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Transport properties of nonequilibrium gas mixtures
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Transport properties of binary mixtures of diatomic gases in vibrational nonequilibrium are analyzed
and the corresponding terms are established. In order to solve the Boltzmann equation, a generalized
Chapman-Enskog method is used, valid whatever the degree of nonequilibrium, contrarily to previous
analyses in which only the extreme regimes were considered, at weak or strong nonequilibrium, and gen-
erally for pure gases only. The transport coefficients, first written in terms of collision integrals, are
finally expressed as functions of macroscopic quantities, known or experimentally attainable, following
Mason and Monchick type approximations and with the harmonic-oscillator model. Finally, examples
of calculations are given for N2-H2 and 02-N2 mixtures. Results are in good agreement with available
experimental data. Comparisons with approximate formulas, extensively used in the literature, show
also that, at least for the investigated mixtures, the use of these formulas seems roughly justified.

PACS number(s): 05.60.+w, 05.20.Dd

I. INTRODUCTION

Recently a renewal of research on hypersonic Rows has
been taking place. This new interest is of course due to
the various space-flight programs, for which modeling
and simulation of the reentry of hypersonic vehicles in
different types of planetary atmospheres represent com-
plex problems. In particular, the physico-chemical phe-
nomena related to spacecraft reentry are far from being
satisfactorily known: Thus velocities and temperatures
are so high that the chemical composition of gas media
surrounding these vehicles is strongly modified. The aim
of the present paper is to analyze some transport prob-
lems for nonequilibrium gas mixtures, arising from these
extreme conditions.

The theoretical analysis of the transport properties in
pure or mixed gas Aows in the collisional regime is usual-
ly carried out following three methods, all based on solv-
ing the Boltzmann equation: The moment method [1,2],
the Gross-Jackson method [3] and the Chapman-Enskog
(CE) method [4]. The first two methods may be extended
to transitional regimes, but in the collisional regime, the
CE method seems to be the most appropriate. In this
case, the molecular velocity distribution function is ex-
panded in a series of the smallest parameter characteris-
tic of the problem, usually the rarefaction parameter or
Knudsen number which represents the ratio between the
elastic collision characteristic time and the reference How
time. In practice, the CE method has been established
and used for pure monatomic gases. Results concerning
the transport coefficients [4] (viscosity and conductivity)
are in very good agreement with experimental data. For
monatomic gas mixtures, this method gives also good re-
sults [5,6]. However, the extension of the CE method to
gases having internal energy is more recent [7], first for
the equilibrium case [8—10] (rotational and vibrational
modes) and then for the vibrational nonequilibrium case
in pure gases [11]. The aim of the present work is to ex-

tend the CE method to binary mixtures of diatomic gases
in vibrational nonequilibrium.

In a first part, the general CE method is presented for
this kind of mixture, and it is shown that, according to
the degree of nonequilibrium, the Boltzmann equation
may be solved in different ways: Thus, for a weak non-
equilibrium or for a strong nonequilibrium, the split of
the Boltzmann equation leads to different equation sys-
tems, and the results obtained in each case for transport
properties are obviously different.

In a second part, the Boltzmann equation is solved in
the case of strong vibrational nonequilibrium for which
the vibrational relaxation time including translation-
vibration and vibration-vibration transitions is of the or-
der of the reference Aow time. Thus a strong-
nonequilibrium (SNE) method is developed and, using
Mason and Monchick type approximations, the transport
coefficients expressions are given in explicit form, i.e., as
functions of various macroscopic quantities, in principle
easy to obtain by computation or experiment.

In a third part, an alternative method of solving the
Boltzmann equation, derived from the previous SNE
method is presented. Since weak-nonequilibrium (WNE)
and SNE methods do not match in near-equilibrium
zones, it is necessary to build up a method which will be
able to describe Aows in a weak nonequilibrium as well as
in a strong one: This is called the matching method.
Calculations are similar to those of the second part. Us-
ing Mason and Monchick approximations, and the
harmonic-oscillator model, the transport coefficients are
also expressed in terms of macroscopic quantities.

Finally, the transport terms previously established are
computed in a temperature range corresponding to the
assumed validity of the starting hypotheses and for two
binary diatomic gas mixtures (Nz-Hz, N2-02). The behav-
ior of these coefficients is examined and discussed, and
comparisons with other approximate formulas given by
various authors [12—14] are also presented.
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II. GENERAL CONSIDERATIONS
ON THE BOLTZMANN EQUATION

AND THE CHAPMAN-ENSKOG METHOD

ip =J =J +J
dt

(2. l)

The rate of change of f; is only due to collisions. Then,

for a binary mixture, the collisional term J can be
separated into two terms: the first one, J, is the col-
lisional term characteristic of the collisions between two
molecules p; and the second one, J, is the collisiona1
term characteristic of the collisions between molecules p
and molecules q. With the hypothesis of the reversibility
of collisions, one has

The fiow of a mixture of two diatomic gases (p and q),
each possessing one rotational and one vibrationa1 mode
is considered. The collisions are assumed to be binary
and the chemistry frozen. The quantum numbers i =i„,i,
correspond to particular rotation i„and vibration i, lev-

els.
Physical considerations allow us to classify the col-

lisions into the following two groups (I and II). Col-
lisions I (the most probable): T Tcoll-isions (elastic ones,
translation-translation exchanges), T Rc-ollisions
(translation-rotation exchanges), and V-V„collisions (res-
onant vibration-vibration collisions between two mole-
cules of the same species: p-p and q-q); and collisions II
(the less probable): T Vcollis-ions (translation-vibration
exchanges) and V-V collisions (vibration-vibration col-
lisions between molecules of different species: p-q and q-

p). The main problem in the theory of transport phenom-
ena is the determination of the local distribution function

f, (v, , r, t), where ip denotes the quantum state of the p
molecules and f, the probability density of the p mole-

Jj

cules in the ith quantum state. The distribution function
is to be determined by solving the Boltzmann equation; in
the present analysis, the resolution of the Boltzmann
equation is carried out by a generalized Chapman-Enskog
method. v is the molecular velocity, r the general spatial
coordinate, and t the time.

Thus the Boltzmann equation for the p component, in
the absence of external forces, may be written

where

JQ JQ +JOfC

PP Pg

is the collisional term of type I,
JO»»» w

is the co11isional term of type II, and

+I +II

where ~ is a relaxation time and 6j a reference flow time.
Several cases will be analyzed with regard to the rela-

tive or effective order of magnitude of the nondimension-
al numbers e& and ei, . However, physical argume", .ts wi11

allow us to reduce the number of considered cases. (i)
Type-I collisions are the most probable. Then

1Ji +J» 0, zeroth order
Jj

(2.5)

df 0

=J,' +J&&, first order .
dt

(2.6)

(ii) In a collisional or continuum regime, because of the
efficiency of type-I collisions, one has

e,=e«1.
Thus the problem is reduced to three possible distinct
cases: the equilibrium case e, =e«e»«1, the non-
equilibrium case e&

=e ((e&& = 1, and the frozen case
E7 C«1 «e».

