
PHYSICAL REVIEW E VOLUME 47, NUMBER 5 MAY 1993

Equipartition and ergodicity in closed one-dimensional systems
of hard spheres with different masses
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We show by computer simulation that a one-dimensional closed system of hard spheres with different

masses exhibits equipartition. This is true even when the system contains as few as two particles or is

nonergodic. Use of periodic boundary conditions gives very different results from the fixed boundaries.
For more than iwo particles, it is shown that, for most mass ratios, the probability of an exact return to
the initial state is vanishingly small. The density of states in momentum space accessible by a particular
particle corresponds to a uniform density pf states in the region allowed by conservation laws. There are
special mass ratios for which ergodicity fails and recurrence occurs. Even for these nonergodic cases,
equipartition is obtained. The free volume available to each particle is independent of its mass. These
results are in contrast with numerous studies of systems using soft, anharmonic interactions and have
implications regarding equipartition in molecular-dynamic simulations.

PACS number(s): 05.20.Dd, 05.60.+w

I. INTRODUCTION

It is a common assumption that periodic boundary
conditions are a realistic means with which to carry out
atomistic simulations, provided that individual particles
do not interact with their own images. Thus interactions
are assumed to drop off faster than 1/r, such that a
large enough system will enable finite-size effects to be
discounted. Moreover, systems are often assumed to ex-
hibit ergodicity and equipartition. Herein we investigate
the validity of these two assumptions by computer simu-
lations and matrix analysis of a simple system.

A vast amount of analytic and simulation work has
been done on nonlinear lattices [1,2] starting with the
Fermi-Pasta-Ulam (FPU) recurrence problem [3]. Most
related work has concentrated on systems with identical
particles [4,5]. There seems to be a general trend toward
ergodicity with increasing numbers of particles and in-
creased energy [6,7]. Ergodicity has been shown to be
violated in a small system of two particles with fixed
boundaries, for some low energy configurations, because
periodic solutions exist [8]. With the increased complexi-
ty of a third particle these authors were unable to find a
nonergodic regime.

Here, we examine a different case, which has implica-
tions for finite-sized molecular-dynamic (MD) simula-
tions; that of equipartition and ergodicity in a small one-
dimensional system of hard spheres with different masses.
Comparison with previous work using nonlinear interac-
tions, such as the Lennard-Jones potential [9,10] can be
made by assuming the hard-sphere regime as being the
high-energy limit, at which the interaction is most anhar-
monic and the attractive part of the potential is negligi-
ble.

This study is complimentary to a previous study [11]
which examined systems of hundreds of particles with
two masses to determine the kinetics of going from a
highly nonequilibrium state to a Boltzmann distribution.

Since we are working in one dimension the ordering of
the particles around the ring is conserved. We shall also
work throughout in the center of mass reference frame.
These two conditions make it impossible for all the parti-
cles to sample all of position space, so we will define the
phase space only in terms of the momentum variables and
use ergodicity to refer to sampling of the momentum
space only. Note that this is not the standard definition
applied in higher dimensions where ordering is not con-
served.

The hard-sphere potential enables the evolution to be
described by a series of discrete collisions and mapped
onto a group of matrices. The hard-sphere system allows
enormous computational simplicity. This is essential be-
cause ergodicity can be reliably tested with about 10
sampled microstates. The time taken to reach equiparti-
tion scales rapidly with the frequency of the normal
modes [12], so the present case would be expected to
equilibrate rapidly. With a large range of possible mass
ratios and numbers of particles it is important to examine
many different cases. Moreover, because we are using
hard spheres (no energy scale) the system is athermal, so
there is no need to examine the possibility of different
temperature regimes.

A physical realization of the system might be a set of
frictionless balls moving around a closed loop.

The system can, without loss of generality, be viewed
in the center of mass frame. As in previous work [11]the
particle radii were set to zero. This has no effect on the
energetics but has a trivial effect on the range of motion
[13], as discussed in Sec. V. There are thus two con-
straints applied to the system —conservation of momen-
tum and of energy. Writing the momentum and mass of
particle i as p; and m,-, respectively, we have

gp;=0, gp; /2m;=E .

Closed systems of this kind are frequently used to mod-
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II. EQUIPARTITION WITH PERIODIC
BOUNDARY CONDITIONS

The calculation considers a number of hard spheres on
a one-dimensional 1D closed ring. At each step, the time
to the next collision between each pair of particles is cal-
culated, the smallest such time is used as a time step to
move all the particles, and the velocities of the two collid-
ing particles are updated so as to conserve energy and
momentum. In one dimension, for a collision between
two particles, masses m~ and mz with initial velocities
u~ and uz, the new velocity of mz is

(m„—m, )u„+2m, u,
V

m~+mg
(2)

After a single collision, the next time step is calculated
and the process is repeated.

