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‘We present an alternative method for the calculation of the interaction between spirals in oscilla-
tory media. This method is based on a rigorous evaluation of the perturbation of an isolated spiral
resulting from neighboring spirals in a linear approximation. For the complex Ginzburg-Landau
equation, the existence of bound states is identified with the parameter range where the perturba-
tions behave in an oscillatory manner. The results for the equilibrium distance for two spirals in
the bound state and also the dependence of the velocity of the spiral on the distance are in good
agreement with numerical simulations. In the equally charged case, we find multiple bound states
which may be interpreted as multiply armed spirals. Outside the oscillatory range, well-separated
spirals appear to repel each other regardless of topological charge.

PACS number(s): 05.45.+b, 47.20.—k

I. INTRODUCTION

In spite of considerable effort, the problem of the inter-
action of defects in oscillatory media is not yet in a satis-
factory state [1-3]. The simpfist examples of such media
are chemical oscillations such as the famous Belousov-
Zhabotinskii reaction [4] or some cases of catalytic sur-
face reactions [5]. The defects we are concerned with
are the well-known spiral waves which are point defects
in two dimensions (2D). More complicated examples of
oscillatory media are systems sustaining (nonlinear) trav-
eling waves as observed and/or predicted in thermal con-
vection in binary fluids [6], homeotropically oriented ne-
matic liquid crystals [7], and electroconvection in pla-
narly aligned nematic liquid crystals [8]. The above de-
fects correspond to dislocations in the roll pattern (for a
general review see [9]). Transversely extended lasers are
other systems where spiral-type defects occur [10].

The simplest description of such media is provided by
the complex Ginzburg-Landau equation (CGLE)

Oa . . 2

Friakhs (1 +4b)Aa — (1 + ic)|al“a. (1)
where the complex field a describes the amplitude and
phase of the modulations of the pattern [11,12]. This
CGLE plays the role of a normal form in the vicinity of a
supercritical transition to an oscillatory state in spatially
extended systems and is thus very general. Many of the
results obtained from the CGLE carry over qualitatively
to situations where a more complicated description, e.g.,
by reaction-diffusion models, is more appropriate. This
is true even for excitable media where, as in oscillatory
systems, one has the existence of a continuous family of
(phase) waves which does not, however, extend to zero
wave number.

The simple zeros of a represent topologically stable
point defects in 2D (and line defects in 3D). One has
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topological quantum numbers +1 related to the phase
change of +27 when going around the defect. When
b — ¢ # 0 the defects are sources of spiral waves whose
constant phase lines behave like an Archimedean spiral,
except in the immediate neighborhood of the core. These
spirals can give rise to very beautiful patterns [4] and
seem to play an important role also in biological systems
[13]. When b — ¢ tends to zero the emitted wave number
goes to zero and the spirals go over into vortices which
rotate if b = ¢ # 0.

The asymptotic interaction is very different for the two
cases: For b — ¢ = 0 it is long-range decaying, essen-
tially like r—! with some corrections [14-17), whereas for
b — ¢ # 0 it is short-range decaying, essentially exponen-
tially [1-3]. This latter behavior is easily understood:
The waves emitted by the spiral screen the spiral core
from perturbations arriving from outside. Interaction
manifests itself in a motion of each spiral. The result-
ing velocity has a radial (along the line connecting the
spiral cores) and a tangential component.

In Ref. [1] we presented detailed simulations of Eq. (1)
for spiral pairs showing that a stable bound state exists at
least for some values of the parameters with |b—c| not too
small. Up to now there exists no analytic understanding
of the bound state and this problem will be addressed
here.

The idea of the method used is actually quite straight-
forward: In full solutions for a spiral pair (or a more
complicated aggregate of spirals) the spirals move with
certain velocities and thus solutions exist only with the
“correct” velocities. Such solutions may be constructed
approximately by starting with isolated spirals, each one
restricted to the region in space filled by its emitted waves
and (small) velocities to be determined. For a spiral pair
one simply has two half-spaces. The corrections are as-
sumed to be determined to sufficient accuracy by the lin-
earized problem with boundary conditions that take into
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account the neighboring spiral. It is easily seen from the
spectrum of the homogeneous part that bound states oc-
cur for |b—c| above some threshold value (¢ > ccr ~ 0.845
for b = 0). The inhomogeneities involve the velocity
linearly and as a consequence the solution for arbitrary
(but not too small) distance can be expressed in terms of
one inhomogeneous and one homogeneous solution. Once
these are determined numerically and used to match the
boundary conditions, the velocity versus distance rela-
tion comes out.