The Chapman-Enskog method consists in expanding

f, in a series of the smallest parameter. Stopping at first

order, we have

f 4 —f lÃ0+ef 41 —f lÃ0(l+ )
P P

where y is a perturbation term.
Thus, starting from (2.4) and identifying the terms of

the same order, the following systems are deduced. For
the equilibrium case df,*/dt =( I/e)(J. ,* +J,*, ),

pp J "p p ip jp ' j ' j Jp
j, k, l

pq
=

qp
= 2 f fkpfiq fipfjq gip jq~ip jq jq

j,k, 1

(2.2)

(2.3)

(2.7)J& =0, zeroth order

For the nonequilibrium case df;* /dt = ( I /e )J,* +J,*, ,

1

d
I »dt e, ~ e

(2.4)

where g is the relative velocity, I the differentia collision
cross section, A the scattering diffusion solid angle, and c
the velocity (v —u). i,j are the quantum numbers before
collision and h, l after.

Now, considering the previous classification of co1-
lisions, the Boltzmann equation may be written under the
following nondimensional form:

d
—J, +J&&, first order .

dt
(2.8)

For the frozen case, the influence of type-II collisions (vi-
brational exchanges) does not appear at the zeroth and
first orders and wi11 not be treated here, the rotational
mode being in equilibrium.

The zeroth order equations (2-.5) and (2.7) give the
zeroth-order solution f, . In the first case (2.5), f, is

defined at one single temperature T (translation-rotation-
vibration temperature). For the second case (2.7), the vi-
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brational nonequilibrium appears in the Boltzmann dis-
tribution (density of p molecules on the i, th level). In this
case, f, is defined with two different temperatures, i.e.,

P

the translation-rotation temperature T=T„, and the vi-

brational temperature of the p species T, . Of course this
is the same for f, and for the vibrational temperature
T, . The existence of this nonequilibrium (temperatures
T, and T„) results from the fact that the resonant
vibration-vibration collisions between two molecules p (or
q) are included in type-I collisions. Thus, this taken into
account, compared with the equilibrium case, gives a
specific collisional invariant e;, (or e, ), the vibrationaliv gv

energy of p (or q) molecules on the ith (or jth) level. At
this order, the macroscopic conservation equations are
the Euler equations; in the second (nonequilibrium) case
they are completed by two relaxation equations for the
vibrational energies or vibrational temperatures T, and

Tvq 0

The first order e-quations (2.6) and (2.8) allow us to ob-
tain a formulation of the first-order solution f . In both

P
cases f,'charact. erizes a nonequilibrium regime which is

P

weak, and therefore allows linearization. Thus the ex-
pressions obtained for the transport terms, which derive
from a first-order calculation, correspond in the "equilib-
rium" case to a weak-nonequilibrium and in the "non-
equilibrium" case to a strong-nonequilibrium. At this or-
der, the conservation equations are the Navier-Stokes
equations, also completed, for the SNE case, by two re-
laxation equations.

The WNE case has been already studied by various au-
thors [4,5,7]. For each transport term, they give the ex-
act expressions in the form of determinant ratios. Thus
only the SNE case is developed here, for a binary mixture
in vibrational nonequilibrium.

III. THE SNE CASE

As already noted, the knowledge of transport proper-
ties requires calculations at the first order. So, in a first
part, the zeroth-order equation (2.7) is solved, in order to
determine the zeroth-order solution f; . Then, in a

P

second part, using the zeroth-order result, the first-order
equation (2.8) is developed and the expressions of the
transport terms may be obtained. Thus the analyzed sys-
tem is presented in Eqs. (2.7) and (2.8). The collision re-
versibility hypothesis enables one to write the collisional
terms under the following form:

W

= g f (fk„fi f;„f, )g;, I," ,' p(IIq)dQ—dc,

(3.2)

A. Zeroth-order solution

m
f,' =n

2mkT
mp cip

exp 2kT

~ir

g;, exp — expkT

~i.r

g g;„exp — g expkT
P

iv
P

kT,

~iv
P

kT,

(3.4)

where n is the molecular number density, u the macro-
scopic velocity, m the molecular mass, k the Boltzmann
constant, g the statistical weight, and c the internal ener-

gy. The macroscopic quantities, n, T, T, , and u are
defined with f, ; they can be found by solving the Euler

P

equations, to which the following vibrational relaxation
equation has to be added:

DE,
J„dc;

P I: P
n

Dt
(3.5)

where E~ is the mean vibrational energy per molecule.
A Maxwell-Boltzmann distribution holds for the

translational and rotational mode, respectively, at the
translation-rotation temperature T. But, contrarily to
the result obtained by a WNE method, a Boltzmann dis-
tribution at the vibrational temperature T, for the con-
sidered species ( T, for f; and T, for f ) appears,
representing a nonequilibrium for the zeroth-order solu-
tion.

B. First-order solution —transport terms

I The ji rst or. der solution-

f is obtained from the following equation:
P

df 0

JO J1II I (2.8')

Because of the expansion of f, in a series of a small pa-
P

rameter c, linear calculation methods may be used for
solving Eq. (2.8'). Thus, taking into account the form of
the known terms df; Idt and y; which are deduced from

P P

f; (3.4), the perturbation term ip,. , which appears in the
P P

JI' term, can be written under the form
P

8 1nT
BI P P p Qr 'p

From the zeroth-order equation (2.7), Ji =0, it is easi-
P

ly shown that
3/2

I(fkp fiq +fup fiq fipfj'q fip fjq )
8 lnT„

+F, c; +G; +H;c; dpBr P P P
(3.6)

Xgip jqIjp jq ( I )dQ dcjq (3.3)

where I(I) and I(II) are, respectively, the cross sections of
type I and II.

O

(c is a nondivergent symmetrical tensor), where Xp = A,p,
B, , D, , F, , G, , and H;, are unknown scalar functions
of r, t, c;, and c.;, . In contrast to the WNE method, the

P P
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fourth and fifth terms are due to the nonequilibrium. The
last term is due to the mixture,

1'

n n
dp—

Br n n

np mp cj lnP
nm Br

where P is the hydrostatic pressure.
At this level, considering the gradients to which these

coefficients are connected, it may be anticipated that the
coefficients A, , B;, D;, F;, G;, and H, will, respec-

tively, participate in the expressions of translational and
rotationa1 thermal conductivity, shear viscosity, bulk
viscosity, vibrational thermal conductivity, pressure term
(relaxation pressure), and mass-diffusion coefficient. The
principle of calculation consists in developing these
coefficients on the basis of the eigenfunctions of the in-

tegral operator J&, which is generally unknown for a
P

realistic potential interaction. However, in the case of a
Maxwellian intermolecular potential these eigenfunctions

may be identified: They form an orthogonal basis [15].
These functions are expressed in terms of Sonine-

Laguerre polynomials for the translationa1 mode, and by

extrapolation, in terms of Wang-Chang and Uhlenbeck
polynomials for the internal modes [7]. Thus the
coefficients X; = A, , B;, D, , F, , G;, and H; are ex-

panded on this basis,

X; =
P

1

+r
+pmns +pmns

m, n, s =0

+pm ns ~r

2
mpC;

pn
2kT

&ir
ps

jv

kT,
P

where S„are the Sonine-Laguerre polynomials and p;"
the Wang-Chang and Uhlenbeck ones. Substituting
df; Idt and y; (3.6) into (2.8'), the following systems,

giving, respectively, the expression of A p Bp Dp Fp,
G;, and H;, are obtained:

where xp „, do not depend on velocity
(x =a, b, d,f,g, h ). %~ „, constitute a complete basis of
orthogonal polynomials previously defined (translation
and internal modes),

