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Transport properties of binary mixtures of diatomic gases in vibrational nonequilibrium are analyzed
and the corresponding terms are established. In order to solve the Boltzmann equation, a generalized
Chapman-Enskog method is used, valid whatever the degree of nonequilibrium, contrarily to previous
analyses in which only the extreme regimes were considered, at weak or strong nonequilibrium, and gen-
erally for pure gases only. The transport coefficients, first written in terms of collision integrals, are
finally expressed as functions of macroscopic quantities, known or experimentally attainable, following
Mason and Monchick type approximations and with the harmonic-oscillator model. Finally, examples
of calculations are given for N,-H, and O,-N, mixtures. Results are in good agreement with available
experimental data. Comparisons with approximate formulas, extensively used in the literature, show
also that, at least for the investigated mixtures, the use of these formulas seems roughly justified.

PACS number(s): 05.60.+w, 05.20.Dd

I. INTRODUCTION

Recently a renewal of research on hypersonic flows has
been taking place. This new interest is of course due to
the various space-flight programs, for which modeling
and simulation of the reentry of hypersonic vehicles in
different types of planetary atmospheres represent com-
plex problems. In particular, the physico-chemical phe-
nomena related to spacecraft reentry are far from being
satisfactorily known: Thus velocities and temperatures
are so high that the chemical composition of gas media
surrounding these vehicles is strongly modified. The aim
of the present paper is to analyze some transport prob-
lems for nonequilibrium gas mixtures, arising from these
extreme conditions.

The theoretical analysis of the transport properties in
pure or mixed gas flows in the collisional regime is usual-
ly carried out following three methods, all based on solv-
ing the Boltzmann equation: The moment method [1,2],
the Gross-Jackson method [3] and the Chapman-Enskog
(CE) method [4]. The first two methods may be extended
to transitional regimes, but in the collisional regime, the
CE method seems to be the most appropriate. In this
case, the molecular velocity distribution function is ex-
panded in a series of the smallest parameter characteris-
tic of the problem, usually the rarefaction parameter or
Knudsen number which represents the ratio between the
elastic collision characteristic time and the reference flow
time. In practice, the CE method has been established
and used for pure monatomic gases. Results concerning
the transport coefficients [4] (viscosity and conductivity)
are in very good agreement with experimental data. For
monatomic gas mixtures, this method gives also good re-
sults [5,6]. However, the extension of the CE method to
gases having internal energy is more recent [7], first for
the equilibrium case [8-10] (rotational and vibrational
modes) and then for the vibrational nonequilibrium case
in pure gases [11]. The aim of the present work is to ex-
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tend the CE method to binary mixtures of diatomic gases
in vibrational nonequilibrium.

In a first part, the general CE method is presented for
this kind of mixture, and it is shown that, according to
the degree of nonequilibrium, the Boltzmann equation
may be solved in different ways: Thus, for a weak non-
equilibrium or for a strong nonequilibrium, the split of
the Boltzmann equation leads to different equation sys-
tems, and the results obtained in each case for transport
properties are obviously different.

In a second part, the Boltzmann equation is solved in
the case of strong vibrational nonequilibrium for which
the vibrational relaxation time including translation-
vibration and vibration-vibration transitions is of the or-
der of the reference flow time. Thus a strong-
nonequilibrium (SNE) method is developed and, using
Mason and Monchick type approximations, the transport
coefficients expressions are given in explicit form, i.e., as
functions of various macroscopic quantities, in principle
easy to obtain by computation or experiment.

In a third part, an alternative method of solving the
Boltzmann equation, derived from the previous SNE
method is presented. Since weak-nonequilibrium (WNE)
and SNE methods do not match in near-equilibrium
zones, it is necessary to build up a method which will be
able to describe flows in a weak nonequilibrium as well as
in a strong one: This is called the matching method.
Calculations are similar to those of the second part. Us-
ing Mason and Monchick approximations, and the
harmonic-oscillator model, the transport coefficients are
also expressed in terms of macroscopic quantities.

Finally, the transport terms previously established are
computed in a temperature range corresponding to the
assumed validity of the starting hypotheses and for two
binary diatomic gas mixtures (N,-H,, N,-O,). The behav-
ior of these coefficients is examined and discussed, and
comparisons with other approximate formulas given by
various authors [ 12—14] are also presented.
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II. GENERAL CONSIDERATIONS
ON THE BOLTZMANN EQUATION
AND THE CHAPMAN-ENSKOG METHOD

The flow of a mixture of two diatomic gases (p and g),
each possessing one rotational and one vibrational mode
is considered. The collisions are assumed to be binary
and the chemistry frozen. The quantum numbers i =i,,i,
correspond to particular rotation i, and vibration i, lev-
els.

Physical considerations allow us to classify the col-
lisions into the following two groups (I and II). Col-
lisions I (the most probable): T-T collisions (elastic ones,
translation-translation  exchanges), 7T-R  collisions
(translation-rotation exchanges), and V-V, collisions (res-
onant vibration-vibration collisions between two mole-
cules of the same species: p-p and g-g); and collisions II
(the less probable): T-V collisions (translation-vibration
exchanges) and V-V collisions (vibration-vibration col-
lisions between molecules of different species: p-q and g-
p). The main problem in the theory of transport phenom-
ena is the determination of the local distribution function
f,-p(v,-p,r,t), where i, denotes the quantum state of the p

molecules and f; the probability density of the p mole-
P

cules in the ith quantum state. The distribution function
is to be determined by solving the Boltzmann equation; in
the present analysis, the resolution of the Boltzmann
equation is carried out by a generalized Chapman-Enskog
method. v is the molecular velocity, r the general spatial
coordinate, and ¢ the time.

Thus the Boltzmann equation for the p component, in
the absence of external forces, may be written

dfip
dt

The rate of change of f i, is only due to collisions. Then,

=J,=J,,+J, - @.1)

for a binary mixture, the collisional term J, can be
separated into two terms: the first one, J,,, is the col-
lisional term characteristic of the collisions between two
molecules p; and the second one, J,,, is the collisional
term characteristic of the collisions between molecules p
and molecules g. With the hypothesis of the reversibility

of collisions, one has

= kp |
= %1 f Uipf o= Lo ip 8ip jpLip 4 dc)y
I Ky

(2.2)

Jog=Ip= 2 f Fipfia—FipSia)8ip quil;pjt;qdﬂ dejg

ikl
(2.3)

where g is the relative velocity, I the differential collision
cross section, () the scattering diffusion solid angle, and ¢
the velocity (v—u). i,j are the quantum numbers before
collision and A,/ after.

Now, considering the previous classification of col-
lisions, the Boltzmann equation may be written under the
following nondimensional form:

dfy, 1 1
Y= Jf‘p““‘-’i‘rp’

dr —6; n 2.4)
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where

J* — J ¥ + *
I JIFP JIP‘]

P

is the collisional term of type I,

Th =Th, +Ih
pPq

14 0,
is the collisional term of type II, and

_ T i
=—, eg=—
0 I

0 ’

where 7 is a relaxation time and 6 a reference flow time.
Several cases will be analyzed with regard to the rela-

tive or effective order of magnitude of the nondimension-

al numbers €] and €;;. However, physical arguments will

allow us to reduce the number of considered cases. (i)

Type-I collisions are the most probable. Then

€ <<€y -

(ii) In a collisional or continuum regime, because of the
efficiency of type-I collisions, one has

g=e<x<l1.