This program is carried through in Secs. II-IV for op-
positely (or “unlike-”) charged spirals and b = 0 (for
simplicity) and ¢ > c., where one has a sequence of
bound states, i.e., states with zero radial velocity. There
remains a tangential velocity leading to a drift of the
pair. In Sec. V we consider the case ¢ < ¢, (no bound
states), discuss the generalization to b # 0, connect with
the results for b—c = 0, and finally generalize to like- (or
equally) charged spirals. We argue that for sufficiently
large separation, the velocity versus distance relations are
similar to the previous case except that the tangential
velocities of the two spirals are now opposite each other.
Then bound spirals rotate around each other and can be
interpreted as a doubly charged spiral. We also present
numerical simulations with more than two charges.

II. THE PROBLEM OF INTERACTION

The (one-armed or singly charged) isolated spiral so-
lution of Eq. (1) is of the form

a(r,0) = F(r) exp{ilwt + 6 + (r)]} (2)

and satisfies the following equations for the functions
F(r) and 9(r):

AF - ;12-F — W)2F
—b[(AY)F +2'F'| + F — F? =0,

b (A,F _Llr- (¢')2F) (3)
T
+(AY)F 4 2¢'F — wF — cF?® =0,

|
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where (r,0) are polar coordinates, A, = 82 + 19,, and
primes denote derivatives with respect to r. The func-
tions F' and 1 have the following asymptotic behavior:

F(r) — vV1—k2, ¢'(r)—>k, 7— 00
4)
F(ry~r, Y'(r)~r, 7—0

and w = —bk? — ¢(1 — k2). The constant k is the asymp-
totic wave number of the waves emitted by the spiral,
which is determined uniquely for given b, c. In general k
has to be determined numerically (see, e.g., (18, 16]).

Due to the interaction with other spirals or with a
boundary, the spiral core moves with some velocity v,
which is to be calculated. We associate with each spiral
a region determined by the wave emitted by the spiral.
Thus, in an infinite system the boundaries are given by
the shocks that build up where the waves of neighboring
spirals collide. Inside each region the perturbed spiral
solution is written in the form

a(r,8) = [F(r) + W(r,0,t)] exp{i[wt + 0 + »(r)]}, (5)

where W is the correction to the unperturbed spiral so-
lution and r,6 are now the coordinates comoving with
the velocity v. For definiteness of the analysis we have
chosen the + sign in Eq. (2). If the spirals are well sep-
arated one can expect the correction function W to be
small, except maybe in the region of the shock between
spirals. Our results demonstrate that the corrections are
indeed rather small. Hence the correction can be deter-
mined in principle from the linear approximation. (The
linearization can in principle be avoided, but the problem
becomes more complicated.)

The function W obeys the system of equations (we

focus again on one spiral; the domain is now the half-
plane)

—VVW — W, — i{v V[0 + ¢(r)]}W + (1 + ib) [AW - Tizw — (@)W + iAW + 2 (w'w’ + leaewﬂ

+(1 —iw)W — (1 + ic) F2(2W + W*) = v [(F’ sin(6 + n) + i’ Fsin(6 + 1) + zg cos(6 + 17))} , (6)

where v = (vg,vy) is the velocity and n = arctan(v;/vy). The exact Eq. (6) also contains, on the left-hand side, the
terms —(1 + ic)[F(W?2 + 2|W|?) + |W|?W], which we neglect in linear approximation. We have used

da
ot

= vy By + v;,0;G + iwd = (F'(vy sin 6 + vy cos 0) + i)’ F(vy sin 6

+vg cos ) + i;(vy cos @ — vy sinf) + in) exp{i[wt + 6 + ¥(r)]}. (7)
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For simplicity we now consider two spirals located on
the = axis at £X. The problem of the interaction of two
oppositely charged or like-charged spirals is equivalent
to the problem of the interaction of one spiral with a
plane boundary with different boundary conditions. In
the case of oppositely charged spirals the symmetry of
a problem is a(z,y) = a(—z,y). Numerically obtained
bound states of oppositely charged spirals indeed possess
such a symmetry (see Fig. 1). Here the term “bound
state” means that the distance between the spiral cores is
in stable equilibrium, but there is drift in the y direction.

For this case, therefore, the boundary conditions at
z =0 are

t ;

FIG. 1.
b = 0,c = 1.5 in a 100 x 100 domain.
la(z, y)|; (b) real part Rea(z, y). Snapshot is coded in the grey
scale, maximum of the field corresponds to black, minimum
to white.

The bound state of oppositely charged spirals for
Represented: (a)
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da
— =0.
e )
Then the velocities of the spirals obey the relation
Vig = —U2; and vy = vgy. Presumably, in this case

there is no additional time dependence in the correc-
tion function W. The case of like-charged spirals is
more complicated because the symmetry of the prob-
lem is a(z,y) = a(—z, —y) and the velocities obey v, =
—V2z,V1y = —V2y. However, in Sec. V we show that this
case is in some approximation also similar to the oppo-
sitely charged spirals. A snapshot of a bound state of
two like-charged spirals is shown in Fig. 2; there spirals
rotate around each other.