2pl c;
J,' [A;c;]=

p 'p 'p 2kT
r

E;„—E, (T)
5 p P

2 kT
0c; f;

P P
(3.7)

0

J,' [B, c, c, ]=
P P P P

P1lpc; c).
P P 0 (3.8)

[D ]=—'—1

3 2

2
Mp C) k E)r Er

p + p P

2kT C„

C,
C f;,

tr

(3.9)

E;, —&, (T, )

J,' [F, c;]= c;f;
P P P P PkT,

P

1 — 1
Pal C;

JI [G,. ]= — S (E;, )
p p TnCtq P 2kT

e,„E„(T)—3 + p P

2 kT

E,, E, (T, ) S—(e;, )

T„kT„n~C, (T„)
P P P P

(3.10)

(3.11)

J,' [H, c, ]= c, f,
p p p n p p

with

S (E,, )= gE, fJ»dc, .

I

zeroth-order solution f, , four conditions are imposed on
P

the coefficients. They come from the density definition,

g f f, 0', dc; =0=oooo=oooo=O
The brackets [ ] represent a collisional balance,

=Ji (Xk +XI —X, —X )

+J,' (Xk +XI —X; —X ),E k I

and C is the specific heat (t, r, U represent translation, ro-
tation, and vibration, respectively).

As the macroscopic quantities are defined with the

the mass velocity definition,

gm g ff, cp, v, dc, =0
p

—g m h ooodp=O,
p

the translation-rotation temperature definition,

(3.13)

(3.14)
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g g If, y, ( —,'m c,'+E,„)dc, =0
P l

'g np I 2 kdp100+C ( T)d 010I =0
P

p

g np I g kgp 100+ Cr ( T )gpolp I

p

and the vibrational temperatures definition,

(3.15)

0fi 9i Eiv dc; =0 'dp001 gp001=0
P

ffj Pj Ep dcj 0:dqpp1 gqpp1 0
(3.16)

The above constraints on a, d, f, g, and h constitute only
sufficient conditions.

Expanding the X, coefficients and taking into account
the above conditions, the perturbation term y, is written

as follows:

5
pip ap 100

2
mp Clp

2kT
+apP10

E,„E„p(T—)
P

kT
+ apQQ 1

s;, E, (T—p)
P

kT,
8 lnT

ClP ar
' '

arbpOOOCip Cip '

2
3 mp clp

p oo 2 2kT pp

s,„E„(T—)
kT

+dp001 kT,

5+ fp 100

2
mp Cip

p+ f'
E;„E„p(T)—

P

kT +fpoo1
s;, —Ep(Tp)

kT,

3 lnT, p
lP

3+gp 100

2m c; + +gppp1

E;„E„p(T)—
P

kT

E,, E, (Tp)—
kT„

2m c;+ h 1pp +h p1p2 2kT

E;„E„(T)—
kT

+h PP1

E,, E, (T, )—
P

kT, C~pdP

where E is the equilibrium internal energy. I =nkT, (3.18)

2. Transport terms

In this way, through y,. or its coefficients (a, b,f, . . . ),

all transport terms are expressed in terms of the collision-
al integrals. The stress tensor is

~=nkTI+2 n rn
kT

6ppppm

0

kT Bu+ nq mq Aqppp
mq r

kTp= —gn m b 000
p p

(3.19)

and a term of bulk viscosity due to the fact that, at zeroth
order, the rotational mode is assumed in equilibrium.
The corresponding coefficient is related to the delay that
the rotational mode takes to relax, as compared to the
translational mode,

a term of shear viscosity, with the shear viscosity
coefficient,

U—(n„d,pP+nqdq1PP)kTI Br
kT X n, d, 1oo (3.20)

(n g 1oo+n gq1oo)"TI (3.17) and a term of relaxation pressure which comes also from
the equilibrium assumption for the rotational mode at the
zeroth order,

where I is the unit tensor.
In this expression, one may distinguish a term of hy-

drostatic pressure
PIi = kT g npgp1oo . —

p

(3.21)
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The heat Aux characterizes three types of energy
diffusion: translation, rotation, and vibration. The
translational heat Aux is

q, =q, +q,

The rotational heat Aux is
q„=q„+q,

=gn kT

p p

BlnTC„oio +f pipBr

Bln T,
P

kT
2 npmp

p p

Bln T
PBln T

~plop +fp100Br Br
+h o1odP

+(h, pp
—h 000)dp (3.22)

+Er (T)"pooodp

The vibrational heat Aux is

(3.23)

kT
q, =gnp

p p

lnT BlnT
ap001 +fpoo1Br p Br

' +h pp, dp +E, (T, )h pppdp
P III

(3.24)

kT
k, =

—,'gn m
p p

2
fp 100

T.

ap 100

T

kT= 2npmp
U mp

P

fq 100

T.
q

kT=
2 nqmq

mq
q

for rotation,

(3.25)

A,„=—gn
p

kT
lC. (a oio)]

m

kT= —n
m p

= —n
kT
mq

and for vibration,

fp0 10

T

fqp1 0

T
q

(3.26)

k, = —gn
p

kT
mp

001
T, C„(T„) T

U

q

—n p

—n
q

kT
[Cu (Tu )(fpooi)] ~

kT
(C, ( T., )(fqooi ) ] .

(3.27)

The diffusion velocity is

kT
c;

m

Bln T
p pop g

fp pop +h ooodp (3.28)

Neglecting thermal diffusion [16,17], we find

kT
C; = h 000dp,

m
(3.29)

The corresponding thermal conductivities are the follow-
ing: For translation,

with

2 2m m

p 000 v pq
ppp kT

DE,
n +

Dt Br

B.q,
g eiu f~II dcj +g Eiu f ~II dci

(3.30)

Referring to previous calculations [18,19] the second
term of the second member of (3.30) may be neglected.

The resolution of the system of Eqs. (3.7)—(3.12) yields
expressions for the transport term coefficients, i.e., for a,
b, d, f, g, and h. However, these coefficients are ex-
pressed as combinations of type-I collision integrals, ex-
cept for the coefficient g which depends also on type-II
collision integrals. As it is very difficult to evaluate accu-
rately the differential collision cross sections, particularly
the inelastic ones, the collision integral calculations
represent a formidable task. Therefore, it may be neces-
sary to express transport terms (or the a, b, d, f, g, and h

coefficients) as functions of known or measurable macro-
scopic quantities, so as to make these quantities easier to
use in numerical calculations. Thus, generalizing approx-
imations of the Mason and Monchick type, which consid-
er the inelastic contribution as a perturbation, it may be
shown that the transport terms for a binary mixture, as
given in the Appendix, are expressed principally as func-
tions of shear viscosities, diffusion coefficients, and rota-
tional relaxation times of the gases constituting the mix-
ture.