We have carried out a series of computer calculations
with randomly chosen initial velocities, and initial posi-
tions. Initially, the masses of the various particles were
chosen to be small integers to make it easier to spot rela-
tionships between various properties. For the same
reason, these are the runs which are depicted in the vari-
ous figures. These lead to the result that at equilibrium,
when viewed in the center of mass reference frame, the
mean energy of a particle, averaged over time, is propor-
tional to the mass of all other particles in the system.
Subsequently we also ran tests in which masses in the
range 0—1 were generated randomly by the computer,
and these runs gave the same results, showing the choice
of integer masses is usually unimportant (though see Sec.
VI).

We note that equilibrium tends to take longer to reach
if the particles are of very different masses because of the
small transfer of energy in elastic co11isions. We have
considered both small-integer mass ratios and "irration-
al" (to computational precision) ratios and find that this
makes no difference.

For two particles the collision rules allow only two
states. In this case Eq. (3) can be obtained analytically.
Also notice that the standard equipartition result
(E, )=E/N is obtained . in three cases:

(1) The number of particles becomes very large:
g.m. ))m;.

(2) One of the particle masses becomes infinite
(equivalent to a fixed boundary).

(3) All particles have the same mass:

el much larger systems, the system being viewed as
periodically repeating (periodic boundary conditions).

Herein, we examine the time-averaged energy per atom
to study the onset of equipartition. Ergodicity in
momentum space is tested by plotting histograms of
momentum against the time for which a particle has that
momentum. The free volume is measured by finding the
mean position of each particle, its rms deviation from
that position, and its probability distribution. These
averages are convergent because the overall angular
momentum is zero. Finally, we examine a number of spe-
cial nonergodic cases and present a matrix method to ex-
plain their nonergodicity in terms of a chaotic walk.

This is the result obtained by statistical mechanics in
the "molecular-dynamics" ensemble in which energy,
momentum, volume, and the number of particles are con-
served [14]. This ensemble leads to projected densities of
states equivalent to those found here. Derivation of Eq.
(3) therefrom is discussed in Sec. III.

We note, however, that the ensemble averaging in this
method presupposes an ergodic system. As we shall see,
Eq. (3) holds not only in the ergodic cases, but also in the
"special" nonergodic cases discussed in Sec. VI.

Equation (3) can be viewed as a modification of the
equipartition law for a finite system, arising as conse-
quence of conservation of momentum, since periodic
boundary conditions rigorously enforce conservation of
momentum. Fixed boundaries, of course, do not.

Thus we have shown that a consequence of the effect of
periodic boundaries is to reduce the apparent energy in
low momentum modes. This is a feature which has al-
ways been overlooked in molecular-dynamics simula-
tions.

Consequences for molecular dynamics

This result is of general validity and will affect the oc-
cupation of various phonon modes in molecular-
dynamics calculations. Note that for very large systems,
or for systems of identical particles (but see below for the
case of molecules with rotational degrees of freedom), the
standard equipartition result is obtained, hence the above
can be regarded as a finite-size effect. Moreover, for a
system with rigid boundaries we can regard the boundary
as an infinitely massive extra particle, in which case Eq.
(3) again leads to equipartition of energy among the other
particles within the center of mass frame. A similar ar-
gument applies to rotational degrees of freedom in a
molecular-dynamics simulation:

(i;co /2) =(I i, )kT/I,— (4)

where i; is the moment of inertia of the ith molecule and
I is the moment of inertia of the whole system. I is typi-
cally about axes through the simulation cell center, be-
cause these are the axes about which rotation is
suppressed in molecular-dynamics simulations. We can
see that

( m u; ) /( i; co ) = ( 1 —m; /M ) /( 1 i; /I ) . —

Since M is simply a sum of constituent masses, while I
incorporates the distance from the cell axis (in general
this is bigger than the distance from the molecular axis),

m, /M )i,. /I,
whence

[g m —m, ]/[g m. ]=(N —1)/N(a constant).
The rule relating mean energy to masses has been

found to hold good for all systems containing two or
more particles, including those which are not ergodic,

gm —m,

(3)
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III. DENSITY OF STATES—ERGODICITY

Hence for a finite-size MD system we would expect the
periodic boundary conditions to lead to a larger energy
(temperature) associated with the rotational degrees of
freedom than that associated with the translational. This
has in fact been observed [15] but not previously ex-
plained. Once again, as the number of particles tends to
infinity the eA'ect vanishes.

