the above operators. The explicit
representation of the first three terms on the left-hand
side (lhs) of Eq. (7) are given in I, where the collision ma-
trix is also discussed. Here, as in I, we do not require the
explicit representation of the collision matrix; only the
assumption of central forces has been made. The matrix
elements of the magnetic-field term are

representation of the phase-space distribution function of
"reacting" charged-particle swarms in a gaseous medium
under the inAuence of a uniform electrostatic field in
terms of spherical tensors. In the present work we extend
this formalism to include a magnetic field. Our starting
point is the Boltzmann equation describing the evolution
of the phase-space distribution function f(r, c, t) of the
charged particles

[8,+c.B,+(a+c XQ) B,]f(r, c, t) = J(f)—,

In an earlier paper Robson and Ness [17] (hereafter re-
ferred as I) formulated a multiterm spherical-harmonics

1

&tm [Q.L(I'm ) = y Q„"'&Im [I,„')(I'm'), (8)
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where

L(') = y (lm, lm lip)c(')8(')
PPl l, m2 2

is Eq. (5) in spherical notation [39]. Here, (lmi lm2l lp)
is a Clebsch-Gordan coefficient, and we have used the
tensor coupling rule [17,38]

Eqs. (I-11) [40] and (I-18), respectively. Explicit expres-
sions for the reduced-matrix elements &lllB(')ill'& and
&lllc(')ill'& are given by Eqs. (I-23) and (I-24), respective-
ly. The reduced-matrix elements of the angular momen-
tum operator are

(13)

ml, mP

The Wigner-Eckart theorem [17,38) implies that

where &lllL(')ill'& is a reduced matrix element, given
below. Substitution of Eq. (11) along with Eqs. (I-18) to
(I-21) into Eq. (7) gives the spherical-harmonics represen-
tation of the Boltzmann equation as

so that the magnetic-field term is diagonal in the l index,
independent of the configuration of E and B. Note that
the Clebsch-Gordan coefficient in Eq. (11) ensures that in
the l=O member of Eq. (12) the magnetic-field term is
not present, a reAection of the fact that the acceleration
of the charged particles due to the magnetic field does not
add energy to the particle. The magnetic field is present
for all higher-/ members of (12) and therefore inffuencesf"' in the I =0 equation. This reffects the fact that al-
though the magnetic field itself does not directly change
the energy of a particle, it can do so indirectly. For ex-
ample, if between collisions the magnetic field turns a
charged particle against the electric field, the particle, as
a result of the action of the magnetic field, will lose ener-
gy-

A. Gradient expansion of f'"

1', m', p

(12)

where the system of coordinates is chosen such that the z
axis lies along the electric-field vector E. The gradient
operator 6' ' and the collision operator J' are defined by

I

In the presence of both an electric and a magnetic field,
there are three independent directions in any swarm ex-
periment, determined by the electric-field strength E, the
magnetic-flux density B, and spatial gradients Vn. Ten-
sors of any rank can be formed from these vectors, either
individually or by coupling them together. Thus, any
tensor f'" can be represented quite generally by a sum
over all possible coupling of tensors formed from E, B,
and Tn, which produce a tensor of rank l:

Qo $ oo oo 00f' '= g g g g g f(llsAA, 'A, "1,"')[[Y' '(E), Y' (8)]',6 ' ]
s =0 A, =O V=O A,"=0A,"'=0

where f(I lsd, i, 'A, "A,"') are scalar coefficients which vanish unless

(14)

I+A, +X"'=even, (15)

(16)

a result of parity considerations and independent of the configuration of E and B. The order of the coupling of the ten-
sors in (14) is arbitrary. For E along the z axis, we have

1/2

'(E)=( —i )
4m

Employing the tensor coupling rule (10) in Eq. (14) and using expression (16), we find

f'"= g g g f(lm lskp)G„' 'n,
s =OX, =O p= —A.

where
' 1/2

oo oo oo 2/I I I +f(1mlskp)= g g g ( i)—f(I lsAA, 'A, "A,"')(A, 'm pApl Im )—
A, '=0 A."=0A."'=0 4m

X(A,"'OA, "m —ply, 'm —p)Y' '„(B)=0 if lml)1 or lpl)A, .

(17)

(18)

For vanishing magnetic field we have the extra conditions A,
"=0 and p =m, and Eqs. (17) and (18) above reduce to Eqs.
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(I-13) and the equation following it in I.
Substituting expansion (17) into expansion (6) and taking terms up to s =2, the phase-space distribution function may

be written in the form
oo j'

f(r, c, t)=n(r, t) g g f(lm ~000)Y()(c)+ g g g f(lm
~
lip)Y( }(c)G„'"'n(r,t)

1=0m = —1 p= —11=0m = —I

oo oo

+ g g f(lm ~200) Y '(c)GO 'n(r, t)+ g g g f(lm ~22@)Y '}(c)G„' 'n(r, t) . (19)
1=0m = —1 p= —21=0 m = —1

Note that, in general, even for the spatially homogeneous case, an expansion in terms of Legendre polynomials is inade-
quate as rn is no longer restricted to zero, but free to range from —l to l. In the special case of the two-term approxi-
mation where the sums are truncated at / = 1, if the polar axis is chosen to lie along the vector f"', then Legendre poly-
nomials may be used. It is, however, incorrect to take such an expansion beyond I = 1: this point is discussed further
later. Also, in the special case of parallel fields where there is a single axis of symmetry, terms to first order in the spa-
tial gradients in Eq. (19) can be reduced to expansions in terms of Legendre and associated Legendre polynomials, as in
the case when only an electric field is present [17] [see Eq. (83) below].