Thus the problem is reduced to three possible distinct
cases: the equilibrium case ¢;=€ <<€, <<1, the non-
equilibrium case €;=€ <<ep=1, and the frozen case
=<1 K¢

The Chapman-Enskog method consists in expanding
fi in a series of the smallest parameter. Stopping at first

p
order, we have

— £%0 1 — ;%0
fi:_ f: +€f1: _fi: (1+6¢ip) )

where @ is a perturbation term.

Thus, starting from (2.4) and identifying the terms of

the same order, the following systems are deduced. For
the equilibrium case df}j /dt =(1 /e)(Ji“p +Ji"1p ),

J?P +J9 =0, zeroth order |— |, 2.5
P
0
1

d—t”zJ{p +J}1p, first order . (2.6)

For the nonequilibrium case df};, /dt =(1/¢€)J f‘p +J I*Ip,

J(I’p =0, zeroth order S 2.7)

df? 1
[ 0
at JIp +J"p , first order .
For the frozen case, the influence of type-II collisions (vi-
brational exchanges) does not appear at the zeroth and
first orders and will not be treated here, the rotational
mode being in equilibrium.
The zeroth-order equations (2.5) and (2.7) give the
zeroth-order solution f};. In the first case (2.5), f,-(; is

(2.8)

defined at one single temperature T (translation-rotation-
vibration temperature). For the second case (2.7), the vi-
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brational nonequilibrium appears in the Boltzmann dis-

tribution (density of p molecules on the i,th level). In this

case, f 0 is defined with two different temperatures, i.e.,
P

1
the translation-rotation temperature T'=1T,,, and the vi-
brational temperature of the p species T,,. Of course this
is the same for f;, and for the v1brat10na1 temperature
T,,- The existence of this nonequilibrium (temperatures
T,, and T,,) results from the fact that the resonant
vibration-vibration collisions between two molecules p (or
q) are included in type-I collisions. Thus, this taken into
account, compared with the equilibrium case, gives a
specific collisional invariant €,, (or €;, ), the vibrational

energy of p (or g) molecules on the ith (or jth) level. At
this order, the macroscopic conservation equations are
the Euler equations; in the second (nonequilibrium) case
they are completed by two relaxation equations for the
vibrational energies or vibrational temperatures 7, and
T,,-

The first-order equations (2.6) and (2.8) allow us to ob-
tain a formulation of the first-order solution f!. i, In both

cases f; characterizes a nonequilibrium reglme which is

weak, and therefore allows linearization. Thus the ex-
pressions obtained for the transport terms, which derive
from a first-order calculation, correspond in the “equilib-
rium” case to a weak-nonequilibrium and in the “non-
equilibrium” case to a strong-nonequilibrium. At this or-
der, the conservation equations are the Navier-Stokes
equations, also completed, for the SNE case, by two re-
laxation equations.

The WNE case has been already studied by various au-
thors [4,5,7]. For each transport term, they give the ex-
act expressions in the form of determinant ratios. Thus
only the SNE case is developed here, for a binary mixture
in vibrational nonequilibrium.

III. THE SNE CASE

As already noted, the knowledge of transport proper-
ties requires calculations at the first order. So, in a first
part, the zeroth-order equation (2.7) is solved, in order to
determine the zeroth-order solution f,~°. Then, in a

second part, using the zeroth-order result, the first-order
equation (2.8) is developed and the expressions of the
transport terms may be obtained. Thus the analyzed sys-
tem is presented in Eqgs. (2.7) and (2.8). The collision re-
versibility hypothesis enables one to write the collisional
terms under the following form:

B =3 [UQrha—ros e sl ifDdQde;, , (3.1)
k1

I, =3 f(f/?pflq —Fo S8 1 (IdQ dcy,
Pq

Jrk, 1
(3.2
E f (fkpflq +fkpflq flpqu fzpf]q
ok,
X8y I 8(DdQdc, , (3.3)

where I(I) and I(II) are, respectively, the cross sections of
type I and II.
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A. Zeroth-order solution

From the zeroth-order equation (2.7), J ? =0, it is easi-
P
ly shown that

m 32 m C2
0 — p ___p7ip
Iy =M Sk | | e
Eirp )
8, P | "% |**P | T kT,
X , (3.4)
Eivp
2 gu' exp z exp - kT
i, T, i’vp vp

where n is the molecular number density, u the macro-
scopic velocity, m the molecular mass, k the Boltzmann
constant, g the statistical weight, and ¢ the internal ener-
gy. The macroscopic quantities, n,, T, T,,, and u are
defined with fi(;; they can be found by solving the Euler
equations, to which the following vibrational relaxation
equation has to be added:

DE
" Dt

zsw fJII de; (3.5)

where E, is the mean vibrational energy per molecule.

A Maxwell-Boltzmann distribution holds for the
translational and rotational mode, respectively, at the
translation-rotation temperature 7. But, contrarily to
the result obtained by a WNE method, a Boltzmann dis-
tribution at the vibrational temperature T, for the con-
sidered species (T,, for f,, and T,, for f;) appears,
representing a nonequilibrium for the zeroth-order solu-
tion.

B. First-order solution — transport terms

1. The first-order solution

f! is obtained from the following equation:
P

df’z 1
T _J(I)Ip :JIP

ar (2.8")

Because of the expansion of f; in a series of a small pa-
P

rameter ¢, linear calculation methods may be used for
solving Eq. (2.8’). Thus, taking into account the form of
the known terms d f,-(; /dt and ?i, which are deduced from

fP (3.4), the perturbation term ¢; , which appears in the
P
Ji term, can be written under the form
P

_ dlnT = Ju d-u
; =A;¢c; - +B; c; ¢; :— L —
¢)‘p lpclp ar Blpclpclp ar +Dlp ar
BlnTup
+F; c; - +G +H, i) -dp (3.6)
»'»  Or
(Fisa nondivergent symmetrical tensor), where X,, = 4,,,

By, D, Fy, G,p, and H,;,, are unknown scalar functlons
ofr, t, » Cis and g, v, In contrast to the WNE method, the
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fourth and fifth terms are due to the nonequilibrium. The
last term is due to the mixture,

J |
dp=-2 |2
P ar | n

np, iy

n nm

d1nP
ar

where P is the hydrostatic pressure.

At this level, considering the gradients to which these
coefficients are connected, it may be anticipated that the
coefficients A4,,, B;,, Dy, F,, G;,, and H,, will, respec-
tively, participate in the expressions of translational and
rotational thermal conductivity, shear viscosity, bulk
viscosity, vibrational thermal conductivity, pressure term
(relaxation pressure), and mass-diffusion coefficient. The
principle of calculation consists in developing these
coefficients on the basis of the eigenfunctions of the in-
tegral operator J }p, which is generally unknown for a

realistic potential interaction. However, in the case of a
Maxwellian intermolecular potential these eigenfunctions
may be identified: They form an orthogonal basis [15].
These functions are expressed in terms of Sonine-
Laguerre polynomials for the translational mode, and by
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extrapolation, in terms of Wang-Chang and Uhlenbeck
polynomials for the internal modes [7]. Thus the
coefficients X;,= 4,,, B;,, D, F;,, G;,, and H;, are ex-
panded on this basis,

1

j— r
Xip - 2 X pmns \l’pmns ’
m,n,s =0
where  x,,,, do not depend on velocity

(x=a,b,d,f,g,h). V,,, constitute a complete basis of
orthogonal polynomials previously defined (translation
and internal modes),

2
. gm mpcip " Sirp z':iup
pmns ==\ g |0 kT [T KT, |
P

where S are the Sonine-Laguerre polynomials and P}
the0 Wang-Chang and Uhlenbeck ones. Substituting
dfip /dt and 2 (3.6) into (2.8'), the following systems,

giving, respectively, the expression of 4 ip>» Bip» Dip, Fy,
G;,, and H,,, are obtained:

(3.10)

5 _
m,c; e, —E (T)

. _ pri, _i ir, T, o
e = e ~2 7w e, fi, »

° m.c: C;
1B e l= |-t |r0
JIP[BlpCtpctp] kT ip ’

) _
: —E
RTINS b 0 OB e O e
pr P 3 (2 2kT C, kT c,’’
1 Eiup_Eup(Tup) 0
JIP [Fipcip]— kT, czpfzp ’
P
, —
1 mpC,» 3 Eir —Er (T)

JUIG, 1= |— Og, P24 F £
1,10, TnC,,% ) | 2k ~ 2 kT
ViH ¢ 1="c. £0
JIP [Hlpclp] np czpflp ’
with

SO(eiUF)= ESIUfJ?Idc,- .