2 2

h
mq mp

qooo ~ pq
ppq kT

where D is the mass diffusion coefficient.
All these transport terms —stress tensor, heat Aux, and

diffusion velocity —appear in the conservation equations
of macroscopic quantities which are, actually, the
Navier-Stokes equations completed by vibrational relaxa-
tion equations giving T, and T, (E, and E, ). For the

p species,
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Hereafter, a physical deductive reasoning is used rath-
er than a rigorous mathematical treatment. The problem
comes from the cutoff of the Boltzmann equation which
is different for the WNE or SNE method. Thus

WNE method SNE method

The shear viscosity (A 1) and translational thermal con-
ductivity (A4) in binary mixtures depend on the shear
viscosities of pure gases (p, p ), the binary diffusion
coefficient (D ), and the "fictitious" viscosity [21] (p~~).
These terms are weakly influenced by the internal modes
since they characterize momentum exchanges and
translational energy diffusion, respectively. Thus, at this
level of approximation, these coefficients are identical to
their WNE expressions. Comparison with approximate
formulas given by various authors [5,12,13,20] shows
that, generally, these approximations give the shear
viscosity and the translational thermal conductivity as
functions of shear viscosities of pure gases only [12,13,20]
or of shear viscosities of pure gases and binary diffusion
coefficient [5]. None of them take into account the
dependence on the coupling term called here the "ficti-
tious" viscosity.

Contrary to the vibrational mode, there is no equation
describing the relaxation of the rotational mode: The
bulk viscosity (A2) "compensates" this absence and is
typical of this particular nonequilibrium process, as-
sumed small. That is the reason why the bulk viscosity g
is connected to the different phenomenological rotational
relaxation times.

The relaxation pressure Pz (A3) is due to the vibration-
al nonequilibrium, combined with an assumed small rota-
tional nonequilibrium, and is added to the hydrostatic
pressure P. With the harmonic-oscillator hypothesis, P~
depends on the relaxation of the two internal modes (r„
and r, ). Typically, for a pure gas [18],P~ is of the order
of the ratio of the rotational and vibrational relaxation
times: r„/r, .

The thermal conductivities for the rotational (A5) and
vibrational modes (A6) and (A7) depend on the binary
diffusion coefficient and on the self-diffusion coefficients.
At the first order of the Mason and Monchick approxi-
mations [8], the A, „expression is similar to that given by
Mason, Monchick, and Pereira [22]. Through the vibra-
tional temperature T„A., depends strongly on the degree
of nonequilibrium.

It may be noted that results obtained by the SNE
method do not tend properly to the correct near equilibri-
um behavior. Then, as for pure gases [23], these results
cannot be applied to gas Aows in weak nonequilibrium;
these Aows must therefore be treated by a WNE method.
In order to avoid this problem, a general method valid,
whatever the degree of nonequilibrium, is presented in
the next part.

IV. GENERAL METHOD WNE/SNE

At the zeroth order, the matching between both methods
exists (when T„—+ T). At the first order, the matching be-
tween WNE and SNE methods does not exist: For the
WNE case, the collision integrals or transport terms de-
pend on collisions of type I and II. For the SNE case, ex-
cept for the J» term, which participates only in the re-

P

laxation pressure expression, the collision integrals and
therefore the transport terms depend on collisions of type
I exclusively. Alexeev [24] and Kogan [25] have brought
a mathematical solution to this problem. Thus, the addi-
tion of the term JII, to the SNE first-order equation,

P

which takes into account the relaxation of type-II col-
lisions, is sufficient to realize the matching.

A new system is then obtained,

1JI =0, zeroth order (4.1)
P

df 0

JI +JII +JII first order, (4.2)

where

J» =JII +JII1 1

P PP Pq

The SNE case is recovered when J,'I —+0, and the WNE

case when JI, 0,0
P

Jl —y f (fo fl +f1 fo fofi f ifO )
PP j, k, l

'P

k I
Xg, I, ' '(II)dQ dc~

P P P P P
(4.3)

g, k, l

k l
&&g; ~ &;'~ '(II)dAdc

Jq
(4.4)

J1 JS(1)+J A (1)
II » II

JS(1)+JS(1)+J A (1) +J A (1)
II II

PP W PP PQ

where / II
'" is the non-self-adjoint part which is of higher

P

order [25]. J„"'is the self-adjoint part which is to be re-

tained at this order. Then the system becomes

1
JI =0, zeroth order

P E
(4.5)

As in the case of a pure gas, only the self-adjoint part of
the JII term is retained, the other part being smaller by

P
an order of magnitude [25]. Thus

1
Zeroth order

First order

Jl +JII =0
P P

df 0

—J1 +J1
dt I II

J, =0
P

df 0' =JI' +JIIdt with

df 0

=J' +J +J (') first order,
dt

(4.6)
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JS(1) JS(1)+JS(1) 1 y f (f0 f0 +fOf 0 )(+ ++ + &p )g I P P (II)dQ
k I

II
p

II
pp

II
pq P P P P P P P P P P P JP

j,k, l

g, k, l

(4.7)

The eigenvalues of J»"' are the collisional invariants rel-
P

ative to type-II collisions only, i.e., mass, momentum,
and total energy.

As in the previous case (SNE), the determination of the
transport terms requires us to solve successively (4.5) and
(4.6). Since this general method appears like a correction
to the SNE method, calculations and physical reasonings
are the same as in the SNE case. However, the addition
of the JII term brings modifications to the perturbation

P
term cp, or to its coe%cients 3, , B, , D;, I';, 6, , and

P

H,-; now, the transport terms depend on the collision in-
tegrals of type I and type II. Because of the lack of infor-
mation about collision cross sections for the inelastic col-

lisions, it seems necessary, like in the SNE case, to relate
the collision integrals of type I and II to macroscopic
qua ntities.

For collision integrals of type I, Mason and Monchick
type approximations are similar to the previous SNE
method. For collision integrals of type II, which charac-
terize the main vibrational energy exchanges, it may be
shown that the use of the harmonic-oscillator model leads
to relations between type-II collision integrals and vibra-
tional relaxation times ~ and ~

This may be obtained from a phenomenological equa-
tion of the Landau-Teller type for the vibrational energy,
established using the harmonic-oscillator model L26],

DE, (T„)
P P

VT
PP

E, (T) F. (T, )—
P P P

Xq

E, (T)—E, (T, )
P P P

VT
W

E, (T, )[E, (T, )+hv~]exp
+q q q P P+

hv
T
VV
w

0 —0
U

E, (T„)[E„—(T, )+hv ]

(4.8)

where h is the Planck constant, v the vibration frequency,
0, the vibrational characteristic temperature, and x the
molar fraction. ~ is the relaxation time of translation-

PS'

vibration transitions between p molecules,

is the relaxation time of vibration-vibrationVV VV

transitions between p and q molecules,

VT
PP 0,

P

T
vv
W pp qin

exp
O. —O.

V U

pi qp
nQ

VT
w

O~

P

T

is the relaxation time of translation-vibration tran-W
sitions between p and q molecules, (detailed balancing), where Qg~ and Q~~ are collision fre-

quencies. From the vibrational relaxation equation writ-
ten under the form (3.5), the following relations may be
deduced by identification of the similar terms of equation
(4.8):

K; J f exp( —y )y Ig '(II)dQdy
i,j,k, 1

+exp ~

O~

P 1—
T T.