B. Equation of continuity

Equation (17) applies to any tensor and the scalar quantity c},n can be expressed in the form

c},n= g g g co(sky)G„' 'n,
s =Ok, =Op= —

A,

(20a)

1..e.,
1 2

c},n =co(000)n+ g co(11@)G„""n+co(200)GO' 'n+ g co(22p)G„' 'n, (20b)

up to s =2. Using the explicit expressions for G„' ' given in Table I of I, Eq. (20b) can be written as

c},n =co(000)n + —[co(111)—co(11—1)]B„n+ —[co(111)+co(11—1)]c} n i co(110)c},—nl 1

v'2 v'2

co(200) co(220)
v'3 v'6

co(222)+co(22 —2) 2 co(200) co(220) co(222)+co(22 —2)
2 v'3 v'6 2

Byn

+ —&2/3co(220} c}2n +i[co(222) —co(22 —2)]c} n
co(200)

+ [co(221)—co(22 —1}]c},n —i[co(221)—co(22 —1)B,n . (21)

In the usual notation the continuity equation is

B,n = —an —8' Bxn —O' B n —O' B,n+D B n+D B n

+D,B,n+D1B yn+D2B n+D3B, n (22)

where a is the loss rate coefficient, O', R~, and 8, are
thc th I cc components of thc drift velocity D Dy and
D, are the diagonal components of the diffusion tensor;
and D1=Dxy+Dyx& D2=Dxz+Dzx, and D3=Dyz+Dzy
denote the off-diagonal elements of the diffusion tensor.
Comparing Eqs. (21) and (22), we identify

D„=[co(200)/+3+ co(220) /&6
—(co(222 ) +co(22 —2) )/2],

Dy = [co(200)/V 3+co(220 ) /&6

+(co(222)+co(22 —2) )/2],
D, = [co(200)/+3 —V 2co(220)/v'3],

D i
=i [co(222) —co(22 —2)],

D2 = [co(221)—co(22 —1)],
D3 = i [co(221)—+co(22 —1)] .

(23)

a = —co(000),

W„= i [co(111)—c—o(11—1)]/&2,
W = —[co(111)+co(11—I))/&2,

W, =i co(110),

C. The hierarchy of equations

Substitution of expansion (17) into Eq. (12) and making
use of Eq. (13) and the continuity Eq. (20), we generate a
hierarchy of coupled equations for the functionsf(lm ~sip). After equating coefficients of G„' 'n, we find
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[J'+co(000)]f (Im lsAp) i—a g (1'm lollm )(IllB('}ill')f(l'm lsAp)+&l (I +1} g 0"'(Im —vlvllm )f(lm —vlsAp}

where

=XI (sk,p), (24)

XI (000)=0,
Xi ( 1 lp) = —co( I lp)f (im IOOO) —y (I'm pl p—

l
im ) & I llc('}llI')f(t'm —p 1000), p =o, +1

I'

1

Xi (200)= —co(200)f(lm looo) — — g ( —1)' co(1 lv)f(lm 11—v)v'3 „
1

(
—1)' (I'm —vlvllm )(Illc('}ill')f(l'm —vill —v),

I' v= —1

1

Xi (22p)= —co(22p)f(lm looo) — g (lp —vlvl2p)co( 1lv)f(&m I lip —v)
v= —1

1

(lp —vlvl2p, )(I'm —vlvllm )(I llc '}ill')f(l'm —vl lip —v), p=o, +1,+2 .
I' v= —1

(25a)

(25b)

(25c)

(25d)

Equation (24) comprises a set of ten coupled equations,
corresponding to the ten values of (s A p), up to s =2. For
a given value of (sAp) the rhs of Eq. (24) is specified by
the member of Eqs. (25) corresponding to that value of
(sAp). Equation (24) with (25a) is the lowest member of
the set. Equation (24) with (25b) contains the next three
members, corresponding to p= —1,0, 1. Equation (24)
with (25c) is the fifth member, while Eq. (24) with (25d)
contains the last five members, corresponding to
p= —2, —1,0, 1,2. Members with the same value of s do
not couple with each other; they only couple to lower-
order s members —thus the ordering of equations within
a given s "set" is arbitrary. The first member of this
chain is an eigenvalue equation for co(000), while all
remaining members are inhomogeneous equations in
which, apart from the quantity co(skp), (skp)A(000), the
right-hand side (rhs) is determined from the solution of
lower-order equations in the chain. For (sAp)%(000),
the quantity co(s A p) on the rhs of the equation for
f( lm lsd, p) must be solved for in a self-consistent manner,
as discussed below. The discussion given on page 2074 of

I

I concerning the eigenvalue problem also applies to the
above set and there is no need to repeat it here. We note,
however, that in applying it to the above hierarchy of
equations, the following extensions are necessary:

co (00)~coi(000),

co, (sk)~co (sAp),

f (lm lsd, )~fj. (im lsd,p),
G(sA, ) G(s&)

m p

G (sX) G (sA. )
0 p

and include a summation over p from —A, to A, in Eqs.
(I-33), (I-34},and (I-36).