The brackets [ ] represent a collisional balance,
1 — 7l 1
JEIX =01 (X, 1+T) X ]

=gl —X. —X.
T (X X, —X; =X )

1 — X — .
+J1pq(ka+X,q le qu),

and C is the specific heat (¢, r, v represent translation, ro-
tation, and vibration, respectively).
As the macroscopic quantities are defined with the

(3.11)

(3.12)

—
zeroth-order solution f?, four conditions are imposed on

the coefficients. They come from the density definition,
2 ff'g(Pipdcipz():deOO:ngOO:o , (3.13)

the mass velocity definition,

% m, ; ff,-(; q;ipvipdcip———o

=°apooo=aq000:fpooo=fqooo:0

p

the translation-rotation temperature definition,



0 1 2 . .
33 [ 2@ (smycl +e, )de, =0

=2, _%kdp100+crp( T)d 010} =0
P
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2 ffi(;‘PipEivpdcip=0=dp001=gp001=0 >
' (3.16)
E ff;: ‘ijejuddch=0=dq001=gq001=0 .

The above constraints on a, d, f, g, and A constitute only
sufficient conditions.

= —2k +C, (T =0, . g ] o
% "yt = 3k8p100 ’p( 8010} (3.13) Expanding the X, coefficients and taking into account
the above conditions, the perturbation term ¢; is written
P
and the vibrational temperatures definition, as follows:
N}
5 mpcifn Eirp E’P(T) ) Evp(Tup) a]nTb = gl_l_
Pip= 9100 | 5 T kT +a010 kT +a,001 kT, Cir " ar p000Cip Cip* 3
3 pC,%, Ejr ——rp(T) —}-—d eiup—Eup(Tup) a u
F 1400 |5 T |00 kT pOO1 kT,, ar
5 mpc,-?, sirp_Erp(T) siup_Evp(Tvp ) alnTvp
+ | fpi00 5T kT +fpo10 T + fpoot kT, C» 3r
3 mpc,-f, EirP Erp(T) €y _Evp(Tvp)
+8&p100 5 kT 8,010 xT +&p001 kT,
2 e, —E (T) €y —E,,(T,y,)
5 mp cip ir, rp v vp '~ op
+ 100 2 kT +hy010 kT +h001 ‘ kT, cpdp
[
where E is the equilibrium internal energy. P=nkT , (3.18)

2. Transport terms

In this way, through i, or its coefficients (a,b, f,. . .),

all transport terms are expressed in terms of the collision-
al integrals. The stress tensor is

2
?znij‘}'z npmp prOO
P
kT | D
+n,m, ——q— bq(m]—f;
—3-u
_—(npdploo+nqdq100)kTI-a}—

'(”pgploo"f‘nng]oo)kTT ) (3.17)

where 7 is the unit tensor.
In this expression, one may distinguish a term of hy-
drostatic pressure

a term of shear viscosity, with the shear viscosity
coefficient,

kT |’

— (3.19)

p=—2n,m, b)000
P

and a term of bulk viscosity due to the fact that, at zeroth
order, the rotational mode is assumed in equilibrium.
The corresponding coefficient is related to the delay that
the rotational mode takes to relax, as compared to the
translational mode,

n:sznpdplo() ’ (3.20)
p

and a term of relaxation pressure which comes also from
the equilibrium assumption for the rotational mode at the
zeroth order,

Pr=—kT 3 n,8,100 - (3.21)
¥4
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The heat flux characterizes three types of energy
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The rotational heat flux is

diffusion: translation, rotation, and vibration. The q=4q, +q,
translational heat flux is ! ST
- kT olnT 4y,
qt=qu+qzq %n}’ mp Tcrp apOlO or +prlO or
2 dInT,
_ kT dlnT i
- _%§ My \ | [%p100T g +fp]00T thp010d P
+E, (Dhyondp | - (3.23)
+(hy100— Pp000)dP | - (3.22)
p100- Tp000 The vibrational heat flux is
J
olnT
_ kT dlnT Yp
q, =~ % np Tn';' TvpCUP( TUP ) apOOl ar +fP001 ar +hp001dp +Eup( Tup )hpoOOdp . (3.24)
f
The corresponding thermal conductivities are the follow- with
ing: For translation, 5
n? mpymy
a P po00=— D,, ,
h, =23 nym, [ KL || 20 | bp, KT
)4 2 mim
2 f h 000= — n- 49 P
q pg
Ay =inpm, | ST\ ] (3.25) Py KT
°p P ‘p where D, is the mass diffusion coefficient.
5 kT 2 £ 100 All these transport terms—stress tensor, heat flux, and
A,T =3n,m, P T ; diffusion velocity—appear in the conservation equations
% 9 Vg of macroscopic quantities which are, actually, the
for rotation, Navier-Stokes equations completed by vibrational relaxa-
tion equations giving 7,, and T, (E,, and E,;). For the
kT species,
)"rTz —2n, o [Crp(apO]O)] ) psp
P ’ DE 3-q
k f n LA vp=2£- fJO dc, +S ¢ le dc;
A, =—n kT TC, Zpoi0 , (3.26) ? Dt or i 1,5, = =i,
T, P m, P T,
P 4
(3.30)
_ kT Sq010 . . .
)\’rT I A Tcrq T ) Referring to previous calculations [18,19] the second
] 9 Yq term of the second member of (3.30) may be neglected.
and for vibration, The r.esolution of the system of Eqs. (3..7)—(3..12) yields
expressions for the transport term coefficients, i.e., for a,
kT 5001 b, d, f, g, and h. However, these coefficients are ex-
)‘ur‘_‘ —xn m Tvpcup( Tup) T ’ pressed as combinations of type-I collision integrals, ex-
4 P cept for the coefficient g which depends also on type-II
kT collision integrals. As it is very difficult to evaluate accu-
A, ==n, |— |[C, (T, N fpo01)] > (3.27) rately the differential collision cross sections, particularly
T m 3 P g . . . . p .
4 L2 the inelastic ones, the collision integral calculations
kT represent a formidable task. Therefore, it may be neces-
}\UT ="ng | [qu( Tuq N fq001)] - sary to express transport terms (or the a, b, d, f, g, and h
Ki a coefficients) as functions of known or measurable macro-
The diffusion velocity is scopic quantities, so as to make these quantities easier to
use in numerical calculations. Thus, generalizing approx-
_ kT alnT alnTvp imations of the Mason and Monchick type, which consid-
Cip=;— 4po00 ™51 + fpo00 or thyo00dp | - (3.28) er the inelastic contribution as a perturbation, it may be
? shown that the transport terms for a binary mixture, as
Neglecting thermal diffusion [16,17], we find given in the Appendix, are expressed principally as func-
kT tions of shear viscosities, diffusion coefficients, and rota-
S =—h,000dP > (3.29)  tional relaxation times of the gases constituting the mix-
» m

p

ture.
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The shear viscosity (A1) and translational thermal con-
ductivity (A4) in binary mixtures depend on the shear
viscosities of pure gases (u,,u,), the binary diffusion
coefficient (D,, ), and the “fictitious” viscosity [21] (i, ).
These terms are weakly influenced by the internal modes
since they characterize momentum exchanges and
translational energy diffusion, respectively. Thus, at this
level of approximation, these coefficients are identical to
their WNE expressions. Comparison with approximate
formulas given by various authors [5,12,13,20] shows
that, generally, these approximations give the shear
viscosity and the translational thermal conductivity as
functions of shear viscosities of pure gases only [12,13,20]
or of shear viscosities of pure gases and binary diffusion
coefficient [5]. None of them take into account the
dependence on the coupling term called here the ‘““ficti-
tious” viscosity.