P

K, f exp( —y )y I, (II)dQdy
i,j,k, l

1

2n hv

'" 'kT, 'C„(T, )
P P P

k
p 1

VT
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g K, f exp( —y )y I', '(II)dQdy
i,j,k, l

O~

+exp P

T
T1—

T
P

g K;, f exp( —y )y I, '~ '(II)dfldy~q
ij, k, I

X &; f e P( —y )y' I, ', ' (II)dQdy
I,J, k, l

1

4n

2'7T'I

kT hv

''" 'kT, 'C, (T, )
P P P

k
p 1

VT '
Q.,

+exp
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1—
T T.
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.exp

—0
q T1—

T.
q

. g E; ~ f exp( —
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= 1

4n

27Tm r

' kT„C, (T„) Q„
P P P P

hv k Q,

where Q is a partition function, m„ the reduced mass, y =(m /2kT)g, and

K;
P P

gI'r gjr exp
P P

~ir r

kT

Eir

g g,„exp
' P

2

exp
P

kT,
P

~iv

+exp
1, V V

P P

2

K;'p Jq

g g;„exp kT

gir gJr p
~ir EJr
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g g„exp
J rq

kT

exp

&iV

g exp
l, V Tv

p P

8JV
q

kT,
q

EjV

J, V
q

Now, all collision integrals, or the 3;,8;, D;, I';, G;,
and H, coeKcients, are expressed as combinations of
macroscopic quantities, which are the same as in the pre-
vious SNE case, but which include also the vibrational re-
laxation times ~ and ~ . Thus, the expressions of the
transport terms may be obtained and the nonequilibrium
appears explicitly. Bi t, d.s previously, if the inelastic con-
tributions are assumed small, it may be shown that only
the vibrational thermal conductivity is strongly a6'ected

by the nonequilibrium.
The shear viscosity (Al) and the translational thermal

conductivity (A4) are formally the same (Appendix): In
fact, the contribution of the terms depending on the
type-II collisions is negligible [18], following the approxi-
mations of Mason and Monchick.

The bulk viscosity (A2) and the relaxation pressure
(A3) both have an expression identical to the SNE case.
This is due to the fact that, contrary to the rotational
mode, the vibrational relaxation is entirely described by
zeroth and first vibrational relaxation equations. Thus at

the first order it cannot be possible to find a bulk viscosity
dependent on vibrational relaxation, as in the WNE case,
since this process is taken into account in the vibrational
relaxation equation.

The rotational thermal conductivity (A5) is not strong-
ly inAuenced by the vibrational nonequilibrium. In this
matching case, as for the other thermal conductivities,
the "cross" thermal conductivities, i.e., k, , A, , A, ,

p q p

, and I,, are nonzero, contrary to the SNE case.
rT T

q

However, they remain negligible as compared to A, , A,„,'T' rT'

, and A,„,respectively.'T VT

p
The vibrational thermal conductivity (AS) emphasizes

the vibrational mode relaxation phenomenon. Its expres-
sion is given in the Appendix and presents an explicit
dependence on vibrational relaxation. If the relaxation is

very slow, i.e., ~, ~ oo, the vibrational thermal conduc-
tivity is identical to the SNE case. If the relaxation is
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very fast, the vibrational conductivity A, , to be added to'T '

the "cross" vibrational conductivity A, , is identical to

the WNE case. Thus the matching is realized.

V. APPLICATIONS

The subject of this last part is to apply the theoretical
results to real mixtures and to describe the evolution of
the transport coefficients in a nonequilibrium zone. Fur-
thermore, each transport term is successively examined
and compared, whenever possible, with approximations
given by different authors [12—14] or with experimental
data.

In a first application, a binary mixture is chosen so that
the transport properties of both components are
significantly different. Thus this test mixtures consists in
nitrogen and hydrogen, remembering that pN is approxi-

2

mately twice greater than pH, and that the diffusivity of2'

Nz is ten times lower than that of H2. Results for shear
viscosity and thermal conductivity are then compared
with experimental data given in Ref. [5], and also with
approximate formulas [12—14].

In a second application, a more classical —and more
often used —mixture is analyzed, that is 79% nitrogen
and 21% oxygen. For this mixture, the remaining trans-
port terms as well as nondirnensional numbers are also
computed, yielding an estimation of the relative irnpor-
tance of these terms in the temperature range for which
present results may be applied.

A. Shear viscosity and thermal conductivity
for a N~-H2 mixture

Computation of the transport coefficients requires the
knowledge of macroscopic quantities in terms of which
they have been expressed. Each macroscopic quantity
depends on collision integrals which may be determined.

For the present mixture (Nz-H2), the Neufeld, Janzen,
and Aziz [27] modeling is chosen. Starting from the nu-
merical tables given in Ref. [5], these authors give rela-
tions for the reduced collisional integrals, and express
them as functions of relations depending only on the
translation-rotation temperature T since e/k and o. , the
parameters of the potential function [4,5], are fixed, in a
temperature range, for each type of interaction. Thus the
modeling of the collision integrals for the pairs N2-N2,
H2-Hz, and Nz-H2 allows the computation of macroscop-
ic quantities and finally of the transport terms for the an-
alyzed mixture.

1. Shear viscosity p(p~, pH, p~ tt, D~ H )2 2 2 2 2 2

The results for the shear viscosity determined by (Al)
and by the Wilke [12] approximation are presented and
compared in Table I and Fig. 1. In this case, the interac-
tion parameters e/k and o [4,5] have been taken so that
the corresponding values of viscosity for the pure gases
are the closest possible to experimental values.

Thus, for more than 39.0%%uo of H2, the theoretical result
(Al) is closer to experimental values [5] than the Wilke

TABLE I. Shear viscosity in a N2-H2 mixture (10' kg/m s) at
273.16 K.

H2 (mol%%uo}

0
15.9
39.0
65.2
79.5
80.3

100

(A1)

1666
1645
1587
1440
1284
1273
846

Wilke [12]

1666
1660
1630
1520
1376
1364
846

Expt. [5]

1688
1670
1600
1449
1285
1274
853

2. Thermal conductivity

&vN, isH, it„Ht»n H»x n»H H»x2H )

In order to compare the present results with experi-
rnental values, we compute the total thermal conductivi-
ty. As in V A 1, the Neufeld and al. modeling [27] for
collision integrals is used but the potential parameters
e/k and o derive here from a fitting of the second virial
coefficients [4]. The translation thermal conductivity is
calculated, first with Eq. (A4) deduced from the theoreti-
cal analysis, at the quasifrozen approximation, and then

7.0—

6.0-

5.0—

4.0—

3.0—

2.0-

1.0— —:Wilke approximation

0.0
0.0 1000.0 2000.0

Temperature (K)

I

3000.0

FICx. 1. Shear viscosity in a N2-H2 mixture: xH =0.8."2

[12] approximation. The relative error given by Eq. (Al)
does not exceed 1.5%, whereas that of the Wilke approxi-
mation reaches 7%. Calculations for a pure gas give a
relative error of 1.3%%uo and 0.8%%uo, respectively, for nitro-
gen and hydrogen collision integrals; this discrepancy
may be due to the modeling which has been adopted, or
to possible experimental errors. If the potential function
parameters (e/k, o. ) are chosen to coincide with the ex-
perimental values for pure gases, the relative error be-
comes lower than 1% within the whole range of concen-
trations for Eq. (Al) and reaches 8% for the Wilke ap-
proximation.