We suppose that the velocity of the spiral drift v is
small, which is the case when the distance 2X between
the spirals is large. The condition vX <« 1 will also be

b

FIG. 2. The bound state of two like-charged spirals for
b=0,c=1.5in a 50 x 50 domain. Represented: (a)|a(z,y)|;
(b) Rea(z,y).



3234 IGOR S. ARANSON, LORENZ KRAMER, AND ANDREAS WEBER 47

needed and it turns out to be satisfied for well-separated
spirals. The terms ~ vW in Eq. (6) can be omitted
in the general case b # c because it involves two small

V). Also, the solution presented below has no explicit
time dependence, so W, will be dropped.
Equation (6) can be simplified by using Egs. (3). This

quantities, but they become important for b = ¢ (see Sec. gives
]
. A.F ., .0 (W 1 o .

=0 (F’ sin(6 +n) + iy’ Fsin(6 +n) + zg cos(6 + 77)) . (9

From now on we restrict ourselves to the case b = 0 to avoid lengthy expressions. The generalization to the case of
arbitrary b is discussed in Sec. V. Now, separating the real and the imaginary parts of W = A + B gives the pair of

equations

AF

—_— 2 —_—
AA-2F°A 7

ar\F)  r2

F

A-2 I:z/)’F o (E) + 12893] = vF’'sin(0 + n),

(10)

ALF o (A 1 F
24 _ 2t 'l (A) L L - P £ .
AB — 2cF*A — 7 B+2 ['L/) F@r ( ) r269A:| v (w Fsin(60+n) + " cos(9+n)>

The solution of Egs. (10) can be represented in the
form of a Fourier series

(§>= i (g:E:D exp(inf) (11)

n=—oo

together with the condition

A, =A*,, B,=B’,. (12)
Equations (10) then become
2
Adn - A, —2r?4, - By
r F

o[y @ (Bn) ,in
2[¢F8r F +T‘2Bn

= %F’éﬂyn exp(inn),

(13)

AF
F Bn

n? 5

o0 (An) i
+2I:¢F6r F +T2An

= % (—z’m/)’F + -f—) 841, exp(inn) .

The dominant contributions come from the terms with
|n| < n¢, where the constant n. ~ VX (see below). The
velocity enters only into the equations for n = £1. We
consider separately the behavior of the solutions of Eq.
(13) for r — 0 and for 7 — co. Equation (10) [or equiv-

alently Egs. (13)] together with appropriate boundary
conditions is solvable only for a distinct velocity depend-
ing on the spiral separation.

III. ASYMPTOTIC BEHAVIORS
A.r>1

Consider the behavior of the homogeneous solutions
(v = 0) of Egs. (13) for r — oo (the results will be ap-
plicable also for v # 0 because the relevant homogeneous
solutions diverge and always dominate asymptotically).
Then we can neglect the terms ~ A, F, 1/r, and 1/r2.
Also we can replace ¥’ by k and F by v1 — k2. Then
one has the simplified system for arbitrary n

Al —2(1 - k?) A, — 2k0,B,, =0,
(14)
B! —2¢(1 — k?)Ap, + 2k, Ay, = 0,

describing perturbations of the asymptotic plane waves
emitted by the spiral. Substituting the solution in the
form A,, B, ~ exp(pr), we have the following character-
istic equation:

p{p® + p[ak? — 2(1 — k?)] — 4ck(1 — k?)} =0. (15)

The root pg = 0 corresponds to the translation mode. Us-
ing the numerically defined asymptotic spiral wave num-
ber k it turns out that for ¢ > ¢, &~ 0.845 the equation
possesses one real negative root ps < 0 and a pair of
complex-conjugate roots p1,2 = @ £+ i with « > 0. In
contrast, for ¢ < ¢ all the roots are real. It will be
shown later that the value 1/ defines the distance be-
tween the spirals in the bound state. For ¢ < ¢, there is
no bound state.

A more detailed analysis including O(r~!) corrections
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to Eq. (13) shows that the asymptotic solutions are given

by
(g:) =rk (i) exp(pr) (16)
with
_p*-2(1-k?
Y= T’
(17)
. 4k? — 2p? + 6kp/c

3p% + 6k2 — 2

Obviously, the factor ~ r# is slowly varying in compar-
ison with the exponent for r > 1, but it turns out to
be important to get good quantitative results. Thus, for
¢ > cor (we consider first this case) the outer solution of
Egs. (10) is of the form

()= £ [ ()ewraser

+ (71*) Con(rH)* exp(p*r)} exp(inf)

(18)

with Cy, = Ci_n and p = p;.