Contrary to the vibrational mode, there is no equation
describing the relaxation of the rotational mode: The
bulk viscosity (A2) ‘“‘compensates” this absence and is
typical of this particular nonequilibrium process, as-
sumed small. That is the reason why the bulk viscosity 7
is connected to the different phenomenological rotational
relaxation times.

The relaxation pressure Py (A3) is due to the vibration-
al nonequilibrium, combined with an assumed small rota-
tional nonequilibrium, and is added to the hydrostatic
pressure P. With the harmonic-oscillator hypothesis, Py
depends on the relaxation of the two internal modes (7,
and 7,). Typically, for a pure gas [18], Py is of the order
of the ratio of the rotational and vibrational relaxation
times: 7,/7,.

The thermal conductivities for the rotational (AS5) and
vibrational modes (A6) and (A7) depend on the binary
diffusion coefficient and on the self-diffusion coefficients.
At the first order of the Mason and Monchick approxi-
mations [8], the A, expression is similar to that given by
Mason, Monchick, and Pereira [22]. Through the vibra-
tional temperature T, A, depends strongly on the degree
of nonequilibrium.

It may be noted that results obtained by the SNE
method do not tend properly to the correct near equilibri-
um behavior. Then, as for pure gases [23], these results
cannot be applied to gas flows in weak nonequilibrium;
these flows must therefore be treated by a WNE method.
In order to avoid this problem, a general method valid,
whatever the degree of nonequilibrium, is presented in
the next part.

IV. GENERAL METHOD WNE/SNE

Hereafter, a physical deductive reasoning is used rath-
er than a rigorous mathematical treatment. The problem
comes from the cutoff of the Boltzmann equation which
is different for the WNE or SNE method. Thus

WNE method SNE method
Zeroth order L] J9 +J% =0 J? =0
€ P 4 14
dfe afe
: — 71 1 — 71 0
First order O le +J",, a J',, +J",,
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At the zeroth order, the matching between both methods
exists (when T, —T). At the first order, the matching be-
tween WNE and SNE methods does not exist: For the
WNE case, the collision integrals or transport terms de-
pend on collisions of type I and II. For the SNE case, ex-
cept for the J %p term, which participates only in the re-

laxation pressure expression, the collision integrals and
therefore the transport terms depend on collisions of type
I exclusively. Alexeev [24] and Kogan [25] have brought
a mathematical solution to this problem. Thus, the addi-
tion of the term J Illp, to the SNE first-order equation,

which takes into account the relaxation of type-II col-
lisions, is sufficient to realize the matching.
A new system is then obtained,

J?p =(Q, zeroth order |— |, 4.1)
df i‘;
P =J}p +J§’1p +J}1p, first order , (4.2)
where

Jin =Ju_+Ii -
1, 1, I,

The SNE case is recovered when J }I,, —0, and the WNE
case when J ?Ip —0,

Th, =3 JURIL IS =120 =1L )

Jki1
k 1
Xg; ;1,77 (IhdQdc, , 4.3)
plp pIp 14
1 — 0 £1 1 £0 _ g0 rl _ £1¢0
M, =3 SR +FE S =121 = FL )
Xg,  I,”1(IDdQ dc, (4.4)
VLAY Jg * )

As in the case of a pure gas, only the self-adjoint part of
the J Illp term is retained, the other part being smaller by

an order of magnitude [25]. Thus
JL =S 4 yam
I, 1, 1,
:JS(1)+JS(1)+JA(1)+JA(1)
HPP HP‘] IIPP HPQ ’

where J{{ 1

P
order [25]. J5'V is the self-adjoint part which is to be re-
P

) is the non-self-adjoint part which is of higher

tained at this order. Then the system becomes

J9 =0, zeroth order l% , .5)
P
0
1

?"— =J11p +J?Ip +J,SI‘p D first order , (4.6)

with
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S(1) — yS(1) S(1) — 0 £0 4 £0 £0 o, —
an Jpr +anq ffkpflp flpfjp)(¢kp fPIP

L
2

% 3 SRR+ er +or —

The eigenvalues of J§! are the collisional invariants rel-

ative to type-II collisions only, i.e., mass, momentum,
and total energy.

As in the previous case (SNE), the determination of the
transport terms requires us to solve successively (4.5) and
(4.6). Since this general method appears like a correction
to the SNE method, calculations and physical reasonings
are the same as in the SNE case. However, the addition
of the J h term brings modifications to the perturbation

or to its coefficients Ay, By, Dy, Fiy, G
Hy; now, the transport terms depend on the collision in-
tegrals of type I and type II. Because of the lack of infor-
mation about collision cross sections for the inelastic col-

term 2 ip» and
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®i, (pjp)g, jI “r "(II)dec

P, ", )g, ]I “r "(II)dec

f

lisions, it seems necessary, like in the SNE case, to relate
the collision integrals of type I and Il to macroscopic
quanutities.

For collision integrals of type I, Mason and Monchick
type approximations are similar to the previous SNE
method. For collision integrals of type II, which charac-
terize the main vibrational energy exchanges, it may be
shown that the use of the harmonic-oscillator model leads
to relations between type-II collision integrals and vibra-
tional relaxation times 77 and 7""

This may be obtained from a phenomenological equa-
tion of the Landau-Teller type for the vibrational energy,
established using the harmonic-oscillator model [26],

DE,(T,)  E,(T)—F (T,) E,(T)—E,(T,)
LA R P r ' +xq P - p " Yp
P VT
Dt Trp Tpq
©,-0,
X, Euq( IE, (T H—hv lexp T ——Evp(TUp)[qu( )thv,]
+ A i , (4.8)
C Tpq
[
where 4 is the Planck constant, v the vibration frequency, T[ZV_TZ,V is the relaxation time of vibration-vibration

®, the vibrational characteristic temperature, and x the
molar fraction. Tpp is the relaxation time of translation-
vibration transitions between p molecules,

1

ST=
PP ®
po Pit]—ex Yp
2 Py P p T
[',/qT is the relaxation time of translation-vibration tran-

sitions between p and g molecules,
1

VT_
Tpg — @U .
ny 0, p” q_f 1—exp -
j
|
i—1j
3 K ; [exp —vpplg; P (dQady,
i,j, k1
0, )
L J
+CXP T 1— TU jEkIK’ j fexp( ,},p)YSIl:J Jp
P b

transitions between p and g molecules,

®, 0,
exp
Vv _ 1 T
V=
i on ‘11 n P19
P1 90 Py 9,

(detailed balancing), where Q4% and QJ7 are collision fre-
quencies. From the vibrational relaxatlon equation writ-
ten under the form (3.5), the following relations may be

deduced by identification of the similar terms of equation
(4.8):