In Fig. 1, the evolution of the shear viscosities as func-
tions of temperature, determined by Eq. (Al), compared
to the Wilke approximation for a 80% H2-20 mol%%uo N2
mixture, is represented. The relative difference between
Eq. (Al) and the Wilke approximation is about 7%%uo.

Referring to Table I, it seems that, for this mixture, the
Wilke formula overestimates the values of shear viscosity.
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with Wilke [14] and Yos [13] approximations. The inter-
nal (rotation-vibration) thermal conductivities, also ex-
pressed with the quasifrozen hypothesis, are then added
to (A4) and to Yos relations; on the other hand, only the
vibrational thermal conductivity —though its contribu-
tion is weak —is added to the Wilke approximation, since
this one includes the rotational contribution through a
factor called the Eucken factor [8].

The determination of the nondimensional term B is
carried out with an equation giving B as a function of
the difFusion coefficient [17,22] (or temperature): This
value of B* is nearly equal to unity [8]. The vibrational
specific heat necessary for the vibrational thermal con-
ductivity computation is determined by the Einstein rela-
tion, in which the vibrational characteristic temperature
for N2 and Hz is taken from Ref. [28].

In Table II the different numerical values of the total
thermal conductivity are reported. The last column giv-
ing experimental results is, like the shear viscosity, taken
from Ref. [5]. Thus, whatever the mixture concentration,
the thermal conductivity determined with Eq. (A4) is
closer to experimental values than the approximate for-
mulas [13,14]. It may be also noted that, in spite of the
simplicity of the Wilke and Yos thermal conductivity ex-
pressions, these approximate formulas give, however, a
good estimation of the thermal conductivity values for a
binary mixture. The maximum of the relative error is for
65.2% Hz, i.e., for Eq. (A4), Yos and Wilke, the relative
error is, respectively, 8.6%, 10.3%, and 12.9%.

In Fig. 2 the evolution of the thermal conductivity is
represented as a function of temperature: It is computed
with Wilke [14] and Eq. (A4) for a mixture of 65.2% Hz.
Like for the shear viscosity the relative difference be-
tween these formulas is quasiconstant and about 4%.

B. Transport terms for a N2-02 mixture

As in the previous case, the computation of the trans-
port coe%cients requires a modeling of the collision in-
tegrals. For this mixture, the Aubreton [29] modeling is
chosen, at the level of the first Mason and Monchick ap-
proximation (quasifrozen approximation). The collision
integrals for the pairs 02-0z, N2-Nz, and 02-N2 are then
also expressed in terms of relations depending on the
translation-rotation temperature. Thus the determina-
tion of the transport terms is possible, since the collision
integrals and, consequently, the macroscopic quantities,
are computable. The mixture percentage is that of
simplified air: 21% of oxygen and 79% of nitrogen.

0
15.9
39.0
65.2
79.5
80.3

100

2 407
3 476
5 488
8 817

11 412
11 580
16 849

2 407
3 501
5 564
8 954

11 558
11 725
16 849

2 228
3518
5 794
9 170

11 499
11 640
15 553

2 301
3 347
5 314
8 117

10 544
10 753
16 903

TABLE II. Thermal conductivity in a N&-Hz mixture (10
W/m K) at 273.16 K.

H2 (mo1%) (A4) Yos [13] Wilke [12] Expt. [5]

B.Q-

4.o-

3.0-

2.0—

1.0-

0.0
ilke approximation

O.O $000.0 2000.0
Temperature (K)

3000.0

FIG. 2. Thermal conductivity in a Nz-H& mixture:
xH =0.652.

2

1. Shear viscosity p(pN po2 O'N202 DN202)

2. Bulk viscosity g(r, ,r„,r„j'02 'N2 "02N2

The computation of the bulk viscosity requires the
knowledge ok the rotational relaxation times r„

O~ N~

and r„.Using a classical theory, Parker [8] gives a re-
02N~

lation for a rotational collisional number Z„defined as

TABLE III. Shear viscosity in a N&-O~ mixture (10' kg/m s).

T (K) (Al) Wilke [12] Expt. [30,31] Aubreton [29]

300
500

1000
1300
2000

1.834
2.692
4.320
5.127
6.793

1.826
2.667
4.284
5.088
6.755

1.846
2.701
4.244
4.960
6.900

1.843
2.704
4.343
5.158
6.840

In Table III, the different shear viscosity calculations
are compared. In the first two columns the shear viscosi-
ty determined with (Al) and Wilke [12] equations are
given. In the last two columns, experimental results
given in Refs. [30,31] are presented as well as results
coming from an "exact" computation [29].

The difference between the Wilke approximation and
present results (Al) for this binary air mixture, for which
the properties of the two components, 02 and Nz, are
very close, is much weaker than that noted for the mix-
ture Nz-Hz. In the given temperature range and for a
nonionized binary gas mixture, in which the molecular
masses of the two components are close to each other, the
Wilke approximation is in very good agreement with the
experimental data. The greatest difference with the ex-
perimental values is for T=1300 K, where one finds
3.3% and 2.5%, respectively, for Eq. (Al) and the Wilke
equation. Furthermore, the relative error, compared to
the "exact" calculations, is below 1% for Eq. (A 1) and
about 1.5% for the Wilke approximation.
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11.Q-
10.0-
9 P~

where ~ is the elastic collision time for a rigid sphere
model.

Following the authors of Refs. [20,32], the bulk viscosi-
ty for a pure gas may be expressed under the form

8.0—
7 0~

CD
0

V)
~ W
~ W

CA

KP
9 +r

25
4 Q-
3.0-

osity
0slty

2.0-
1.0-
0.0

1000.0 2000.0
Temperature (K)

Q.o 3000.0

FIG. 4. Viscosities for pure oxygen.

ductivity on one hand with Eq. (A4) and on the other
hand with the Wilke [12] approximation are listed. Since
the rotational and vibrational thermal conductivities are
computed, in both cases, with the same formulas, the
difference between the two results is obviously due only
to the way in which the translation thermal conductivity
is computed, as previously remarked in the case of the
Nz-H2 mixture (V A 2).

Contrary to the previous mixture N2-H2, the transla-
tional thermal conductivity computation with the Yos
[13]approximation is not presented here since the numer-
ical values for the thermal conductivity are equal to those
determined by the theoretical equation (A4) (relative er-
ror below 1%). The Wilke approximation, including the
Eucken correction is sometimes closer to "experimental"
values [30,31] and sometimes farther than the present re-
sults, determined with Eq. (A4), which, in turn, are very
close to the values given by the "exact" treatment [29].
One notices a jurnp of 7% of the relative error, for both
relations, at T=2000 K: This is due to the fact that, in
the present calculations, the reaction conductivity has
not been considered, since the mixture composition
remains constant (frozen chemistry).