The coefficients C1,,, Ca, are to be determined from the
boundary conditions for z = 0. From Eq. (8) (oppositely
charged spirals) we have

da(r,0) _

£ [Fo + Wy +i(F + W)(z + 62))]

x exp[i(6 + ¢ + wt)] = 0. (19)

For r > 1 one can neglect F,, 6, and then the equation
simplifies considerably

W, + itpe W = —ith, F. (20)

Also, for r > 1 one can use 1, ~ kcos8, W, ~ W' cos ¥,
and F ~ v/1 — k2. Then we obtain

W' + kW = —ik/1 — k2. (21)

Separating Eq. (21) into real and imaginary part one ar-
rives at

A'—kB=0, B +kA=—kV1-k2 (22)

Now, substituting (18) into (22) leads to the following
equations for the coefficients:

£ [ (¢ 5wt

n=-—0o0o
<p* _ k’)/*

p*,y* + k) CZH(T")* eXp(p*T):| eXp(an)

(_ . \/(1)“——1@) (23)

On the boundary the radius » depends on the angle 8 as
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X T s
r(e)z{my -3 <6<3 (24)

oo, 8] > %.
The Cy,, can be eliminated from Eq. (23) leading to

V1 —k?

o 0)
Z Cin exp(inf) = —k—_g'— exp(—pr)r—#, (25)

n=-—oo

where the constant § is

p—ky
b=py+k— (Y +k)—/——. 26
Y (P*y" +k) P (26)
For x = 0 we can expand exp(—pr)r~* in the series
oo
exp[—pr(0)]r()™* = _ Z, cos(né), (27)
n=0
where
1 [ X X \*
Zn = 2;‘: /_w exp (—pF—S(e—)') cos(n@) (m) dé.
(28)

From Egs. (25) and (27) one has C,_,, = C} 5, from which
it follows that Cy , = C3 ,,. For X > 1 the coefficients Z,
can be estimated easily because the main contribution to
the integrals comes from the region of small §. For § <« 1
we can replace in the exponent X/ cos(f) =~ X (1+6%/2).
After simple algebra we have

exp(—pX) . _ 2
Ty = ———=——X"# —n“/2pX). 29
Equations (25), (27), and (29) now give (n # 0)
Cln = C;n
_ kvl —k?exp(—pX)

N e exp(—n?/2pX). (30)

Clearly for n? < 2|p|X the last exponent can be omit-
ted. Actually, to obtain the results shown futher on the
integrals (28) were used directly instead of the approxi-
mations (29). The differences turned out to be small.

B.r»r—0

From now on we only need to consider the contribu-
tions from n = 1 so we omit the subscript n. Consider
the solutions of Egs. (13) for » — 0 and n = 1. We shall
analyze the homogeneous solutions (v = 0), but again
the results are applicable to the case v # 0. Because
F~r, ¢ ~r, and AF/F — 1/r? for r — 0, Egs. (13)
reduce as follows:

1, 2, 2
A" 4ZA - SA-ZB=o,
T T T
(31)
B" +:B - 2B+ 24—
r T r

We can look for the solution of (31) in the form
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()~ ) &

and this leads to m = £2 or m = 0. In the case m = 0 the
behavior ~ Inr is also admitted. The homogeneous solu-
tion of Egs. (13) corresponding to the translation mode
for the spiral is given by

(ﬁj) - (iF/r}: ¢/F>' (33)

For r — 0 it reduces to the solution (32) with m = 0
and no logarithmic term. For r — oo it is bounded and
therefore not essential for our analysis. The solutions of
Eqgs. (13) with the other allowed behavior for 7 — 0 are
expected to behave for 7 — oo according to Eq. (18).

IV. DETERMINATION OF THE VELOCITIES
A. General procedure

If the velocity v is chosen zero, then it is impossible
to satisfy the boundary conditions (30) for r — oo and
regularity for » — 0 simultaneously. Only the proper
choice of the velocity v allows to satisfy both conditions.

The following procedure can be employed. One deter-
mines (numerically) a particular inhomogeneous solution
of Eqgs. (13) for n = 1 with zero initial conditions for
r=0