D. Normalization and determination of the co(s Ap)

The normalization condition and the procedure for
determining the co(sAp) parallel that given in Sec. II C of
I; we find

&4~f f(00 lsd p )c dc =5,o5&o5„o,
0

co(000)= &4~f J—~ [f(oolooo)]c dc,

(26)

(27a)

4m.
co( 1 lp) =

3

4m.
co(200) =—

3

f c'f ( lp, l
000)dc &4mf—J~ [f.(00

l
1 1p) ]c'dc,

0

1/2

f c g f(lvl llv)dc —&4ir f J~[f(ool200)]c dc,
v ———1

(27b)

(27c)

co(22p) =—
1/2

f "c' g ( —1)' (lp —vlvl2p)f(1 —vl lip v)dc &4m f ——Jz[f(ool22p)]c dc,
3 0

(27d)
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where Jz denotes the nonconservative part of the col-
lision operator. Consider Eq. (24) with (25b), and Eq.
(27b) which, for a given value of p, are solved for the
quantity co(11p) and the function f(Im ~11@). We see that
the last term on the rhs of (27b) contains the unknown
function f(00~11@), which is found by solving Eq. (24)
with (25b), but this equation in turn contains the un-
known quantity co(11@). Hence, the pair of Eqs. (24) with
(25b) and (27b) must be solved in a self-consistent
manner. The same is true for the pair (24) with (25c) and
(27c) and the pair (24) with (25d) and (27d). This, of
course, does not hold for Eq. (24) with (25a) and Eq.
(27a), as Eq. (24) with (25a) is a "true" eigenvalue equa-
tion and must be solved as one. Equations (27) may be
used in Eqs. (23) to express the transport coefficients in
terms of the functions f (Im ~sAp).

In the absence of nonconservative interactions, co(000)
and JR vanish, and three significant simplifications then
follow immediately from Eqs. (27). Firstly, the first
member of the chain reduces to a homogeneous equation
for the function f(lm ~000). Secondly, the last term on
the rhs of Eqs. (27b) to (27d) vanishes and the quantities
co(s A p) are then completely specified by lower-order
members of the chain; hence, all higher-order members
reduce to ordinary inhomogeneous equations and there is
no longer the need for self-consistent solutions. Finally,
we see that the remaining nine quantities co(sA p),
(sip)W(000), given by Eqs. (27b) to (27d) can be deter-
mined by solving the hierarchy up to s=1, i.e., in the ab-
sence of reactions, it is sufficient to consider the first four
equations in order to determine transport up to diffusion.

With regard to the structure of the matrix of
coefficients on the Ihs of Eq. (24), we note that (1) the col-
lision term is diagonal in both the l and m indices; (2) the
electric-field term is both subdiagonal and superdiagonal
in the 1 index [as I'=l+1; see Eq. (I-24)] and diagonal in
the m index; and (3) the magnetic-field term is diagonal in
the I index and tridiagonal in m in general; for particular
configurations the I structure can simplify, as we will
see. In principle, one can exploit this "block" structure
to optimize numerical solution of the set (24). This is dis-
cussed in more detail in a subsequent paper [41] where we
implement numerical solution. In the absence of a mag-

netic field, m =p, and the set of equations (24) and (25)
reduce to equations (I-28) to (I-31). This greatly
simplifies matters for two reasons: First, to second order
in spatial gradients we only require solution of the equa-
tions for two values of p, p=0 (transport parallel to E)
and p= 1 (transport perpendicular to E). Secondly, the
fact that m =p means that the m dependence separates
into the different equations of the hierarchy, so that in
effect there is no m index to consider in solving a particu-
lar equation. That is to say, for any given equation, there
is only the I index to be concerned with. However, when
B is present, there is in general no simple relationship be-
tween m and p. Thus, if we truncate expansion (6) at
I =I,„, say, then for any member of the set of equations
(24) and (25), m will range from —I,„ to l,„. It may of
course be sufficient to truncate m at some valueI „&I,„ to obtain convergence of the transport
coefficients, as indeed we have found to be the case [41].
Nevertheless, in general, when both E and B are present,
for any given member of equations (24) and (25) one has
both the I and m indices to consider instead of just the I
index, in the implementation of numerical solution. This
significantly increases the size of the matrices and CPU
time required for solution, when compared to the E-only
situation. We now consider the special configurations of
perpendicular and parallel fields.

III. SPECIAL CONFIGURATIONS OF THK FIELDS

A. Magnetic field perpendicular to electric field

Choosing 8 along the y axis, we have

and the magnetic-field term in Eq. (24) becomes

V((1+1)g 0"'(Im —vlv~lm )f(lm —v~sAp)

Q=—[V(l —m)(l +m + 1)f(Im + 1 ~skp)
2

—&(I +m)(l —m +1)f(lm —1 ~sip)] . (29)

We also have

1/2
(2A, + 1)(A,— )! I' " (0)e'" =0 unless A, +p=even .

P P 4ir(A+~ p~)!, (30)

Hence, with this configuration we have the additional constraint in Eq. (18) that

A."+p+m =even . (31)

This constraint refiects the invariants of the physical system (and therefore the Boltzmann equation) under a rotation of
~ about the z axis. The Clebsch-Gordan coefficients in Eq. (18) plus constraints (15) and (31) then require

f(l —I ~sA, —p)=( —1) +"f(lm ~skp),

which in turn implies

co(sit —p) =( —I )"co(st) .