3. Thermal conductivity
D D D 8*(P&2~Po ~Pw2o2~ x2o2. w2nr2~ o2oz~ ~2o2

Like for the shear viscosity, the macroscopic quantities
appearing in the expression of the translational thermal
conductivity are determined with collision integrals com-
ing from the Aubreton analysis [29]. Thus, in Table IV,
the values of the translation-rotation-vibration thermal
conductivity calculated for the translational thermal con-

11.0-
10.0- '11.0-

10.0-
ob 9.0-9.0 -,

8.0
7.0-
e.o-

8.0-
7.0-
B.O-
6.0 —,

4.0-
3.0-

M
~ W
~ W

Cf}
O

6.0
CD 4.0—

3.0-

osity
osity

2.0-
1.0-0.0

l

3000.0 0.0
0.0

0.0 1000.0 2000.0
Temperature (K) 3000.01000.0 2000.0

Temperature (K.)

FIG. 3. Bulk viscosity. FIG. 5. Viscosities for pure nitrogen.

But only the bulk viscosity of a pure gas may be deter-
mined by this formula [8] and its evolution for nitrogen
and oxygen is presented in Fig. 3. In Figs. 4 and 5, a
comparison between the bulk and shear viscosities is also
presented. It is expected that the evolution of the mix-
ture N2-02 will not be very different.

Like the shear viscosity, the bulk viscosity increases
with temperature. The values of the bulk viscosity in
pure gases of oxygen or nitrogen are almost equal. In the
vicinity of 2500 K, oxygen has a bulk viscosity slightly
greater than this of nitrogen. However, above this tem-
perature, the results are no more significant since a non-
negligible dissociation of oxygen begins for T)2000 K.

From the comparison between bulk and shear viscosi-
ties of the same gas, as represented in Figs. 4 and 5, it
may be seen that for T & 1500 K for N2 and T & 2100 K
for Oz, the bulk viscosity is smaller than the shear viscos-
ity; but, it is the contrary beyond these temperatures. It
is also noted that g and p are of the same order of magni-
tude, so that the Stokes approximation, which consists of
neglecting the bulk viscosity, is acceptable mainly be-
cause the associated gradients are generally weaker for
this viscosity.
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TABLE IV. Thermal conductivity in a N2-02 mixture (10
W/m K).

T (K) (A4) Wilke [12] Refs. [30,31] Aubreton [29]

30.0-

26.0— Tv =3000K
Tv = 2000 K

300
500
700

1000
1300
1600
2000

2.69
4.04
5.33
7.15
8.83
1.04
1.23

2.47
3.70
4.89
6.59
8.14
9.57
1.13

2.63
4.04
5.23
6.81
8.32
1.06
1.37

2.62
3.99
5.25
7.01
8.72
1.05
1.32

20.0—

16.0—

10.0—

e.o-

0.0
0.0 1000.0 2000.0

Temperature (K)

Tv ——1500 K

Tv = 1000 K

Tv =800K
Tv = 600K

-Tv =500K
I

3000.0

4. Vibrational thermal conductivity
~u ~DE 0 N N ~ ~u ~ N 0 0 0 )

Numerical values of the vibrational thermal conduc-
tivity of 02 and N2 have been computed for the same
mixture 02-N2. The results for A,, and A, , are

T T
o~ N2

represented in Figs. 6 and 7 as functions of T, T, , and
o~

T, . The dotted curves correspond to the equilibrium
N~

vibrational thermal conductivity, T= T, (or T, ).
02 N2

From this figure, it may be see that the equilibrium vi-
brational conductivity values are different from the
values of A,, in nonequilibrium Aows, both in expansion
Aows, where T& T, , T, , as well as behind shocks,

0~ N2

where T) T, , T, . Thus, the fact of not taking into
02 N2

account the nonequilibrium may lead to large errors in
the determination of A, , and k, and consequently

T
02 N2

on the values of the vibrational heat Aux. The vibrational
thermal conductivity (A8) determined by the matching
method, has been also computed behind a shock wave at
a Mach number 8, for which the dissociation processes
are negligible, but the vibrational relaxation is important
for 02 and N2.

Results obtained for vibrational relaxation times have
been taken from Ref. [26]. A careful observation of the

FIG. 7. Vibrational thermal conductivity for nitrogen in air
mixture.

A, , results, calculated with (A6) derived from the SNE
method and with (A8) derived from the matching
method, show that the difference between these two cal-
culations is not very significant, except just behind the
shock where T, « T. In this zone, where the nonequili-
brium is very strong, the Mason and Monchick approxi-
mations are invalid, due to the important effect of vibra-
tional exchanges.

Now, from a practical point of view, it is interesting to
analyze the transport properties through the nondimen-
sional numbers, that is, the frozen Prandtl number of the
mixture Prf, which appears in the energy equation and
which may be written

Prf =

where

the frozen specific heat at constant pressure, and

kf Art +ky sty o

The Prandtl number evolution is represented in Fig. 8,
where the solid line represents the Wilke [12] expressions

8.0-
7.0—

6.0-
6.0—

4.0-
3.0-
2.0—

Tv = 3000 K
Tv = 2000 K
Tv = 1500 K

Tv = &000K

Tv =800K

Tv =600 K

Tv =500K

0.5- : Wilke approximation
for p. and 4

0.0
0.0 1000.0 2000.0

Temperature (K)
3000.0

FIG. 6. Vibrational thermal conductivity for oxygen in air
mixture.

0.0
O.O 1000.0 2000.0

Temperature (K)
FIG. 8. Prandlt number (air).
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3000.0

D: (A. 1) and(A. 4) for pand Xt

respectively
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: Wilke approximation for Q
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FIG. 11. Vibrational number for nitrogen in air mixture.

FIG. 9. Lewis number (air).

for the viscosity and translational thermal conductivity.
The square-dotted line represents the result of calculation
using formulas (Al) and (A4), respectively, for p and A,

For this mixture, 0.69 Prf ~0.75. The Wilke ap-
proximation for p and A, , leads to greater values for the
Prandtl number. In both cases, Prf is quasi-independent
of the translation-rotation temperature. The frozen
Lewis number Lef appearing in the energy equation may
be written

Taking for k, the Wilke approximation (solid line) and
Eq. (A4) (square-dotted line), it may be seen in Fig. 9,
which plots the Lewis number evolution, that Lef in-

creases slightly with the translation-rotation temperature.
Thus the conduction effects become less important than
diffusive effects. The usual approximation Lef = 1 is
more justified in the case when the Wilke approximation
for the calculation of A, , is used.