A(0) = B(0) = A'(0) = B'(0) = 0, (34)

leading to a solution which is regular at r = 0. Actu-
ally, a more general case of the initial conditions could
be A(0) = iB(0)=const, A’(0) = B’(0) = 0, but from
our point of view this solution is equivalent to the solu-
tion (34) because it differs only by the trivial bounded
solution (33). From the linearity of Egs. (13) in v one
sees that a solution for arbitrary value of v can be ob-
tained by superposition of solutions with v, = 1,v, =0
and v, = 0,v, = 1, which is equivalent to v = 1 with
n = 0 and n = w/2, respectively. For r — oo the so-
lutions behave according to Eq. (18) and we obtain the
constants Cig,C2, (for v, = 1,9, = 0) and Cyy, Cay
(for v; = 0,uy = 1). Actually, one needs to compute
only one case because from Egs. (13) one has the rela-
tion Ciz = iChy, Coz = iCoy. In general the relations
C1z = C3, and Cyy = C3, are not satisfied [first bound-
ary condition (30)]. To correct this it is useful to deter-
mine (numerically) a homogeneous solution of Egs. (13)
that behaves as (32) with m = 2 for r — 0 and com-
pute the asymptotic constants Cy,C>. Then the super-
position satisfying the first boundary condition (30) are
determined (mixing factors &;,&,) leading to

Cp =Crz + gzcl = C;a: + S;C;’
(35)

Cy = Cry +§,C1 = C3, +§,C5.
Thus for each value of the parameter ¢ the constants

Cy, Cy are uniquely determined. Then v, and vy may be
calculated as a function of distance X by satisfying the
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second condition (30),

kvl — k2 exp(—pX)X_u
5+/2mpX )

C11(v) = 0,05 + v,Cy = —
(36)

One easily sees from (36)

vy =Im (“k” 1k eXp(_pX)X-“) /Im(cz/cy),

6Cyv/2mpX
(37)

) — vzRe(C;/C,).

— — k2 -
v, = Re kv1 — k2 exp( pX)X_#
8Cy\/2mpX
The bound states of the CGLE correspond to the case of

vz = 0. Therefore the equilibrium distance 2X, can be
founded from the equation

— — k2 —
ta [ =FYL— R exp( pXE)X;” —o. (38)
6Cy/2mpX,
From (38) we have the expression
ImpXe + pln X, = —¢ + =l (39)

where | = 1,2,3,... and ¢ = —arg[1/(6Cyp*/?)]. One
thus needs only one solution of Egs. (13) in order to de-
termine the velocities for all distances.

B. Numerical methods

For the solution of the linearized problem Egs. (13) for
n = 1 we used the following method. First for each fixed
value of ¢ we obtained the unperturbed spiral solution
from Egs. (3). We used here a very fine discretization
(Ar = 0.01) to reproduce the characteristics of the spiral
with high accuracy. Then we solved Eqgs. (13) using these
solutions. The main difficulty here is the divergence of
the coefficients in Egs. (13) for r — 0. To control this sin-
gularity we developed a special numerical method based
on the use of the exact Green’s functions of the problem
for r — 0. The idea of the method is the following. For
m = 0 [compare Eq. (32)] Egs. (13) can be represented
in the form

1 1
A" + ;A’ =fi, B"+ ;B’ = fa, (40)

where the functions f; o are regular for the solutions with
m = 0. The solutions of (40) [and therefore (13)] are of
the form

r d'f‘1 m
A(T) =D+ Dylnr + —_ rof1dra,
o T Jo
(41)
r T1
B(T‘)=G1+G2h’l7"+/ d—rl-/ 7'2f2d7‘2.
o "1 Jo

As initial conditions we have chosen D1 = G192 = 0,
and evaluated the integrals on the right-hand side of (41)
between grid points by the trapezium method. Similarly,
for mm = 2 we have the system
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4
A" +—1-A’ - —=A=f
r r
(42)
" l / _ i —
B +7'B r2 B = f4’
and the corresponding solution in the form
T dr1 2 4
+ [ = eunis,
(43)
-2 4 dr1 r2 4
B(’l‘) Gl'l" + Gar 1 - (7‘1/7‘) ]f4

A(’I") = D17‘2 + D21"—2

As initial conditions one may choose Dy = G2 = 0 and
D; = —iG, = 1. To extract from the solution of Egs. (40)
and (42) the coefficients Ci,2 we just use the expressions
(18).

C. Comparison with results of numerical simulations

The full simulations of Eq. (1) were carried out on a
CRAY YMP Supercomputer. We used a second-order
quasispectral method based on a fast Fourier transform
(FFT). The typical values of the parameters of the code
were as follows: the number of harmonics in each direc-
tion was 256, the system size was 100x200 dimension-
less units, and the time step A7 ~ 0.1. The results were
checked with better space discretization and smaller time
steps. The simulations were carried out under periodic
boundary conditions (because of the use of FFT) with
total topological charge in the elementary cell equal to
zero. To reproduce nonflux boundary conditions (zero
normal derivative on the boundary) relevant for oppo-
sitely charged spirals, the elementary cell was divided
into four equal quadrants. Computations were performed
only in one quadrant and extended by symmetric reflec-
tion at the boundary lines. Initializing one spiral then
means that in fact there are four spirals in the elemen-
tary cell with alternating topological charge as one goes
around the quadrants. If the domain is large enough, and
the spiral is placed near one of the boundaries, it expe-
riences effectively only one image spiral because the dis-
tance to the rest is much larger. For like-charged spirals
we extended the field by reflection at the middle point of
the boundary line so that one here has a like-charged pair.
Extension to the other half of the elementary cell was
again by (symmetric) reflection at the remaining bound-
aries so that one has there another like-charged pair with
charges opposite the first pair. Such symmetrization of
the field was performed on each time step to avoid the
accumulation of numerical errors (although in principle
it is enough to set the symmetry once in the initial con-
ditions).