(INdQdy,
2
1 |mm, kT”p CUP(TUP) 9 1
2n | kT hv, k 0, 7-;;7" ’

P
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Eleth fexp ~Vh 1/17‘11151 (IDdQdy,,
L]y
+ v 1L K, bt
P77 T, Jzkl ip j, fexp( Yha )qul ‘(maa A7 pq
P I,
2
=_1_ 27Tm, kTvp Cup(TuP) Qp 1
4n kT hv, k Q”p ;;T ’
283 g —1j +1
,,,Esz’ plep(=r2 i (maaay,,
® —0
Yp Vg T 3 jo+1j
+exp T 1— exp T 1— T 2 K, g fexp ypq I” . (II)deypq
Up Uq 1] ,
1 | 2mm, kTvp 2CUF(TUP) Q 1
4n | kT hv, k va B
where Q is a partition function, m, the reduced mass, y2=(m /2kT)g?, and
& —sju
&, —Sjr ex 2 2
» » P
— girpgjrpe)(p kT kT”p
i 2 7
" i, Eiv,
lzr gll‘ exp kT lzv exp kT
14 p
sirp_ejr exp | — Eiup . Sjvq
3 &ir 8jr, €XP kT kTup kTvq
i 1
o i, ] e, —eu, —e5,
S g,e0 |57 || [ Zanee |57t || [Zew |5t ||| S e |57
i, Ty ity z,up v, Jrvg v

Now, all collision integrals, or the A,p, B,p, D,p, Fi, G,p,
and H,p coefficients, are expressed as combinations of
macroscopic quantities, which are the same as in the pre-
vious SNE case, but which include also the vibrational re-
laxation times 7*7 and 7¥¥. Thus, the expressions of the
transport terms may be obtained and the nonequilibrium
appears explicitly. Buvt, as previously, if the inelastic con-
tributions are assumed small, it may be shown that only
the vibrational thermal conductivity is strongly affected
by the nonequilibrium.

The shear viscosity (A1) and the translational thermal
conductivity (A4) are formally the same (Appendix): In
fact, the contribution of the terms depending on the
type-II collisions is negligible [18], following the approxi-
mations of Mason and Monchick.

The bulk viscosity (A2) and the relaxation pressure
(A3) both have an expression identical to the SNE case.
This is due to the fact that, contrary to the rotational
mode, the vibrational relaxation is entirely described by
zeroth and first vibrational relaxation equations. Thus at

r

the first order it cannot be possible to find a bulk viscosity
dependent on vibrational relaxation, as in the WNE case,
since this process is taken into account in the vibrational
relaxation equation.

The rotational thermal conductivity (AS) is not strong-
ly influenced by the vibrational nonequilibrium. In this
matching case, as for the other thermal conductivities,
the “cross” thermal conductivities, i.e., A,T , A,T , k,T

v

v v

b

P
L,T , and }‘”r are nonzero, contrary to the SNE case.

v

q
However, they remain negligible as compared to A,T, )»,T,
A, ,and AUT

oy , respectively.

Tphe vibratiqonal thermal conductivity (A8) emphasizes
the vibrational mode relaxation phenomenon. Its expres-
sion is given in the Appendix and presents an explicit
dependence on vibrational relaxation. If the relaxation is
very slow, i.e., 7,— o, the vibrational thermal conduc-
tivity is identical to the SNE case. If the relaxation is
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very fast, the vibrational conductivity )‘"r , to be added to

v

the “‘cross” vibrational conductivity AUT, is identical to
the WNE case. Thus the matching is realized.

V. APPLICATIONS

The subject of this last part is to apply the theoretical
results to real mixtures and to describe the evolution of
the transport coefficients in a nonequilibrium zone. Fur-
thermore, each transport term is successively examined
and compared, whenever possible, with approximations
given by different authors [12—-14] or with experimental
data.

In a first application, a binary mixture is chosen so that
the transport properties of both components are
significantly different. Thus this test mixtures consists in
nitrogen and hydrogen, remembering that BN, is approxi-

mately twice greater than B, and that the diffusivity of

N, is ten times lower than that of H,. Results for shear
viscosity and thermal conductivity are then compared
with experimental data given in Ref. [5], and also with
approximate formulas [12-14].

In a second application, a more classical—and more
often used—mixture is analyzed, that is 79% nitrogen
and 21% oxygen. For this mixture, the remaining trans-
port terms as well as nondimensional numbers are also
computed, yielding an estimation of the relative impor-
tance of these terms in the temperature range for which
present results may be applied.

A. Shear viscosity and thermal conductivity
for a N,-H, mixture

Computation of the transport coefficients requires the
knowledge of macroscopic quantities in terms of which
they have been expressed. Each macroscopic quantity
depends on collision integrals which may be determined.

For the present mixture (N,-H,), the Neufeld, Janzen,
and Aziz [27] modeling is chosen. Starting from the nu-
merical tables given in Ref. [5], these authors give rela-
tions for the reduced collisional integrals, and express
them as functions of relations depending only on the
translation-rotation temperature 7 since €/k and o, the
parameters of the potential function [4,5], are fixed, in a
temperature range, for each type of interaction. Thus the
modeling of the collision integrals for the pairs N,-N,,
H,-H,, and N,-H, allows the computation of macroscop-
ic quantities and finally of the transport terms for the an-
alyzed mixture.

1. Shear viscosity ”(“Nz’f‘ﬂz’”’;"z”z’DNz”z)

The results for the shear viscosity determined by (A1)
and by the Wilke [12] approximation are presented and
compared in Table I and Fig. 1. In this case, the interac-
tion parameters €/k and o [4,5] have been taken so that
the corresponding values of viscosity for the pure gases
are the closest possible to experimental values.

Thus, for more than 39.0% of H,, the theoretical result
(A1) is closer to experimental values [5] than the Wilke
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TABLE 1. Shear viscosity in a N,-H, mixture (10® kg/ms) at
273.16 K.

H, (mol %) (A1) Wilke [12] Expt. [5]

0 1666 1666 1688
15.9 1645 1660 1670
39.0 1587 1630 1600
65.2 1440 1520 1449
79.5 1284 1376 1285
80.3 1273 1364 1274
100 846 846 853

[12] approximation. The relative error given by Eq. (A1)
does not exceed 1.5%, whereas that of the Wilke approxi-
mation reaches 7%. Calculations for a pure gas give a
relative error of 1.3% and 0.8%, respectively, for nitro-
gen and hydrogen collision integrals; this discrepancy
may be due to the modeling which has been adopted, or
to possible experimental errors. If the potential function
parameters (€/k,o) are chosen to coincide with the ex-
perimental values for pure gases, the relative error be-
comes lower than 1% within the whole range of concen-
trations for Eq. (A1) and reaches 8% for the Wilke ap-
proximation.

In Fig. 1, the evolution of the shear viscosities as func-
tions of temperature, determined by Eq. (A1), compared
to the Wilke approximation for a 80% H,-20 mol % N,
mixture, is represented. The relative difference between
Eq. (Al) and the Wilke approximation is about 7%.
Referring to Table I, it seems that, for this mixture, the
Wilke formula overestimates the values of shear viscosity.