Substituting (29) into Eq. (24), we have

(32)

(33)
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[J'+co(000)]f(lm Isis) —ia g (I'm 10Ilm )(IIIc),' III')f(l'm sip)

+ —[&(I—m)(l + m + 1)f (Im +1Iskp) —v'(I +m)(l —m + 1)f(lm —1Iskp)] =Xi (skp),
0

where the rhs of (34) as given by Eqs. (25) may be
simplified by making use of relationships (32) and (33).
With condition (33), Eqs. (23) become

O' =D =D3=0
y 1 3

a = —co(000),

W„= i &—2co(111),

W, = ico(110),

D„=co(200)/+3+ co(220)/+6 —co(222),

Dy co(200) /&3+ co(220) /&6+ co(222)

D, =co(200) /&3 —&2co(220) /&3,

D2 =Di, =2co(221),

(35)

co(000)= —a,
co(110)= i W, , —

where 8' is the EXB component of drift, 8', is the E
component of drift, D denotes diffusion along EX B, D
diffusion along 8, D, diffusion along E, and the off-
diagonal diffusion coefficient D& is analogous to the Hall
conductivity in plasmas [30]. Relationships (35) can also
be expressed as

co(111)=i W„/&2,

co(200)=(D +D +D, )/&3,
co(220)=(D +D 2D, —)/&6,
co(221)=Dh /2,
co(222) =(Dy D)/—2 .

(36)

f(l —m IsA, O) =( —1) f (lm IsA,O),

and the equations for which p =0 need only be solved for
positive values of the I index. In the case of p&0, we
must solve Eqs. (34) with both positive and negative
values of the m index.

Using (32) in Eqs. (27), we find that the transport
coefficients given by Eq. (35) can be written in terms of
the functions f ( lm Is Ap) as

Relationship (32) implies that one need only consider
positive values of the p index in solving Eqs. (34) in order
to obtain all the information up to second order in the
gradient expansion. That is, for 8 perpendicular to E, we
have seven equations to solve, corresponding to the num-
ber of quantities on the lhs of Eqs. (36). In the absence of
reactions, we require the solution of three equations in
order to obtain both the drift and the diffusion
coefficients. In addition, in the case of p=O, (32) be-
comes

a =&4m f Jz [f(00 I 000) ]c dc,
0

' 1/2

(37a)

4m8'8' =i c 10000 c —i 4m J~ 00110 c dc,
0 0

1/2

f c f(11IOOO)dc+i&8m f Jz [f(OOI111)]c dc,
0 0

1/2

(37b)

(37c)

DX

4m.

3 f c [f(llI ill) —f(l —1I ill)]dc+ f J~ f(OOI200)+ — —V3f(OOI222) c dc . ,
0

4m

3

4m

3

1/2

f c [f(111111)+f(1—11111)]dc+f Jg f(001200)+ +&3f(OOI222) c dc
0 2

c 10 110 dc + Jz 00 200 — 2 00 220 c dc . ,
0 0

(37e)

(37f}

8mDz=
3

~ f c [f(11I110)+f(10I111)]dc &6f J—~ [f(OOI221)]c dc (37g)
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B. Transformation

2II l(21 + 1)(l—Im I
)!

4m(l+ Im I
)!

1/2

f(lm Iskp, ), (38)

and for the sake of convenience we set

We make the following transformation of Eqs. (34) in
order to present a form that is more amenable to compu-
tation and more suitable for comparison with early two-
term approximation work; we define

where FI, FI' ', FI ', FI ', and FI' ' are defined by Eqs.
(I-46) [40]. From Eqs. (32) and (38) it follows that

Fsk, —Is ( 1)m+IsFs)ls
I, —m Im (41)

Applying the above transformation to Eqs. (34) and (25),
making use of relationship (41), and writing out explicitly
all summations, Clebsch-Gordan coefficients, and
reduced-matrix elements, we Gnd after some algebra

(~I ~)F.'~+a(d,.F ~).+b,.F ~. ]
F000

lm lm

F(L) F110
Im Im

F( T) F111
lm lm

(39)
where

0
I glm I m +1 g!,—m I m —1 ] Im

For vanishing magnetic Geld, dim =
(21 —1) dc

(1 —1)
(43)

FI ~FI,
Flm FI(L) (L)

Flm ~FI )
(T) (T)

F —+F200 (2T)

220~ F(2L)
lm I

(40)

(1+1+lml)
(21+3)

d (1+2)
dC C

1, m(0
( I —m )(1+1+m ), m &' 0 .

The Hl' "are

(44)

(45)

a =II0~=0
Im = lm (46a)

Hl Hl ~ Fl +c Fl —1 +
1

F1+1(I) 110 (1 m) (1 +1+m)
21 —1 ' 2l +3) t

L

(46b)

( T) — 111 Im Im
HI = W F—l +c Fl, , — F.(21+3) ™ (46c)

+ — ' (1 —m)FI'
3 21 —1

(1—5 (, )
1 )mF(T)

t

(1+6 0)
(1—m )(1—1 —m )F,'

( 1 5mp) m (T)+ (1+1+m )F1+1 + ( 1)(21+3) 2 t

(1+|) 0)+ (1+2+ m )(1+1+m )Fl +T', O~m ~l (46d)

12

(21 —1)
(1—&,) „, (1+n, )

m)FI —1, + ( 1) FI —11— + (1—m)(1 —1 —m)F,'T',
4

+ (1+1+m)Ff('),
(21+3) t

(1 —5 (, )mp
( 1)m (T)

t

(1+5 0)
(1 +2+ m )(1 + 1+m )Fl(+)1 +1 O~m ~l (46e)
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+ 1

(2l +3) [(l+1+ m
l
)FI'+'1 +kI FI'+1 1 ] ', —l m I (46f)

H222 D D F + Pr F(T)+ ™F(T) F(T)
Ch ck

I y I I (2l 1) I 1, 1 (2l +3) I+1 1
—l&m &l (46g)

where

(l+2+ lm I
)(l+1+ lm l ), m ~0

1, m)0

(l —lml)(l —1 —lml), m~0
1, m)0.