In Fig. 3 the dependence of the velocities on the spiral
separation X is plotted for b = 0,¢ = 1 and compared
with results from full numerical simulations. There is
reasonable agreement, particularly for the radial velocity
V. The first zero of v, at 2X, =~ 11.5 corresponds to | =
1 in Eq. (39). The next zero at 2X, ~ 22.8 corresponds
to a stable bound state. Here the velocities are already
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FIG.3. The dependence of radial (vs) and tangential (vy)

velocities on the spiral separation 2X for b = 0,c= 1.

extremely small. From the simulations no other bound
state could be resolved.

The equilibrium distance obtained from the theory
[[ =2 in Eq. (39)] is in very good agreement with the
results of the simulations of the full CGLE [see Fig. 4(a)].

40
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8
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FIG. 4. The comparison of the parameters of bound state

with the results of simulations of Eq. (1). (a) Equilibrium
distance 2X, given by Eq. (39) as function of ¢ for b = 0; (b)
tangential velocity vy at the equilibrium distance for b = 0.
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Nevertheless, there is some disagreement between the val-
ues of tangential velocity v, by a factor of about 1.5 [see
Fig. 4(b)], although the dependence on ¢ is very similar.
We can offer the following explanation.

The first reason is basically technical. Actually, the
small absolute errors in the determination of the equilib-
rium distance lead to large relative errors in tangential
velocity because of the exponential dependence on X. In
our theoretical results the equilibrium distance is in most
cases slightly smaller than in the simulations. Increase of
the distance changes the velocity in the right direction.

The second reason could be the contribution from non-
linear terms which we dropped in Eq. (6). Formally
speaking, for ¢ ~ 1 they are not too small. Possibly
these terms change slightly the value of the equilibrium
distance, which leads to an increase of the velocity. Also
1/X corrections to the boundary condition (20) could
improve the results.

V. GENERALIZATIONS

A. c < cer

In the case 0 < ¢ < ¢+ we have two real positive roots
of Eq. (15), for definiteness 0 < p; < py. Therefore the
outer solution is now of the form

(g) - i [ (711>C1nr‘“ exp(p17)

+ (f; )C’znr“2 exp(pzr)} exp(ind),
2
(44)

where 1,2 and p12 are given by expressions analogous
to Egs. (17). In the same way as before one arrives at
expressions analogous to Eq. (30). Applying the analy-
sis as in the preceding sections, we can derive from the
boundary conditions the expressions for the coefficients
Cin. They are of the form

_kv1-— k2 exp(—p1X)

Cin =
51\/27!‘1)132

X i exp(—n?/2p; X).

(45)

The constants 61 2 are defined in analogy to (26). Using
the analogous numerical procedure one can also deter-
mine the constants Cy 4, but for small c it is technically
very difficult in this form [for r — oo the dominant contri-
bution in (44) is caused by the term with the leading ex-
ponent pz]. In the general case 0 < ¢ < ¢ the velocities
vz,y depend on both exponents exp(—p1X ), exp(—p2X).

The results can be simplified considerably for the case
¢ — 0 and |ck|X > 1. Then one can neglect the coeffi-
cients Ca,, because forc — Oone has 0 < p; =~ —2¢ck < 1,
p2 ~ V2, u1 — 0, and §; — —1/(2k). Therefore we have
from the boundary conditions

k? exp(—|2¢ck|X)

v/ 7lek| X ’

Cin = Can =0. (46)
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After the matching with the solution for r — 0 we will
obtain the result v, , ~ C;Jexp(—2|ck|X)/vX. This
coincides with an earlier analysis using a phase diffusion
equation [1-3]. From the numerical simulations for b = 0
and ¢ = 0.5, shown in Fig. 5, one finds C; > 0 leading to
asymptotic repulsion. This can be inferred already from
the work of Biktashev [3], who used a phase-diffusion
equation and asymptotic matching to treat the interac-
tion of spirals with a boundary. Figure 5 also shows
that the interaction becomes attractive at smaller dis-
tance leading to final annihilation of the spiral pair. Our
results appear to be in contradiction with the work [2],
where in the limit ¢ — 0 matching with the internal solu-
tion was done analytically. In this situation simulations
with smaller values of ¢ would seem useful, but they are
too time consuming. Note that for b = 0,¢ = 0.5 one
has already a rather small |k| (= 0.08). The repulsive
range is expected to move to larger X roughly as |ck|™!
for smaller c.