2. Thermal conductivity
A'([l'Nz)l“'liz7["1\,'21127DN2112’DN2N271)112112)B1:2112)

In order to compare the present results with experi-
mental values, we compute the total thermal conductivi-
ty. As in V A1, the Neufeld and al. modeling [27] for
collision integrals is used but the potential parameters
€/k and o derive here from a fitting of the second virial
coefficients [4]. The translation thermal conductivity is
calculated, first with Eq. (A4) deduced from the theoreti-
cal analysis, at the quasifrozen approximation, and then

7.0
6.0
_
2 5.0
B 40-
Y4
‘S 3.04
y—
N
3 2.0-
a:(A.l
1.0 — : Wilke approximation
0.0 ; . .
0.0 1000.0 2000.0 3000.0

Temperature (K)

FIG. 1. Shear viscosity in a N,-H, mixture: X, =0.8.
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with Wilke [14] and Yos [13] approximations. The inter-
nal (rotation-vibration) thermal conductivities, also ex-
pressed with the quasifrozen hypothesis, are then added
to (A4) and to Yos relations; on the other hand, only the
vibrational thermal conductivity—though its contribu-
tion is weak —is added to the Wilke approximation, since
this one includes the rotational contribution through a
factor called the Eucken factor [8].

The determination of the nondimensional term B, is
carried out with an equation giving B, as a function of
the diffusion coefficient [17,22] (or temperature): This
value of B, is nearly equal to unity [8]. The vibrational
specific heat necessary for the vibrational thermal con-
ductivity computation is determined by the Einstein rela-
tion, in which the vibrational characteristic temperature
for N, and H, is taken from Ref. [28].

In Table II the different numerical values of the total
thermal conductivity are reported. The last column giv-
ing experimental results is, like the shear viscosity, taken
from Ref. [5]. Thus, whatever the mixture concentration,
the thermal conductivity determined with Eq. (A4) is
closer to experimental values than the approximate for-
mulas [13,14]. It may be also noted that, in spite of the
simplicity of the Wilke and Yos thermal conductivity ex-
pressions, these approximate formulas give, however, a
good estimation of the thermal conductivity values for a
binary mixture. The maximum of the relative error is for
65.2% H,, i.e., for Eq. (A4), Yos and Wilke, the relative
error is, respectively, 8.6%, 10.3%, and 12.9%.

In Fig. 2 the evolution of the thermal conductivity is
represented as a function of temperature: It is computed
with Wilke [14] and Eq. (A4) for a mixture of 65.2% H,.
Like for the shear viscosity the relative difference be-
tween these formulas is quasiconstant and about 4%.

B. Transport terms for a N,-O, mixture

As in the previous case, the computation of the trans-
port coefficients requires a modeling of the collision in-
tegrals. For this mixture, the Aubreton [29] modeling is
chosen, at the level of the first Mason and Monchick ap-
proximation (quasifrozen approximation). The collision
integrals for the pairs O,-O,, N,-N,, and O,-N, are then
also expressed in terms of relations depending on the
translation-rotation temperature. Thus the determina-
tion of the transport terms is possible, since the collision
integrals and, consequently, the macroscopic quantities,
are computable. The mixture percentage is that of
simplified air: 21% of oxygen and 79% of nitrogen.

TABLE II. Thermal conductivity in a N,-H, mixture (10°
W/mK) at 273.16 K.

H, (mol %) (A4) Yos [13] Wilke [12] Expt. [5]

0 2407 2407 2228 2301

15.9 3476 3501 3518 3347
39.0 5488 5564 5794 5314
65.2 8817 8954 9170 8117
79.5 11412 11558 11499 10544
80.3 11580 11725 11640 10753

100 16 849 16 849 15553 16903

8.0
-~ 6.0
Y]
§ 4.0
o 3.0
-
(ﬁ 2.0
1.0 a :(A.4)
— : Wilke approximation
0.0 T T 1
0.0 1000.0 2000.0 3000.0
Temperature (K)
FIG. 2. Thermal conductivity in a N,-H, mixture:
xu,=0.652.

1. Shear viscosity y.(yNz,;Loz,y.}vzoz,DNzoz)

In Table III, the different shear viscosity calculations
are compared. In the first two columns the shear viscosi-
ty determined with (A1) and Wilke [12] equations are
given. In the last two columns, experimental results
given in Refs. [30,31] are presented as well as results
coming from an “exact” computation [29].

The difference between the Wilke approximation and
present results (A1) for this binary air mixture, for which
the properties of the two components, O, and N,, are
very close, is much weaker than that noted for the mix-
ture N,-H,. In the given temperature range and for a
nonionized binary gas mixture, in which the molecular
masses of the two components are close to each other, the
Wilke approximation is in very good agreement with the
experimental data. The greatest difference with the ex-
perimental values is for 7=1300 K, where one finds
3.3% and 2.5%, respectively, for Eq. (A1) and the Wilke
equation. Furthermore, the relative error, compared to
the “exact” calculations, is below 1% for Eq. (A1) and
about 1.5% for the Wilke approximation.

)

2. Bulk viscosi T T,
u cosity 17(1-,02, ' o,

The computation of the bulk viscosity requires the
knowledge of the rotational relaxation times Tros T

oy ?
2 N,

and T,OZNZ. Using a classical theory, Parker [8] gives a re-

lation for a rotational collisional number Z,, defined as

TABLE III. Shear viscosity in a N,-O, mixture (10° kg/mss).

T (K) (A1) Wilke [12] Expt. [30,31] Aubreton [29]
300 1.834 1.826 1.846 1.843
500 2.692 2.667 2.701 2.704
1000 4.320 4.284 4.244 4.343
1300 5.127 5.088 4.960 5.158

2000 6.793 6.755 6.900 6.840
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Z=" 2 1001
where 7 is the elastic collision time for a rigid sphere =) 9.0
model. 8.0
Following the authors of Refs. [20,32], the bulk viscosi- ‘e 709
ty for a pure gas may be expressed under the form T 6.0
aQ 5.0
2
n= ZH‘T, . = 4.0
25 &  3.0-
But only the bulk viscosity of a pure gas may be deter- 2 2.0 — : Shear YiSCO§1tY
mined by this formula [8] and its evolution for nitrogen > 1.04 g : Bulk viscosity
and oxygen is presented in Fig. 3. In Figs. 4 and 5, a 0.0 - . ,
comparison between the bulk and shear viscosities is also 0.0 1000.0 2000.0 3000.0

presented. It is expected that the evolution of the mix-
ture N,-O, will not be very different.

Like the shear viscosity, the bulk viscosity increases
with temperature. The values of the bulk viscosity in
pure gases of oxygen or nitrogen are almost equal. In the
vicinity of 2500 K, oxygen has a bulk viscosity slightly
greater than this of nitrogen. However, above this tem-
perature, the results are no more significant since a non-
negligible dissociation of oxygen begins for T > 2000 K.

From the comparison between bulk and shear viscosi-
ties of the same gas, as represented in Figs. 4 and 5, it
may be seen that for T'< 1500 K for N, and 7' <2100 K
for O,, the bulk viscosity is smaller than the shear viscos-
ity; but, it is the contrary beyond these temperatures. It
is also noted that n and u are of the same order of magni-
tude, so that the Stokes approximation, which consists of
neglecting the bulk viscosity, is acceptable mainly be-
cause the associated gradients are generally weaker for
this viscosity.

3. Thermal conductivity
Mun 510,51 ,0,Dn,0,Dn,n,:Do,0,: BN ,0,)

Like for the shear viscosity, the macroscopic quantities
appearing in the expression of the translational thermal
conductivity are determined with collision integrals com-
ing from the Aubreton analysis [29]. Thus, in Table IV,
the values of the translation-rotation-vibration thermal
conductivity calculated for the translational thermal con-

1.0~
10.0
8.0
8.0+
7.0+
6.0
6.0
4.0+
3.0
2.0+
1.0+
0.0

n (10° Kg/m s)

—_ 02
o:N2

T 1
0.0 1000.0 2000.0
Temperature (K)

1
3000.0

FIG. 3. Bulk viscosity.