(47)

I

In the absence of a magnetic field,

F(T) F(T) F222 F(L) F(T) F221 011 00 1, —1 00 11 10

as mAIM and the above expressions reduce to Eqs. (I-53),
bearing in mind (40). We now consider a quasi-Lorentz
gas.

Notice that Eqs. (46c) and (46g) contain negative m
values of the function FI, while (46f) contains negative
m values of the functions FI and FI ', although from
(42) and (46a), and (42) and (46b) we only solve for the
positive m values of FI and F&' '. Here we make use of
relationship (41). The normalization condition is

4'f F00"c dc =5,05205„0, (49)
0

and from Eqs. (37) and (38) the transport coefficients are
given by

C. Quasi-Lorentz gas

For a quasi-Lorentz gas we make the approximation

J'[C&(c))
=v(c)@(c),

cx =4' Jg Foo c dc
0

W, = f c F)0dc 4'f JI—I [FI)0']c dc,
3 0 0

(50a)

(50b)

where (I&(c) denotes any function of the charged-particle
speed and v is the momentum-transfer collision frequen-
cy. We do not require the explicit form of J for l&1. In
the absence of reactions, the first three members of Eqs.
(42) and (46a) are

W'„= — f c F„dc+41rf JI([F(((3']c dc,
0

(50c) J Fop+ + Flp =0p a d 2
3 dC C

D 1r 3[F(T) F(T) ]d
3 0

2 d 3
VF10+a Fop+ a

d
+—F20+2QF1 =0

dc 5 dc c
(51)

F200
—4m J~

0 3

F220 F222
00 + 00

v'6 2
C dC (50d) 3 d 3 QvF +—a +—F ——F 0=0;11 5 d 21 2 10

D = c [F' ' +F' 1]dcy 3 11 1, —1

200 220 F222Foo Foo Foo—41r J„—— — — c dc,
0 3 6 2

(50e)

the first three members of Eqs. (42) and (46b) are

JOF(L) + + F(L)
00 3 d 10 z 00 3 20

D c 3F(L)dc JO [F2M ++2F220 ]c dc,00 C 5 C C

(50f) 2
W F1p +C Fpp + F2p

5
(52)

(T)

D = — c' F"'+8m' Flo
dCh 3 11

+4vr&2f JII[F0()']c dc .
0

vF +—a +—F ——F = —8' F +c—F(L) 3
11 5 d 21 2 10 z ll 5 21&

(50g) and the first four members of Eqs. (42) and (46c) are
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J Fpp + + F1p = @&F00+3CF11
0 (T) a d 2 (T)

3 dc c

From Eqs. (51), F,o and F» can be written in the form

vF)o +a Foo + —,a +—F2o +Q[F)i F—
i i ]

(7) d (T), d 3 (7) (T) (T)
dc dC C

= 8'„F10 —', cF21

F10
va dF +2 d+3 F

dc 5 dc c

6Q d 3

5v dc c
(54a)

F(T) + a + F(T) F(T) (53)

C= JY F11+cFpp F2p

—a
3 d + 3 F(T) + F{T)
5 c c 2, —1 10

F11
Aa d 2 d 3

2(v+Q ) dc 5 dc c

3 av d 3+—F21 .
5 (v2+ Q~) dc c

(54b)

= —8 xF11 ——", cF22 . In a ~i~ilar fashion we find from Eqs. (52) and (53) that

F' '= —8' F — F +cF —a F' '+ —cF ——a +—Fv 2Q d l. 2 2 d 3 (L)
11 00 d 00 5 20 5 d 20v+0 v C

5v ' 5v dc c
(ssa)

v 5v
(55b)

F11 F]. 1
=

2 2
' Wx F1p+2F11 +CFppv+0

aQ d F' ' ——F + 6+F +12F00 5 20 21 22

( T)
F(L) + 10

11 v+0

a 2Q d +3 F(T)+3 d +3 (F(T) F( )
)

5 v dc c dc c

A—W, F„+
2v

I

(55c)

+ F +60 F —— 0 d 3
10v 5v 5 v dc c

3 ( 7.)
dc c

3 d +3 F( )+ 3Q d +3 (F(T) F(T) )
5 d ' 10 d

(55d)

Making the l=1 approximation, we see from the last
member of Eq. (51) that

4& ~ vc d8', = — a
2 2

F dc
o (v~+Q2) dc

(58a)

0
F11

2 F10 ~ (56)
3 o (v2+Q2) dc

(58b)

and Eqs. (54) reduce to

F10=—

F11

va d
(v+Q) dc

Qa d
2(v'+Q') dc

(57a)

(57b)

Substitution of Eqs. (57) into Eqs. (50b) and (50c) with
J~ =0 then gives

Apart from the lack of a negative sign in the expression
for 8', Eqs. (58) are the same as the equations (8.16) of
Huxley and Crompton [24]. The diff'erence in sign for
8'„arises because we have chosen 8 along the y axis,
whereas Huxley and Crompton choose B along the nega-
tive y axis [42]. In a similar fashion, we find that making
the 1=1 approximation in Eqs. (55) and substituting the
result into Eqs. (50d) —(50g) with J~ set to zero yields
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4w ~ vc 2QD
2 2

. 8'~ F&o+CFoo(v'+ 0')

Foo 'dcd r .
V dc

(59a)

Huxley and Crompton beyond the I = 1 approximation as
terms in F2, F'2 ', and F'2 ', m )0, present in Eqs. (54)
and (55) cannot be calculated by this theory. Moreover,
these functions depend upon higher l and m members
through the coupling of the kinetic equations.