B. The case of b# 0

It is well known that the homogeneous equation (9)
admits a similarity transformation from the case b # 0
to the case b = 0 [18, 16]. Indeed, dividing the equation
by (1 +¢b) and performing the following transformations
of the variables:

V(T —wb)/(T+8%)’

F=ry/(1 —wb)/(1 + b2), (47)
. w+t+bd

YEITZon

~ 1+ be

F=F 1—-wb

leads to the case b = 0, but with a new value of c. There-
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FIG. 5. The dependence of the velocity vz on the spiral

separation 2X for b = 0,c = 0.5 [results of simulations of Eq.
(1)]. The relative errors are about 15% in the repulsive range.
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unstable

-3.0 - :
-1.0 0.0 1.0 2.0 3.0

FIG. 6. The borders of existence of bound states for oppo-
sitely charged spirals. The solid line is given by the expression
(48). The boundary of convective (EH) and absolute insta-
bility (AI) for the waves emitted by spiral are also shown (for
explanation see [19]).

fore all the results concerning the structure of the eigen-
functions and the characteristic roots remain the same.
Then the critical value c., corresponds to a curve in the
b-c plane

c—b

-1—:55 = C¢r ~ 0.845. (48)

This curve defines the border of existence of bound states
for oppositely charged spirals. It is plotted in Fig. 6
(curve BS). Also included in Fig. 6 is the Eckhaus-
stability boundary (curve EH) and the boundary of ab-
solute stability (curve AI) for the waves emitted by the
spirals. The Eckhaus instability signals the onset of con-
vective instability [19].

Since the full equation (9) is not invariant under the
similarity transformation, the velocities and the equilib-
rium distances cannot be determined in this way. Then
a calculation along the lines of Secs. III and IV including
b from the beginning on is necessary.

C. The case b = ¢

For the case b = ¢ Eq. (6) can be simplified significantly
because then ¢ = 0 [see Eq. (3)], leading to

AF % X
- ;, W + S5 8,W — F2(W + W*)

r

AW

_VVW 4+ ivV ()W
1+4b

_ v /s F
=15 (F sin(6 +n) + 1 - cos(6 + n)) . (49)

The boundary conditions are simply 8,W = 0 for x = 0
for oppositely charged spirals.

Consider first the case b = 0. Separating the real and
imaginary parts of (49) one obtains
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AA — A}FA - %Ba —2F?A-vVA+vVvV()B
= vF’sin(0 + n),
AB - A;,F B+ %Ae _VVB-vV(d)A (50)

= vg cos(6 + 7).

For r > 1 one can neglect the terms ~ r~2 and
~ vV ()W, leading to the equations
AA—2F?4A_—vVA=0,
(51)

AB —-vVB = ; cos(6 + n).

Actually, the second equation in (51) coincides exactly
with the phase diffusion equation obtained in [14]. It is
well known that in the region vr > 1 the term ~ vV B
is very important because it provides a cutoff at large 7.
Introducing the new variable B = B — 6 we have

AB—-vVB =0, (52)

which is the same as in [14]. The important result is
that, due to the interaction, the motion of the vortices is
purely radial. According to Ref. [17] the velocity obeys
roughly the following expansion:

In(vo/v) = exp(tvr/2)[Ko(vr/2) £ K1(vr/2)],
(53)
Vo = 3.29

where the + sign corresponds to a like-charged pair, the
— sign to an oppositely charged one, and K and K; are
modified Bessel functions. Comparison with full simu-
lations shows that the accuracy of (53) is not very high
[20].

For the case b = ¢ # 0 the vortices acquire also a
tangential component of the velocity. Nevertheless, also
for this case no bound states exist. This follows from the
fact that for b = ¢ the CGLE can be represented in the
generalized potential form

da 6H

5% = -1 +zb)6a*,

(54)
with the potential H = — [ dzdy(—|a|? +|Va|?+|a|*/2).
From (54) it immediately follows that

OH 2 2
el / dudy|8,a]? < 0. (55)

Therefore on the trajectories of Eq. (1) the quantity H,
which is bounded from below, can only decrease. This
should also hold for the uniformly moving bound state
because for this uniformly translating solution the po-
tential H cannot depend on time explicitly (obviously a
static solution does not exist). This result is in contra-
diction to [21], where the perturbations around the case



3240

b = c are considered. The bound states found in that
paper are the result of the inapplicability of the method
for small distances. Actually, the equilibrium distance
according to the results of the paper is even smaller than
the radius of the core.