In one dimension the ordering of particles around a
ring cannot change since particles cannot pass through
one another. Consequently, we confine our discussion of
"ergodicity" to examining the time for which each parti-
cle has a given momentum, and ignore the position vari-
ables.

The density of occupied momentum states is defined as
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FIG. 1. Typical occupation probability of various momentum states for a single particle m
&

out of a total N. (a) N=3, m; =2, 5, 3;
(b) N=4, m; =2, 3,4, 6; (c) N = 5, m; =2, 4, 3,6, 5; (d) N= 6, m; =2, 3,4, 5, 3, 6; (e) N= 10, m; =2, 6,4, 5, 3,6, 4, 2, 7, 3.
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In the quantum limit, for motion on a closed loop of
circumference L, we would expect to find states of wave
number 2~n /L. In the classical limit, which we are ex-
amining here, we anticipate that allowed states will be
evenly distributed in momentum space. There are, how-
ever, two constraints placed on the system by momentum
and energy conservation. For the three-particle case,
these mean that the only states accessible to the system
lie along an ellipse in p„p2,p3 momentum space which
satisfies

and

p&+p2+p3 (9)
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FIG. 2. Occupation probability of various momentum states
for particle of mass 1 in the nonergodic, three-particle special
case m; = 1,2, 3.

the time for which a given particle moves with each
momentum. This is plotted in Fig. 1 for one particle out
of three, four, five, six, and ten. These figures represent a
projection of the density of occupation in momentum
space onto one axis. The athermal nature of the system
means that the units of time and momentum are arbi-
trary. The length of the ring is normalized to 1, which is
all free volume because we are dealing with point parti-
cles.

In addition the special case of mass ratio 3:2:1 is plot-
ted in Fig. 2. The spiky form of the latter graph shows
the nonergodic nature of this case. Closer examination of
the data shows that exact recurrence of the initial state
occurs aperiodically. In each case the density of states is
found from simulations sampling over a million different
microstates. These are typical of the hundreds of
different simulations we have performed to examine the
various properties. The noise on these graphs decreases
with run lengths, and the results are independent of the
initial velocities and positions.

From Fig. 1 it is clear that the form of the density of
states is strongly dependent upon the number of particles
in the system. Analysis of these graphs shows that the
three-particle case has form

2 2) —)/2

p, /2m, +p2/2m2+p3/2m, =E . (10)

When this ellipse is projected onto, say, the p, axis it
gives rise to a density of states n (p &

) of the form given in

Eq. (11)where p,„ is the largest possible value ofp, con-
sistent with the conservation laws.

The four-particle case [Fig. 1(b)] is simply a straight
line, the five-particle case is elliptical [Fig. 1(c)], the six-
particle case quadratic [Fig. 1(d)]. As the number of par-
ticles becomes larger the density of states tends towards
the expected normal distribution [Fig. 1(e)]; as one ex-
pects for a one-dimensional infinite system [16]. This be-
havior can be explained by assuming a uniform density of
states in momentum space with sampling limited by the
conservation laws. The projection of an (N —2)-
dimensional ellipsoid onto a single axis in an N-
dimensional space gives a density of states of general
form:

(p ) ~ (p 2
p

2
)

( N 4 ) /2

These projections are, of course, equivalent to integrat-
ing (p), . . . , pN) over all but one of the momenta. Thus
the density of states can be explained by assuming a uni-
form distribution in constrained momentum space.

It is interesting to compare this analysis with that
presented recently for the microcanonical ensemble
momentum distribution [17]. The density of states is
given by

( ) M (
2 2)(N —3)/2 (12)

2
p 1,max

2m)

Nmo

m ) +Nmo
(13)

which is just the scaling factor required to make the
time-averaged energy of m

&
consistent with Eq. (3).

which means that the density of states in the present case
is isomorphic to that in the microcanonical ensemble with

one fewer particle This arise. s because there is an addi-
tional constraint of momentum conservation within the
system considered here. This reduces by one the dimen-
sionality of the accessible region of momentum space.

It is, of course, possible to obtain Eq. (3) by ensemble
averaging using these densities of states. In the case of
each particle having a different mass, consideration of
Eq. (11) shows that (E; ) is the same for all particles ex-

cept for a scaling factor of p,„/2m;. Solving for p
from Eqs. (9) and (10) is di%cult, requiring in general a
solution of a multiminimum problem, but as an illustra-
tion we consider here a system where symmetry allows an
analytic solution.