4 IT vc ~ (0 v ) F + F(v+0 )

(59b)
D. Magnetic field parallel to electric field

For 8 along the z axis,

n(')= —inc, , (60)

—a Foo 'dc,(I )

dc

and the magnetic-field term in Eq. (24) becomes

(59c) v'l(l+1) +0"'(lm —vlvllm)f(lm —vlskp)

4m. ~ vc
Dh V+A

X. 2W, —"+W, ("',") F„
V

+a — Foo + Foo -dc .0 d (L) d (T)
V dC dc

(59d)

= —iQmf(lmlsAp) . (61)

which when substituted into (18) leads to the constraints

(63)

Thus, the magnetic-Geld term is now diagonal in both l
and m, and we have

' 1/2

(62)

In writing down Eqs. (59) we have used expression (56),
which is valid only for the l = 1 approximation, to com-
bine the first two terms of (55a), (55c), and (55d). Apart
from the first term under the integral in Eqs. (59a), (59c),
and (59d), the above expressions for the diffusion
coefficients agree [42] with those given by Eqs. (8.45) of
Huxley and Crompton [24]. The term in F,o is absent in
the treatment of Huxley and Crompton because the time
derivative of the "vector" function (the equivalent of f"'

in the present work) is set to zero. This is equivalent to a
zeroth-order truncation in the density-gradient expansion
of the vector function [43]. Note that it is not possible in
general to extend the Legendre-polymonial expansion of

and

I,'+A, "+A,"'=even .

Condition (63) implies

f(lm Isi,p) =f(lm sA, )5„

co(sip)=co(sA, )5 o,
and expansion (17) reduces to

oof'"= g g f(lmlsl, )G'~',
s =OX, =O

where

(64)

(65)

(66)

(67)

f(lm Isa)= g ( —i)' " +' +' ' (x'"ox"olx'0)(x'oxmllm)f(llsxx'~"x"')=o,
gl /II gill 4m.

m )min(l, A, ) . (68)

Equation (67) above is the same as Eq. (I-13); however, condition (I-14a) does not apply here. Instead, constraints (15)
and (64) require

f(l —m Is A, ) =( —1)'+ f*(lm Isk, ),
co(sA. ) =( —1) co*(sA,),

(69)

(70)

where "~" denotes the complex conjugate. For vanishing magnetic field, A,
' =0 and (64) and (15) combine to give

1+A, + A, '=even, and condition (I-14a) is recovered. Condition (70) required co(00), co(20), and co(22) to be real numbers
and co(11) to be imaginary.

In spherical notation the continuity equation now has the form

B,n= g +co(sA)GO' 'n, ,

s =Oh, =O

where

co(000)~co(00)= &4n f ™Jz[f—(ooloo)]c dc,

(71)

(72a)
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co(110)~co(11)= 4m

3

1/2

f c f(10IOO)dc —v'4' f Jz[f(OOI11)]c dc,
0 0

(72b)

co(200)~co(20)= — f c [f(10I11)+f(11I11)+f(1—1
I
11)]dc v—4'f J~ [f(OOI20)]c dc,

3 0 0

co{220)~~{22)= — f c' f{—lol 1 1)+ dc v—'4~ f Jg[f(OOI22)]c'dc,
3 0' 2 0

(72c)

(72d)

and all other co quantities in Eqs. (27) vanish. Hence,
Eqs. (23) reduce to

P'x = g y =D1 =D2 =DP =0,

a = —a)(00),

W= W, =iso(11),

cu(20) co(22)
v'3

4~
3

1/2

1/2

~ f c f(10Ill)dc
0

+ J~ 00 20

—&2f(OOI22)]c'dc ', (74c)

f [f(11I11)+f(1—1I11)]dc
0 2

+ J~ 00 20

D =D = — —v 2/3'(22) .
co(20)

z L (73) + —f(OOI22) c dc
2

(74d)
Hence,

a=v'4mfJ~. [f(OOIOO)]c dc,

1/2

(74a)

For B parallel to E, the hierarchy of equations (24) and
(25) becomes

[J'+co(00)]f(lm Isl. )

ia g —(l'm 101 lm )(lIIa,"'IIl')f(l'm s~)
4m

3 f c f(10IOO)dc
imam f(lm—Isk, ) =X&(m Isk, ), (75)

V4m —f J~o [f(OOI11)]c'dc, (74b) where

X,(OIOO) =0,
XI(mI»)= —~,~{11)f(loloo)—g {l'»mllm)f(l'0100)(lllc"'ill'), m =0,+1

(76a)

XI (0
I
20)= —co(20)f(lOIOO) — —co(11)f(lOI 11)

1

v'3

—g [
—(l'010I10)f(l'OI11)+(l'l l —1IlO)[f(l'1I11)+f(l' 1I11)]](1IIc{')IIl'), —

(I

X&(m I22)= —5 Ocr(22)f(lOIOO) —(lm 10I2m )co(11)f(lm
I
11)

—g [(l'Olm Ilm)(101m I2m )f(l'OI11)+(l'1 1m —1Ilm)(1 1 1m —1I2m)f(l 1 Ill)

(76c)

+(l' —1 1m + 1Ilm )(1—1 1m +1I2m )f(l —1 Ill)] (1IIc{')IIl'), m =0,+1,+2 . (76d)

Here we have denoted the rhs by XI(m Isl.) rather than XI (sA, ) to emphasize the fact that due to condition (63), the m
dependence separates into the different equations in the hierarchy. Equation (75) with (76a) and (75) with (76b) (m =0)
are exactly the same as Eqs. (1-28) and (I-29) (m =0), respectively. That is, to first order in the spatial gradients, the
magnetic field has no effect upon transport parallel to the fields. Equation (75) with (76b) (m =+1) differ from Eq.
(I-31) (m =+1) by the addition of the term +iaaf(l+1I11) on the lbs. Equation (75) with (76c) and (75) with (76d)
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(m =0) differ from Eqs. I(-30) and I(-31) (m =0) on the rhs only, as relationship (69) applies instead of (I-14a). As in the
E-only situation, the solution of (75) with {76d) is required for only m =0, in order to determine the quantity ro(22) in
the presence of reactive processes.