The vibrational number F appears in the nondimen-
sional vibrational relaxation equation (3.32). The ratio

between this number and the Lewis number, as previous-
ly defined, may be related, always in the framework of the
Mason and Monchick approximations (particularly
D, =D), to a vibrational Lewis number. Thus F may be
written

F fLe

Le,

pA, , C

p~C, (T, Qf

where p is the density. The vibrational number evolution
is represented in Figs. 10 and 11. The solid line
represents F values calculated with the Wilke approxi-
mation for A, „while the square-dotted line represents F
values computed using Eq. (A4). For nitrogen, in both
cases, this number increases slightly: 0.99 F ~1.04
when the Wilke approximation is used for the determina-
tion of A,„and 0.83~F& ~0.96 when Eq. (A4) is used.
For oxygen, the same remarks may be made:
1~F ~1.05 when the Wilke approximation is used for
the determination of A,„and 0.92~F ~0.95 when Eq.
(A4) is used. These computations show therefore, that
the use of approximate formulas for the shear viscosity
and translational thermal conductivity may lead to
differences on the numerical values of these terms (about
10%).

1.5—

1.0-
Cg

Q
~ ~

V
04

=: Wilke approximation for g
: (A. 4) for g

0.0
O.O 1000.0 2000.0

Temperature (K)

l

3000.0

FIG. 10. Vibrational number for oxygen in air mixture.

VI. CONCLUSIONS

The generalized Chapman-Enskog method for the
analysis of vibrational nonequilibrium regimes of gas
mixtures allows us to derive expressions for the transport
coefficients: shear viscosity, bulk viscosity, and thermal
conductivity, for the translational, rotational, and vibra-
tional modes. The inclusion of vibration-vibration reso-
nant collisions in type-I collisions (the most probable)
leads to nonequilibrium appearing at the zeroth order.
Thus at the first order the nonequilibrium is stronger
(SNE method), by opposition to the classical method
(WNE) in which the zeroth order corresponds to equilib-
rium. All transport coefficients deduced from this
method are expressed in the Appendix, and it is clear that
the vibrational thermal conductivity is the most affected
by the vibrational nonequilibrium.

Such a method (SNE) cannot describe a How passing
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from a strong to a weak state of nonequilibrium or vice
versa; therefore, as has been developed for pure gases, a
matching method, valid whatever the degree of nonequili-
brium, is presented. Starting from the works of Alexeev
[24] and Kogan [25], it may be shown that the addition of
first-order vibration-vibration and translation-vibration
collision terms allows this matching. The transport
coefficients are then functions of all collisions of types I
and II. The Mason and Monchick assumptions, used also
in the previous SNE method, and the model of harmonic
oscillator, enable one to obtain explicit expressions for
the transport coefficients, as functions of macroscopic
quantities. However, compared to the SNE case, only
the expression of A,, depends strongly on the vibrational
relaxation. Thus, from a theoretical point of view, this
analysis is an extension of the kinetic theory to the vibra-
tional nonequilibrium for diatomic gas mixtures. From a
practical point of view, the following observations may be
made:

(i) The shear viscosity (Al) weakly influenced by the vi-
brational nonequilibrium is expressed as a combination of
pure gas shear viscosities p and p, binary diffusion
coefficient D, and fictitious viscosity p', characterizing
the momentum transfer between both species.

(ii) The bulk viscosity is proportional to the relaxation
time of the internal mode which is in equilibrium at the
zeroth order. For the present case, this is the rotational
mode and, therefore, g is expressed as a function of the
rotational relaxation times ~„,~„,and ~,

W
(iii) The translational thermal conductivity expression is

quite complex. Like the shear viscosity, A, t is expressed
as a function of pure gas shear viscosities p and p,
binary diffusion coefficient D, fictitious viscosity p',
and a nondimensional num. ber B * .

(iv) The rotational thermal conductiuity expression is

identical to the first approximation of Mason and Mon-
chick, i.e., it is a function of the binary diffusion D and

pq
self-diffusion D and D coefficients.

(v) The uibrational thermal conductivity is expressed by
the SNE method as a function of the binary diffusion D
and self-diffusion D and D coefficients. By the match-
ing method the vibrational nonequilibrium appears ex-
plicitly, through the vibrational relaxation times ~
and ~~~.

Finally, transport coefficients have been computed in
the temperature range for which the validity of the
present calculations may be assumed. As in the recent
Makita's work [33], this computation has shown the lacu-
nas concerning the property data of binary mixtures. In
the present case good modelings for the collision integrals
and for the internal relaxation times appear necessary for
the transport terms computation. The values obtained
are consistent and seem to give correct results. One finds
also that the approximate formulas like those of Wilke
and Yos for the shear viscosity and translational thermal
conductivity, in spite of severe approximations, give
correct results, particularly in the case when the mixture
components properties are close. The study of the vibra-
tional thermal conductivity has shown the limits of the
Mason and Monchick approximations in the case of
strong nonequilibrium situations.

For the future, two major directions of investigation
are open: Extension of these transport coefficients to a
multicomponent mixture; and inclusion of chemical reac-
tions (and, especially, dissociation effects at high temper-
atures).
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APPENDIX

The shear viscosity is given by

1+1 + 2
XpXq

pp

XpXq +
pppq nm

1

pq nm o Dpq

2
p pq pp pq mo ppq

2(x m —x m
+

mo
2 2 2 2

xp mp xq mq+
pp pq

, )'
I

4Xp Xq+
nmo Dp p

(Al)

where p' is the fictitious viscosity. The bulk viscosity is

C„
nkT

tr

+ .+(x C„+x C„)
k

q W

C„
+Xq

pq

Cr Cr ) Cr
(C, +x C„+x C, )

' +x
r r r r

(A2)

The relaxation pressure is given in Eq. (A3).
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+ +(x C +x C ).
S (c,, )+S (c., )

P
JU

C„
P =P = —nR R

pq Ctr

Tr
P

7 r
q

C, C„
( Cg +xp Cr +xq C ) np rp q rq k2 7

r
.+[x C, +x (x C, +x C„)]

"p q 'q k
p pq

r
+[x C, +x (xpC, +x C„)]

rp q rq k

(A3)

The translational thermal conductivity is given in Eq. (A4).

=—k5x x 1 +
20m m

+ ' '
(

— )' +3 2x x ( ——3B*)+mx Q*+mx Q*

pq m p m p m3 P q D P q 4 m mmo ppq nm o pq
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25x xq

PPPq

m Q +
mo p m

2 2

+ [Q Q —
(
——38 ) ] +9 mp mq + + 55 + 2 xpxq 100mp mq mpxp mqxq+

n mo D mop Pp Pq
'2

mo p q 0 ~pq

(A4)

where B* is a nondimensional parameter I22]

and

m0 =mp +mq

mQ*=—6pe 4
q

mqQ*=—6
qp m

2

2

+5 —3B*

+5 —3B*

The rotational thermal conductivity is

pq

nx C„
P

Xp Xq+
Dw

nx C„
q

Xq Xp+
Dqq Dw

(A5)

The vibrational thermal conductivity is

P

npC, (T, )
P P

Xp Xq+
Dw

n C„(T, )

Xq Xp+
&qq Dpq

(A6)

(A7)

The vibrational thermal conductivity (matching method) is

nDppC, (T, )
P P

I+ +-x
q Dpp l mp Qp Dpp x

q mp

x D 2 kT Q, 'p r)'T x„kT
m, Q, D:
m Q

Ei
0 v

+ Xq mp

x kT
m, Q., D„

pq

(A8)
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with

1 0,
1+exp . —

2 T
T1—
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1 8,
1+exp

2 T
0,

-exp
T

T1—
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hv
1 —exp '—
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