Consider a system containing N particles of mass mo
and one particle of mass m &. It is trivial to see that for a
given energy in the system, the maximum momentum of
m

&
occurs when all the other particles have the same ve-

locity, call it v. In that case, p &
„=Nm ov and

E =p, „/2m, +Xmov /2. Combining these expres-
sions gives
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IV. MATRIX REPRESENTATION A

n 1+a 0
1 —o. —a 0

0 0 1

1 0 0
0 5
1 1 —5

P 0 1+P
0 1 0

1 —P 0 —P

1 0! A

—1 —1 —P
0 1

—1 —5 —1

We have found that it is possible to map the system
onto a group of matrices. These matrices provide a
powerful method for analyzing the evolution of the sys-
tem, and enable us to find and explain nonergodic special
cases.

In the three-particle case, the outcome of each collision
can be represented by the operation of a self-inverse 3 X 3
matrix on a vector of momenta (p&,p2, p3) (note that this
is not a momentum vector, but represents a state in phase
space). Any sequence of collisions can be mapped onto a
product of such matrices. In general, there are iV such
1V XX matrices for a system of X particles since the or-
dering of the particles on a 1D ring cannot be altered. By
applying the momentum conservation law it is possible to
reduce by one the order of the matrices. The energy con-
servation law cannot be used in this way because it is
nonlinear in p;. The 3X3 and 2X2 representations for
the three-particle system acting on (p„p2,p3) and
(p&,pz) are as follows:

FIG. 3. Evolution of the three-particle system away from the
initial state within the matrix group including A, B, and C
represented by a walk on a hexagonal lattice.

ous steps. Henceforth, we shall describe this walk as a
"chaotic walk, " since it is deterministic but the numerous
bifurcations make it extremely sensitive to initial condi-
tions.

In spite of all this, the walk along a hexagonal lattice
escapes from its starting point sufficiently quickly to en-
sure that the system will move away from its initial state
with a vanishingly small probability of ever returning
(but see below for special cases wherein the honeycomb
folds back on itself.

where V. RANGE OF MOTION

m) —m2 p=
m]+m2

mi m3 5=
m) +m3

m2 —m3

m2+m3
(16)

Thus in the three-body case there are three such ma-
trices, representing collisions between particles 1 —2, 2 —3,
and 3—1. If these matrices form part of a finite group we
can deduce that the system is nonergodic.

Denoting these matrices by A, B, and C, respectively,
we find the general relationship ABCABC =I for all m;.
We can thus represent the possible states of the system as
points on a 2D honeycomb lattice (Fig. 3). A particular
starting condition results in an evolution represented by a
walk along that lattice. At each node we reach a bifurca-
tion (particle 1 can next strike either 2 or 3, depending on
the initial conditions). Figure 3 suggests that the states of
two systems taking opposite paths at a bifurcation will
tend to drift apart rather than reconverge. These discrete
bifurcations in trajectories destabilize calculation of the
Lyapunov exponents. It should be noted that the evolu-
tion is not a random walk on the lattice, because after a
collision of type A, particles 1 and 2 are moving apart
and therefore the next collision cannot be of type A.
Moreover, it is not genuinely even a directed random
walk, since the next step is not independent of the previ-

In Fig. 4 we show the probability of finding each parti-
cle in a given section of the ring by way of a histogram
plot of arc segments against the time spent in each seg-
ment during a run of 10 collisions. The ring was divided
up into 1000 segments, but the histogram runs from 0 to
2000 to allow peaks straddling the origin to be shown un-
broken. This means that the segment x is exactly
equivalent to segment x+1000. From this data we can
extract a mean position and rms deviation of each parti-
cle. Zero total angular momentum prevents the particles
from winding around the ring and ensures that the con-
cept of a mean position is meaningful. Again, for this
athermal system the time units are arbitrary.

Notwithstanding the difference in masses, numerous
simulations show that the centers of the ranges of motion
of the particles are equally spaced around the ring. Fig-
ure 4 is a typical result. This is an interesting result,
since it suggests a long-range periodic ordering has oc-
curred which could be interpreted as crystallization. Of
course, the particles have no attractive interaction, so
this ordering is driven purely by maximizing the entropy,
as occurs in colloidal crystals [18,19].