Defining the functions

2 (2l+ 1)(l ~m i)
41T(l+ ~m

~
)

1/2

f(lm ~sA, ),

analogous to (38), condition (69) becomes

Fsk FOs',
1, —m Im

and the hierarchy of Eqs. (75) and (76) can be expressed in the form

(J' a)F—(~ +a[d(~FI', ~+b(~F('+, ~ ]+iAmF('~ =H((m 1»)
where

(78)

(79)

H((0 00)=0, (80a)

I (l + 1)H((0~11)= —WF(+c F(,+ F(+,2l —1) (2l +3) (80b)

HI( —
lid 1 1)=H((1 11)=c

(2l —1)
F1+1 I~1

(2l +3) (80c)

H((OI20)= —(2Dz+Dg)F(+ —F(( '+ — [FI ', (l —1)Re—{F( ', )]
3

'
3 (2l —1)

+ [F&+, + (1+2)Re(F(+, ) ] ',(l + 1) (T)
2l +3 (80d)

(l + 1) (L) (l +2) (T))+) 2 (+) (80e)

with Re(F&' ') denoting the real part of the function F((

and we have set

F00 F(I.) F11 F( T) F»
1 10 & 1 10 & 1 11 (81)

When m =0, Eq. (79) is real and condition (78) ensures
that the F('0 are real. For m&0, Eq. (79) is complex, and
the F1' are complex. The functions F1 and F1 ' are in-
dependent of 8 and exactly the same as in I, i.e., as in the
E-only situation [see Eqs. (I-48), (I-49a) and (I-49b)]. The
function F1 ' is complex and is found by solving the com-
plex equation (79) with (80c) (m = 1). For vanishing mag-
netic field the imaginary part of F1' ' vanishes and Eq.
(79) with (80e) reduces to (I-50). Equation (79) with (80c),
(m = —1) is the complex conjugate of Eq. (79) with (80c),
(m =1). Equations (79) with (80d) and (79) with (80e)
differ from Eqs. (I-48) with (I-49c) and (I-48) with (I-49d),
respectively, only on the rhs, where rather than F1+1, we
have Re(FI'+', ). For vanishing magnetic field FI0 ~F)(

(I-46d) and (I-46e), respectively [40].

In terms of the functions defined by Eqs. (77) and (81),
the transport coefficients can be expressed as

a=4mfJz [.F0]c dc, (82a)

W= f c Fdc 4~f Jz[F—0 ']c dc, (82b)

D = c'Re(F' ' )dcT 3 1

J~ F00 — —F00 c dc .4')r 0 20 1 22 2

3 0 2
(82d)

From Eqs. (19), (65), (77), (78), and (81), the distribution
function expressed in Cartesian notation to first order in
spatial gradients has the form

D = c F' 'dc — — J [F +&2F ]c dcL 3 ) ~3 R 00 00

(82e)
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f(r, c, t)=n g F~(c)P~(cos8) —g F~' '(c)P((cos8)(},n
1=0 1=0

—g Re(F(( ))P('(cos8) [cosPB +sin/8~ ] n +g Im(F&' ')P&'(cos8) [sing()„—cosP()» ]n,
1=1 1=1

(83}

where Im(FI ') denotes the imaginary part of F((

In the absence of reactive effects, we require the solu-
tion of the first three members of Eq. (79) in order to
determine both drift and diffusion. Explicitly, these are

J'F(+ a [d(oF( )+b(—oF(+ i ]=o

J'F,' '+a[d,~,' ', +b,~,'+I ]=II,(O~II),
JIF(T)+a [d F(T) +b F( T)

] iQF(T)

(84)

=C
2l —1

F1+ i

2l +3

J'Re(F(' ')+a[d»Re(F(' ', +b»Re(F(+()]

+n Im(F,'")=c
2l —1

FI+)
2l +3

J'Im(F(' ')+a[1()lm(F(' ', }+b()Im(F('+') }]
—Q Re(F, ') =0 .

Making the l =1 approximation for a quasi-Lorentz gas
equations (87) can be solved to yield

Re(F'"') = cFv+0 (88a)

Im(F' ')= cF@+0
Hence, from Eq. (82d),

DT= I C FodCv+0 (89)

this result is consistent with Refs. [24] and [25] and, for
vanishing Q, reduces to the usual l =1 approximation ex-
pression for DT. Note that, as FO is independent of Q,
Eq. (89) shows that as 0 increases, DT will decrease, a
well-known fact [44]. For constant collision frequency,
Eq. (89) predicts that

As noted above, Eqs. (84) and (85), which determine W'

and DL, respectively, are exactly the same as in the E-
only situation and will not be considered further here
(see, for example, Refs. [17] and [43] where these equa-
tions are discussed). Taking the complex conjugate of
Eq. (86) and adding and subtracting it in turn from Eq.
(86) yields the following pair of coupled equations for the
real and imaginary parts of F&

IV. DISCUSSION

XG„' 'n(r, t) . (91)