Temperature (K)

FIG. 4. Viscosities for pure oxygen.

ductivity on one hand with Eq. (A4) and on the other
hand with the Wilke [12] approximation are listed. Since
the rotational and vibrational thermal conductivities are
computed, in both cases, with the same formulas, the
difference between the two results is obviously due only
to the way in which the translation thermal conductivity
is computed, as previously remarked in the case of the
N,-H, mixture (V A 2).

Contrary to the previous mixture N,-H,, the transla-
tional thermal conductivity computation with the Yos
[13] approximation is not presented here since the numer-
ical values for the thermal conductivity are equal to those
determined by the theoretical equation (A4) (relative er-
ror below 1%). The Wilke approximation, including the
Eucken correction is sometimes closer to “experimental”
values [30,31] and sometimes farther than the present re-
sults, determined with Eq. (A4), which, in turn, are very
close to the values given by the ‘“exact” treatment [29].
One notices a jump of 7% of the relative error, for both
relations, at T=2000 K: This is due to the fact that, in
the present calculations, the reaction conductivity has
not been considered, since the mixture composition
remains constant (frozen chemistry).

1.0
10.0
9.0
8.0+
7.0+
6.0
6.0 -
4.0
3.04
2.0+
1.04
0.0

~— : Shear viscosity
a : Bulk viscosity

Viscosities (105 Kg/m s)

T ] 1
0.0 1000.0 2000.0 3000.0

Temperature (K)

FIG. 5. Viscosities for pure nitrogen.
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TABLE IV. Thermal conductivity in a N,-O, mixture (10?
W/mK).

T (K) (A4) Wilke [12] Refs. [30,31]  Aubreton [29]
300 2.69 2.47 2.63 2.62

500 4.04 3.70 4.04 3.99

700 5.33 4.89 5.23 5.25
1000 7.15 6.59 6.81 7.01
1300 8.83 8.14 8.32 8.72
1600 1.04 9.57 1.06 1.05
2000 1.23 1.13 1.37 1.32

4. Vibrational thermal conductivity
A"’1v2(DNzoz’DNzNz)’}”"oz(D"’zoz’l)ozoz)

Numerical values of the vibrational thermal conduc-
tivity of O, and N, have been computed for the same
mixture O,-N,. The results for )"”T and va are

’0, Ny
represented in Figs. 6 and 7 as functions of 7, Tv0 , and

2
T”N . The dotted curves correspond to the equilibrium

2
vibrational thermal conductivity, T=T, (or T, ).
2 2

From this figure, it may be see that the equilibrium vi-
brational conductivity values are different from the
values of A, in nonequilibrium flows, both in expansion
flows, where T<TUOZ,TUN2, as well as behind shocks,

where T>T, , T,
0, N,
account the nonequilibrium may lead to large errors in
the determination of va and }\'Ur and consequently
U02 UNZ
on the values of the vibrational heat flux. The vibrational
thermal conductivity (A8) determined by the matching
method, has been also computed behind a shock wave at
a Mach number 8, for which the dissociation processes
are negligible, but the vibrational relaxation is important
for O, and N,.
Results obtained for vibrational relaxation times have
been taken from Ref. [26]. A careful observation of the

. Thus, the fact of not taking into

8.09 Tv = 3000 K

7.0 Tv =2000 K
~~ TV = 1500 K
M 8.0
§ 5.0 Tv = 1000 K
= 4.0 Tv=800K
f=)
—
~ 3019 Tv =600 K
<

2.0 Tv =500K

1.04 T

T =T v<T
0.0 T T 1
0.0 1000.0 2000.0 3000.0

Temperature (K)

FIG. 6. Vibrational thermal conductivity for oxygen in air
mixture.

3263
30.04
25.0 Tv =3000K
< Tv = 2000 K
£ 2007 Tv =1500K
3
Py 16.0 1
g Tv = 1000 K
10.0
< Tv=800K
6.0 Tv<T Tv = 600 K
- Tv =500 K
0.0 == T 1
0.0 1000.0 2000.0 3000.0

Temperature (K)

FIG. 7. Vibrational thermal conductivity for nitrogen in air
mixture.

A, results, calculated with (A6) derived from the SNE
method and with (A8) derived from the matching
method, show that the difference between these two cal-
culations is not very significant, except just behind the
shock where T, <<T. In this zone, where the nonequili-
brium is very strong, the Mason and Monchick approxi-
mations are invalid, due to the important effect of vibra-
tional exchanges.

Now, from a practical point of view, it is interesting to
analyze the transport properties through the nondimen-
sional numbers, that is, the frozen Prandtl number of the
mixture Pr,, which appears in the energy equation and
which may be written

pr, =
rf = N
Ay
where
CP/ = Py ;

the frozen specific heat at constant pressure, and
Ap=A,+X, =R, .

The Prandtl number evolution is represented in Fig. 8,
where the solid line represents the Wilke [12] expressions

1.0
B &-——s—a—a—a8—a—8—a
Q
g
- 9%7 — :Wilke approximation
?, for L and A
= D : (A. 1) and (A. 4) for it and A
respectively
00 T T 1
0.0 1000.0 2000.0 3000.0

Temperature (K)
FIG. 8. Prandlt number (air).
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FIG. 9. Lewis number (air).

for the viscosity and translational thermal conductivity.
The square-dotted line represents the result of calculation
using formulas (A1) and (A4), respectively, for u and A,.

For this mixture, 0.69 =< Pr, <0.75. The Wilke ap-
proximation for u and A, leads to greater values for the
Prandtl number. In both cases, Pr r is quasi-independent
of the translation-rotation temperature. The frozen
Lewis number Le, appearing in the energy equation may
be written

PDCp,

Le,=
f
Af

Taking for A, the Wilke approximation (solid line) and
Eq. (A4) (square-dotted line), it may be seen in Fig. 9,
which plots the Lewis number evolution, that Le, in-
creases slightly with the translation-rotation temperature.
Thus the conduction effects become less important than
diffusive effects. The usual approximation Le,=1 is
more justified in the case when the Wilke approximation
for the calculation of A, is used.

The vibrational number F, appears in the nondimen-
sional vibrational relaxation equation (3.32). The ratio

o  15-
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2
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5 1.0

=

=

.2

£ 0.6 — : Wilke approximation for A

>

5 O :(A.4)for A
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»
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FIG. 10. Vibrational number for oxygen in air mixture.
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FIG. 11. Vibrational number for nitrogen in air mixture.

between this number and the Lewis number, as previous-
ly defined, may be related, always in the framework of the
Mason and Monchick approximations (particularly
D,=D), to a vibrational Lewis number. Thus F, may be
written

F o= Lef _ p}‘upcpf
P Le, p,C, (T, 0"

where p is the density. The vibrational number evolution
is represented in Figs. 10 and 11. The solid line
represents F, values calculated with the Wilke approxi-
mation for A,, while the square-dotted line represents F,
values computed using Eq. (A4). For nitrogen, in both
cases, this number increases slightly: 0.99=F,<=1.04
when the Wilke approximation is used for the determina-
tion of A,, and 0.83=F, =0.96 when Eq. (A4) is used.
For oxygen, the same remarks may be made:
1=F,=1.05 when the Wilke approximation is used for
the determination of A,, and O.92§Fp <0.95 when Eq.
(A4) is used. These computations show therefore, that
the use of approximate formulas for the shear viscosity
and translational thermal conductivity may lead to
differences on the numerical values of these terms (about

10%).