In the nonlinear Schrédinger limit b — oo we clearly
have energy conservation and it is known that oppositely
charged defects drift without radiation at the distance
fixed by the initial conditions [22] (possibly this solution
does not exist at small distance).

D. Interaction of like-charged spirals

For large separation X the interaction of like-charged
spirals is similar to the interaction of oppositely charged
ones. The only difference is that for the like-charged case

FIG. 7. The bound state of three like-charged spirals for
b=0,c=1.4in a 60 x 60 domain. Represented: (a) |a(z,¥)|;
(b) Rea(z,y).
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both components of the velocities of the spirals have op-
posite sign, whereas for the oppositely charged case the
tangential components have the same sign. This causes
the rotation of the spirals around the common center of
the symmetry in the like-charged case. To see the sim-
ilarity we note that for small z and |y| < X one has
approximately a(z,y) = a(z, —y) [this can be explained
from Egs. (19)-(21)]. Thus the symmetry a(z,y) =
a(—z,—y) (like-charged) and a(z,y) = a(—z,y) (oppo-
sitely charged) have nearly the same effect on the bound-
ary conditions. This result is in good agreement with
simulations. For |b — ¢| below the critical value one has
repulsion at large distance (as in the oppositely charged
case) and at small distance. So it is quite clear that the
interaction is repulsive everywhere.

Like-charged spirals may form more complicated
bound states or aggregates. Such a bound state of three
like-charged spirals is presented in Fig. 7. In contrast
to the two-spiral bound states, which are simply rotat-
ing with constant velocity, each spiral in the aggregate
performs a more complicated motion (possibly nonperi-
odic) on the background of a steady-state rotation. An
interesting question is: What is the maximal number of
spirals in an aggregate as a function of the parameters of
the CGLE?

VI. CONCLUSION

Although our treatment explains the qualitative fea-
tures of the bound states, the quantitative discrepancy
in Fig. 3(b) indicates that there is room for improve-
ment. Possibly the inclusion of 1/r corrections, which
we dropped after Eq. (20), can clear up this point. Also,
the correct inclusion of the shock structure, where the
waves emitted from neighboring spirals collide, may have
quantitative relevance.

An interesting result of this work is that the interac-
tion of spirals at sufficiently large distance is either oscil-
latory, leading to stable bound states, or else presumably
repulsive (this was verified numerically only for one set
of parameters). Therefore in the parameter range where
isolated spirals are stable (see Fig. 6) one may expect
that in an ensemble of well-separated spirals annihilation
does not occur, although it is not obvious that our results
carry over to ensembles. We should point out that the
shock is not necessarily situated symmetrically between
spirals, but asymmetric states (stationary or very long
lived) are possible. Drastic asymmetries develop sponta-
neously when the interaction between neighboring spiral
pairs become important (lattice of spirals). Then one has
a situation where only one type of defect (with one topo-
logical charge) emits spiral waves whereas their counter-
parts get trapped in the shock structures [19, 16]. Our
simulations in fact indicate that in the convectively un-
stable range extended lattices of spirals with global topo-
logical charge zero exist only in the asymmetric state.

In this paper we considered the stable range of the
parameters (see Fig. 6). Below the line AT the individual
spirals lose stability and spatiotemporal chaos (defect-
mediated turbulence) is established [23,19]. In this range
spontaneous creation and annihilation of the spirals takes
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place with a well-defined average density of the defects.
One can speculate on the possible relevance of our results
for that case.

It is also possible that the results presented here are
important in 3D. In this case the basic structures are
scrolls, vortex rings, and scrolled vortices (see, e.g., [24]).
One can expect that existence of the stable bound states
in 2D is a necessary condition for the stability of vortex
rings.

Presumably the mechanism that is responsible for the
formation of the bound states can operate also in ex-
citable media and there is in fact some evidence from nu-
merical simulations [25,26]. We plan to apply our analy-
sis to appropriate models. Moreover, target patterns [27]
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could exhibit similar effects, although in this case one
does not expect a tangential velocity. Finally, the rela-
tion to a different class of spirals, which seems to arise
in some stationary, isotropic pattern-forming systems, is
a challenging question [28, 29].
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FIG. 1. The bound state of oppositely charged spirals for
b = 0,c = 1.5 in a 100 x 100 domain. Represented: (a)
|a(z,y)|; (b) real part Rea(z,y). Snapshot is coded in the grey
scale, maximum of the field corresponds to black, minimum
to white.
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FIG. 2. The bound state of two like-charged spirals for
b=0,c=1.5in a 50 x 50 domain. Represented: (a)|a(z,¥)|;
(b) Rea(z, y).



b-

— -

FIG. 7. The bound state of three like-charged spirals for
b=0,c=1.41in a 60 x 60 domain. Represented: (a) |a(z,)|;
(b) Rea(z,y).