The particles can move a considerable distance from
their mean positions. Our empirical result of averages
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taken over a great many simulations in the three-particle
case is that the region in which each particle moves is
proportional to the mean energy of that particle. For
higher numbers of particles no simple rule was found;
with particle mass, heavier near-neighbor particles tend-
ed to reduce the range of motion.

In general, the heavier particles remain closer to their
mean position than the lighter ones. This is what one
might expect since they are on average slower moving
and the mean positions of the atoms are equally spaced.

In the two-particle case there is no overlap of the parti-
cles' range of position. In the three-particle case the
overlap gives rise to a linear decay of occupation proba-
bility from a peak which is not the mean position. The
steepness of this slope is greater if the mass of the adja-
cent particle is greater. Each segment of the ring can be
occupied by either of two particles —an alternate
viewpoint is to say that each segment is forbidden to one
of the particles.

For more than three particles the extent of the range of
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FICx. 4. Occupation probability of various segments of the loop by each particle (a) N=3, m; =1,2, 3; (b) TV=4, m; =2, 3,4, 6; (c)

N=5, m; =2,4, 3,6, 5; (d) N=6, m; =2, 3,4, 5, 3,6, (e) iV=10, m; =2,6,4, 5, 3,6,4, 2, 7, 3.
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motion is more complex. It appears that in addition to
confinement of heavier particles, there is also a tendency
for those particles whose neighbors are especially massive
to be more strongly confined.

The equal spacing of the mean position of the particles
around the ring will be altered if they are of finite size.
This change is fairly simple: the length of the Nth parti-
cle is simply added to the separation between the
(N —1)th and (N+1)th particles. The free volume avail-
able to each particle remains unchanged.

momenta are at an irrational ratio to one another, there
will be no periodicity in the recurrence of the initial state.

C. Three particles, mass ratio 3:2:1

There are an infinite number of special cases in the
three-particle system which obey Eq. (3) but are not er-
godic. They are therefore exceptions to Sinai's theorem
[20]. Here we study one in detail. For ratio 3:2:1, the
collision matrices are

VI. SPECIAL CASES

1

5

4
5

6
5

1

5

—1 —3
2

0 1

1 0
4
3

(17)

In general, an exact recurrence of the initial state does
not occur after a long period of time. However, particu-
larly in the three-particle problem, there are numerous
special cases of the system which do lead to exact re-
currence of the initial conditions. It is useful to view
these within the matrix framework developed above,
since they all require some extra relationship between the
collision matrices.

A. Two particles

This is an almost trivial case, but it already rejects
some of the properties which are found with more parti-
cles. There are two variables (p, and pz) with two con-
straints. Thus the accessible region of momentum space
is zero dimensional [it turns out to be two points
(x, —m, x /m z ) and (

—x, m, x /m z )]. Notwithstanding
this lack of complexity and periodic behavior, the system
still obeys Eq. (3) within the periodic boundary con-
straint.

In the matrix representation there is only one possible
collision type (and hence only one matrix). This matrix is
self-inverse, so it forms a two-element group with the
identity. The two-particle system will always return to its
initial state, but since there are only two states which
satisfy the conservation laws, the system could be regard-
ed as ergodic.

In addition to the matrix relation ABC ABC =I, these
give rise to the additional constraint BCBC=—I. The
effect of this constraint is to collapse the hexagonal net
representation of Fig. 3 onto a ladder (Fig. 5, strictly each
point on this ladder represents two points in phase space
with opposite velocities). Even so the matrices for this
system are clearly part of an infinite group, and from a
random walk analysis we might expect that the system
will never return to its initial state.

This is not the case, however. The density of occupied
states over 10 collisions shown in Fig. 2 has a distinctly
nonergodic look, and detailed analysis of the microstates
shows that an aperiodic exact recurrence of the initial
state occurs. The reason is that the route by which the
system leaves the initial state contains disproportionately
few type-A collisions; type-A collisions are between the
two heaviest (and therefore slowest moving) particles. In
practice there are more type-B and -C collisions, so the
walk is biased. This is necessary but not sufficient to en-
sure exact recurrence. It requires that between type-A
collisions there are more likely to be an even number of B
and C collisions than an odd number, a condition which
cannot be obtained by a Markovian collision probability.
This being so, the result that the system cannot escape
from its initial state which recurs (exactly) aperiodically

B. Identical masses

In the case of identical masses the system is nonergodic
but Eq. (3) is again obeyed. Indeed, since all the m; are
the same, all the (E;) are the same as expected in the
standard equipartition theorem.