VI. CONCLUSIONS

The generalized Chapman-Enskog method for the
analysis of vibrational nonequilibrium regimes of gas
mixtures allows us to derive expressions for the transport
coefficients: shear viscosity, bulk viscosity, and thermal
conductivity, for the translational, rotational, and vibra-
tional modes. The inclusion of vibration-vibration reso-
nant collisions in type-I collisions (the most probable)
leads to nonequilibrium appearing at the zeroth order.
Thus at the first order the nonequilibrium is stronger
(SNE method), by opposition to the classical method
(WNE) in which the zeroth order corresponds to equilib-
rium. All transport coefficients deduced from this
method are expressed in the Appendix, and it is clear that
the vibrational thermal conductivity is the most affected
by the vibrational nonequilibrium.

Such a method (SNE) cannot describe a flow passing
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from a strong to a weak state of nonequilibrium or vice
versa; therefore, as has been developed for pure gases, a
matching method, valid whatever the degree of nonequili-
brium, is presented. Starting from the works of Alexeev
[24] and Kogan [25], it may be shown that the addition of
first-order vibration-vibration and translation-vibration
collision terms allows this matching. The transport
coefficients are then functions of all collisions of types I
and II. The Mason and Monchick assumptions, used also
in the previous SNE method, and the model of harmonic
oscillator, enable one to obtain explicit expressions for
the transport coefficients, as functions of macroscopic
quantities. However, compared to the SNE case, only
the expression of A, depends strongly on the vibrational
relaxation. Thus, from a theoretical point of view, this
analysis is an extension of the kinetic theory to the vibra-
tional nonequilibrium for diatomic gas mixtures. From a
practical point of view, the following observations may be
made:

(i) The shear viscosity (A1) weakly influenced by the vi-
brational nonequilibrium is expressed as a combination of
pure gas shear viscosities u, and p,, binary diffusion
coefficient D,,, and fictitious viscosity ,u,;,q, characterizing
the momentum transfer between both species.

(ii) The bulk viscosity is proportional to the relaxation
time of the internal mode which is in equilibrium at the
zeroth order. For the present case, this is the rotational
mode and, therefore, 7 is expressed as a function of the
rotational relaxation times e Trp and 7, .

(iii) The translational thermal conductiz’;qity expression is
quite complex. Like the shear viscosity, A, is expressed
as a function of pure gas shear viscosities u, and u,,
binary diffusion coefficient qu, fictitious viscosity ,u;,q,
and a nondimensional number B, .

(iv) The rotational thermal conductivity expression is
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identical to the first approximation of Mason and Mon-
chick, i.e., it is a function of the binary diffusion qu and
self-diffusion D/, and D, coefficients.

(v) The vibrational thermal conductivity is expressed by
the SNE method as a function of the binary diffusion D,
and self-diffusion D,, and D,, coefficients. By the match-
ing method the vibrational nonequilibrium appears ex-
plicitly, through the vibrational relaxation times 7,7, 727,
and T;/qV.

Finally, transport coefficients have been computed in
the temperature range for which the validity of the
present calculations may be assumed. As in the recent
Makita’s work [33], this computation has shown the lacu-
nas concerning the property data of binary mixtures. In
the present case good modelings for the collision integrals
and for the internal relaxation times appear necessary for
the transport terms computation. The values obtained
are consistent and seem to give correct results. One finds
also that the approximate formulas like those of Wilke
and Yos for the shear viscosity and translational thermal
conductivity, in spite of severe approximations, give
correct results, particularly in the case when the mixture
components properties are close. The study of the vibra-
tional thermal conductivity has shown the limits of the
Mason and Monchick approximations in the case of
strong nonequilibrium situations.

For the future, two major directions of investigation
are open: Extension of these transport coefficients to a
multicomponent mixture; and inclusion of chemical reac-
tions (and, especially, dissociation effects at high temper-
atures).
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APPENDIX
The shear viscosity is given by
xx Lyl 2 1 2x,m, —xgm, )’ 1
. R nmgy Dy, mj Fpg
H=Hpg = 2 2 2,2 2, 2 ’ (A1)
XpXg 2 1 _L+i‘1_ +L 1 lxpmp 4 X m, 4xpxq 1 1
Hptq — nmo Dpg [ 1y Ky mg ppg | Hp Hq nmo Dpg pp,
where u,, is the fictitious viscosity. The bulk viscosity is
Cr Cr X X
L4 L4+ £ ]+(xpc, +x,C, )—
C k T, T, » 7T,
N=1pg = KT — - (A2)
! o ¢ 1, S 1 C,
(C,+x, "y qu,q) e Xk . Xg .
P 9 P P9 9 P9

The relaxation pressure is given in Eq. (A3).
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C, C, |S%; ) S%,) S%e,, )+8%e;, )
i+ P 1+(x,C, +x,C, ) | —E2—
k T, T, P, AT T,
p.— _ ” P q9 pq ’q 1
R—PRPq—_n o +[qu,+xq(xpC,p+xqcrq)]_I.c_.T -
GC no1 "a b
(C,+xpC,p+qu,q) n—=— — +[xpC,+xp(xpC,p+qu,q)]T;T
P q P pq
(A3)
The translational thermal conductivity is given in Eq. (A4).
20m,m m2x2QX +m2x2Q*
A=A, =Tksx,x, TIRD S UK O R D Y PO 0 Ml oz /
& Mplg  Mglp mg Hpg nm§ Dy, mpmy
25x,x m,m X, X 100m m mx? m,x2
i3 q+_2{ pf[Q;;Q;;,—(%—liB;;)z] pzq 31:[ q p*p | Ma%q
Hottg Dpq M 0kpq Kp Hq
2 2 A% 2 2 A%
15 (% |mp |"Qp | X4 |my |"Qpy | 4m,m X,X 1
42| 2| 2T || ZP g TR 20% 4 20% g, (55 _3pkylete |1
n | mg | mg Ep m, | mg By 5 [ Pqu quq P 3 Pq] ;’q qu ’
(A4)
where B, is a nondimensional parameter [22]
mo=m,+m,
and
5 m, |’
= — __.g_ —_ *
O 4 6 m, +5|—3B,, ,
5 2
== 9 _ *
Op= 4 6 +5 3B, .
P
The rotational thermal conductivity is
nx,C nx,C,
P qvr
A=A, = £+ g (A5)
P *p + Xq *q *p
Dy, Dy Dy Dy
The vibrational thermal conductivity is
”pcvp(Tvp)
A, = , (A6)
P X, X,
+
Dy Dy,
nqCUq(Tvq)
Avq=— (A7)
Xq *p
Dy Dy
The vibrational thermal conductivity (matching method) is
nD, C, (T, )
v = pp vty Xq | My m, ]qu D,,
Ur 2 _yv
v, l+ﬁ D,, 1|m o, 1 D,, Xg | My ] m, | Q, K, D,, x, | kT mg Qup Tpq
VT VT
X, Dy 2 | kT Q”p v X, | KT mg v, 7 Tpg
(A8)




with
O
1 T
K, =— |1+ ——2 1—
1, 5 €xp [1 T, ,
p
® ®
1 v T v
Ky=— |l4+exp{—— |1— £ l1—
275 P17 r 7, | [P T |!
p
_ 1 _ 1
QP h’vp ’ Qup 1 h'Vp ’
1—exp kT exp kTvP
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