If we insist on f(r, c, t) being real, as it is essentially a
probability density in p space, then taking the complex
conjugate of (91) and using the properties

For an arbitrary configuration of electric and magnetic
fields, the Boltzmann equation for charged-particle trans-
port in neutral gases has been decomposed into a hierar-
chy of kinetic equations. This decomposition was done in
irreducible-tensor formalism and achieved by performing
both a spherical-harmonics and a gradient expansion of
the charged-particle phase-space distribution function.
The gradient expansion of the number density was taken
to second order and no hmit was set on the number of
spherical-harmonic terms. For the special configurations
of the magnetic field perpendicular and parallel to the
electric field, the hierarchy of equations has been present-
ed in a form suitable for the implementation of numerical
solution. We also demonstrated, for these two
configurations of the fields, that for the quasi-Lorentz
model in the l=1 approximation, the present approach
gives results in agreement with earlier work [24,25].

In a subsequent paper, for the case of perpendicular
fields, we numerically solve the set of equations (42) for
electron swarms by further expanding the energy depen-
dence of the functions F1' " in terms of Sonine polynomi-
als. Some results of these calculations, for real gases,
have already been presented, and they agree well with ex-
periment [45]. This particular method, however, is only
one of a number of techniques that could be used to effect
numerical solution. For the case of parallel fields, it was
shown that to first order in spatial gradients, transport
parallel to the fields is independent of B and that to
second order in spatial gradients, the transport equations
are only implicitly dependent upon B through its effect
on the rhs (see Sec. III). The same, however, is not true
for transport perpendicular to the fields, where B enters
explicitly into the matrix of coefficients, and the present
formalism presents us with a complex equation to solve in
order to determine the diffusion coe%cient perpendicular
to the fields. Application of numerical solution to Eq.
(79) when m =1 will then result in a complex-matrix
equation to solve. For a general configuration of E and
B, the present formalism will result in complex equations
to solve whenever B has a component parallel to E. This
is now discussed in more detail.

Combining expansions (6) and (17), the phase-space
distribution function may be expressed as

oo 1 oo s

f(r, c, t)= g g g g g f(lm ~sit(M)I'(')(c)
1=0m = —Is=Ok, =Op= —k
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I
( ) ( 1)I+my(l] (~) (92)

and

(93)

it follows that

f(l —m Isk, —p) = (
—1)™~~+~f *(lm Is&p)

and

co( s A,
—p ) = ( —1 ) +"to*(sA p ) .

(94)

(95)

Relationships (94) and (95) are independent of the
configurations of E and B and also follow from the expli-
cit expression (18) for f(lm ~sAp), if the f(l ~sA, A, 'A, "X'")
are assumed to be real. Condition (95) ensures that the
transport coefficients as expressed by Eq. (23) are all real
quantities. In terms of the functions defined by Eq. (38),
condition (94) is

Fsi., P —
( 1 )m+PFLsi. P

1, —m Im (96)

f(lm ~sA.p)=( —1)'+ f*(lm ~sA,p), (97)

which in turn implies that the f (1m ~sI(p) are real if I+A,
is even and imaginary if I+A, is odd. Transformation (38)
then ensures that the functions F1' " are all real, as must
be the case if both (96) and (41) are to be satisfied. In gen-
eral, however, this will not be the case, as the f(lm ~sAp)
are complex and application of transformation (38) will
lead to complex F1' ". Only when both I and p are zero
will the F1' " be real. For the case of parallel fields, we
have already seen that transport perpendicular to the
fields leads to a complex equation to solve. It follows

For any general configuration of fields, the magnetic
field may be decomposed into components parallel and
perpendicular to the electric field. The component of 8
perpendicular to E may be used to define the y axis in the
same manner as we have chosen E to define the z axis.
Thus, without loss of generality, we may consider 8 to lie
in the y-z plane for some general configuration of fields.
In the case of perpendicular fields, Eqs. (94) and (32) re-
quire

i II—cos(g)rrtFIp =HI (sip), (98)

where g denotes the angle between B and E and
1/2

2II I(2l+1)(l —lm l
)!

(99)

In deriving explicit expressions for the HI (sip) from
Eqs. (25), one should make use of relationships (95) and
(96) after application of (38). Numerically speaking, the
major effect of the complex nature of Eq. (98) will be the
doubling of the dimensions of arrays. Apart from this,
however, application of numerical solution, although
tedious, should be straightforward.

ACKNOWLEDGMENTS

This work was carried out with the support of the
Alexander von Humboldt Foundation. The author
wishes to thank Dr. R. E. Robson, Dr. K. Kumar, and
Dr. U. Weinert for helpful discussions and suggestions.
The author also wishes to acknowledge Dr. S. E. Ness
and Dr. B. Schmidt for their patient reading of the
manuscript.

from Eqs. (94), (95), and (24) that the equation for
f(l —m ~sA,

—p) is the complex conjugate of the equation
for f(lm ~sAp) and that in order to determine all the
to(sI(p) quantities, it is both sufficient and necessary to
solve only the positive p members of the hierarchy (24).
To second order in spatial gradients, this will require the
solution of seven complex equations, with both I and m
index dependence. To first order in spatial gradients,
however, it is sufhcient to solve the lowest three of these
in order to determine both drift and diffusion when reac-
tive processes are absent or insignificant.

For B lying in the y-z plane, Eq. (24) written in terms
of the functions defined by Eq. (38) is

(J' a)FI'—I'+a [dI FI' ", +bI FI'+", ]

0 sin(g)+
2

[g!-Fl'.-"+I gl, --FI', -"-I]-
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