There are only a finite number of allowed states. This
is because in any elastic collision between particles of
equal mass the momenta are simply exchanged. In the
matrix representation, the vector of momenta always
contains the same elements in various permutations (in
general all permutations are accessible). For three parti-
cles there are only six accessible states in momentum
space (for N particles there are N! states).

Unlike the two-particle case, there is no periodic solu-
tion, only a quasiperiodic one. If one considers the ener-
gies given initially to each particle, it is clear that these
energies are transmitted around the loop without being
scattered, and move with different velocities —they can
be regarded as the limiting case of solitons. If the initial

, A

FIG. 5. Lattice on which evolution of the three-particle sys-
tem m;=1, 2, 3 away from the initial state within the matrix
group including 2, B, and C can be represented.
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is evidence of a history-dependent collision probability.
There is no such direct evidence of history dependence

in the general cases because the chaotic walk (and also a
random walk) on the hexagonal lattice diverges much
more quickly than does the walk on the ladder.

The sequence BCBC acts as a time reversal operator,
keeping the particle speeds unchanged while reversing
their sign. Since the positions are not restored exactly,
the system is not totally time reversed, but there is a ten-
dency for previous momentum states to be retraced.

In spite of the limited number of states which the sys-
tem occupies, and the consequent nonergodicity, it still
obeys the Eq. (3) condition derived above by differential
occupation of the various accessible states. Maintaining
this average provides the extra condition (after the con-
servation laws) which forces the system to recur.

From the collision matrices above it is easily shown
that the constraint BCBC=—I occurs in all systems
where the masses obey the relation m, /m s
=(mz+m&)/(mz —ms). Hence recurrence of the initial
state will occur in an infinite number of systems obeying
the relation above and the additional requirement that
collisions of type A are between the heaviest two parti-
cles and are therefore the least frequent. Examples of
this include mass ratios 10:3:2and 12:5:3.

Other constraints give rise to special cases, for exam-
ple, when all but one particle has the same mass. The
matrix representation enables a rapid check to determine
whether any system is a special case.

VII. DISCUSSION

It has been shown that for closed one-dimensional sys-
tems or those with periodic boundary conditions the law
of equipartition has to be modified to Eq. (3). One of the
effects of a closed system or one with periodic boundary
conditions is to enforce conservation of momentum. If
the system is ergodic, we can apply statistical mechanics
to a constant energy-number-momentum-volume ensem-
ble which leads to (3). This ensemble is sometimes re-
ferred to as a molecular-dynamics ensemble [14]. Equa-
tion (3) has been shown to have a broader validity, ex-
tending to nonergodic cases.

The density of states has been shown to be due to an

even distribution in a momentum-only phase space,
where only part of that phase space is accessible because
of constraints due to conservation of energy and momen-
tum. These constraints are severe in cases with small
numbers of particles, exceptionally so in the three-
particle case, where they cause singularities in the projec-
tion of the density of states onto a single momentum at
the maximal velocities [Fig. 2(a)].

Soliton-type solutions exist in the case where all masses
are the same, but the solitons are rapidly destroyed in
elastic collisions between particles of different masses.
This dispersion of solitons is slower in the case where the
masses are similar —an effect which has been observed in
the larger scale system [11].

The system can be represented by a set of matrices
representing each collision, and hence onto a "chaotic
walk" on a lattice which depends on the number of parti-
cles present. This walk does not, in general, return. It is
not truly random, however, since its sampling of the lat-
tice produces the energy distribution given in Eq. (3).
Since the system is deterministic, the walk is not random.

The recurrence of the initial state in a special case
which maps onto a linear chain also suggests that this
"chaotic walk" is not random.

Exact recurrence of the initial state does not occur (al-

though of course the usual Poincare recurrence exists) ex-

cept in special cases where extra relationships exist be-
tween the collision matrices. Even when exact re-
currence is obtained and only a limited number of states
are accessed by the system, Eq. (3) still holds.

The effects studied here can be regarded as finite-size
effects in the sense that they are most pronounced for
small numbers of particles, and are probably avoided in

large systems. The distortion to the equipartition law
caused by periodic boundary conditions has more serious
implications for molecular-dynamic simulations, since it
causes an underexcitement of the more massive particles
(in interacting systems these are equivalent to low fre-

quency modes). In simulations of molecules, there will,
in general, be a different temperature associated with ro-
tational and translation degrees of freedom, and simula-
tions of a single large particle surrounded by lighter par-
ticles will show significant deviations from equipartition.
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