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Cooperative few-level Suctuations in coupled quantum systems
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Fluctuations and noise are typical features of mesoscopic systems. Here we study the quantum-
stochastic dynamics of an interacting network of local few-level subsystems. Controlled by the environ-
ment, this network is shown to exhibit a large repertoire of diff'erent behavioral patterns, including un-
correlated and correlated "quantum jumps": Such cooperation should be generic for certain networks
and expected, e.g., also for various optically driven quasimolecular structures. When applied to a defect
network controlling the current through a small tunnel junction, large-amplitude two-level current fluc-
tuations appear, in agreement with experiment.

PACS number(s): 05.40.+j, 05.50.+q, 71.50.+ t, 72.70.+m

I. INTRODUCTION

In the last few years various experiments confirmed
that the time development of open quantum systems is in-
herently stochastic. Direct evidence is provided by the
observation of "random telegraph signals" (RTS's), where
observables (e.g. , fluorescence intensity or electric
current) fluctuate between few distinct values [1—9]. As a
consequence one has to assume that the system itself
evolves stochastically and "jumps" between discrete
quantum levels [10,11]. This observation of "quantum
jumps" has intimately been connected with the possibility
to prepare and investigate individual quantum systems:
Examples are the study of single ions in a Paul trap [1—3]
or the spectroscopy of single dopant molecules in a host
crystal in the wings of the inhomogeneously broadened
line [12,13]. The reason is that in an ensemble of X
noninteracting subsystems, each subsystem jumps in-
dependently (cf. Ref. [3]) and the superposition of many
RTS s implies fluctuations decreasing with increasing N.
Unfortunately, many large systems tend to behave like
such an "independent ensemble, " e.g. , a gas of atoms or
elementary excitations within a single crystal.

However, there are experimental indications that in an
ensemble of interacting subsystems the RTS's of the con-
stituents influence one another and thus give rise to con-
siderably more complex random telegraph noise. An ex-
ample is current fluctuations in small electronic devices
[7,14]. They may be interpreted as being due to the
influence of defects residing in two alternate states [6].
Most impressive is the observation of large-amplitude
two-level RTS's which cannot be explained as the effect
of a single defect. Even the so-called burst-noise phe-
nomena [15] appear to fall into this category. Though
mechanisms for synchronizing in the form of (electric or
elastic) dipole interactions have been proposed [6,7], no
model to explain the detailed dynamics appears to exist
up to now.

The recent progress in nanostructure technology aimed
at the structural control of artificial quantum systems
(e.g. , quantum dots in semiconductor materials [16—18])
is promising in this connection: It should become possi-

ble to adjust parameters (e.g. , energy scales or transition
rates) and tailor properties in order to optimize the quan-
tum system for the observation of stochastic dynamics.
We expect that complex stochastic behavior should be-
come controllable in so-called quantum networks, arrays
of interconnected quantum objects, realized, e.g. , by
charge-transfer quantum dots [19]. Quantum networks
are also appealing in connection with prospective appli-
cations of synthetic nanostructures as "quantum func-
tional devices" [20]: The challenge is to have quantum
noise controlled and represent computer function.

In an ensemble description, the dynamics of an open
quantum system is governed by a generalized master
equation for the density matrix [21]. Its continuous time
development, however, cannot explain the occurrence of
quantum jumps. Extending this formalism to correlation
functions merely allows us to describe fingerprints of the
underlying stochastic dynamics in an averaged form
[22,23].

In an alternative approach the stochastic process itself
is taken as the starting point: Under certain conditions
[24,25] or, more generally, by transforming onto the in-
stantaneous diagonal representation [10], the generalized
master equation reduces to a rate equation (Pauli master
equation). The stochastic process can then easily be de-
rived if one postulates that the corresponding Markoff
process describes the "real" dynamics of the quantum ob-
ject as continuously registered by the environment [10].
Correlation properties are included in this approach and
emerge after averaging over the respective stochastic pro-
cess. Similar goals, though for different scenarios, have
been pursued in Ref. [11]. Both these approaches differ
in the way coherence is incorporated, but should coincide
if such effects can be neglected.

In this paper we apply the stochastic approach to
quantum-network models in order to demonstrate the
origin of complex RTS's and correlated quantum jumps.
These models consist of localized few-level subsystems
("network nodes") that interact among one another
through a diagonal energy renormalization. Coupling to
the environment leads to a stochastic dynamics described
by a rate equation in the high-dimensional network state
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II. GENERAL NETWORK MODEL

A. Hamiltonian and spectrum

We start by giving a brief description of our quantum-
network model; more details can be found in Ref. [20].
Identical localized quantum subsystems represent net-
work nodes that are linked together by interactions. The
network Hamiltonian thus has the general form

N NH=gH+ —,
' g H„ (2.1)

n=1 n, m =1
num

The isolated subsystem n is characterized by its (relevant)
spectrum consisting of I levels,

I
H„= g E,' i„)(i l

. (2.2)

The network structure is embodied in the spatial arrange-
ment of the subsystems and the interaction H„. Here,
we consider the following energy renormalization be-
tween subsystem n and m:

space. We consider two different boundary conditions
(environments). The first one is a model of interacting
two-level traps in a heat bath. The second one is a
charge-transfer quantum dot array in an incoherent elec-
tromagnetic field as prototype for a synthetic quantum
network. The dynamical repertoire of the second model
is even larger as transition rates can be adjusted by the
light field. Under certain restrictions ("detailed balance" )

it can be mapped onto our first model.
Our paper is organized as follows. In Sec. II we de-

scribe the general network model and derive its stochas-
tic dynamics. Two different network realizations are in-
troduced in Sec. III. In Sec. IV we consider various topo-
logies: For two coupled two-level systems we demon-
strate how complex stochastic behavior may emerge. We
then go on to show how correlated quantum jumps may
explain the occurrence of large amplitude RTS's in small
electronic devices. Finally in Sec. V we give a short sum-
mary and discuss our results.

of the network diagonalize the network Hamiltonian
(2.1),

Hl [i„I ) =E(,
)

I [i„]) .

The corresponding eigenvalues are

(2.5)

N N

E(; ~=gE +—' g V" (2.6)
n=1 n, m =1

num

B. Coupling to environment: Stochastic dynamics

nf t 1~ 2~ . ~ m —1~m~m+1~. ~ N

Jn) ( l~ 2t '
& m —1&Jm~ +i&'''& N]

The transition energy between such two states is

(2.7)

In this section we derive the stochastic dynamics that
is performed by the network when it is coupled to the en-
vironment (e.g. , heat bath or light field). Stochastic quan-
tum dynamics can only occur in open systems: The dy-
namics of an isolated system is completely described by
the continuous time development of the Schrodinger or
Liouville equation; once the initial conditions are given,
there is no room left for any freedom of choice which
could allow for "quantum jumps. " As is well known,
however, this completeness does not, in general, carry
over to any subsystem: a truly nonclassical feature [26].

An ensemble of open quantum systems is conveniently
described by a generalized master equation for the re-
duced density matrix [21]. This equation is derived in a
standard way by starting with the Liouville equation of
the closed entire system (quantum system+environment)
and tracing out the irrelevant degrees of freedom of the
environment [21]. For an incoherent interaction with the
environment, which we will exclusively study here, the
generalized master equation reduces to a simple rate
equation (Pauli master equation) for the diagonal
density-matrix elements [27]. The environment then sim-
ply shows up in transition rates between the eigenstates
of the isolated quantum system.

The eigenstates of the quantum network are the prod-
uct states [i„[ (2.4). We restrict ourselves to
environment-induced transitions between any two states
[i„I and [j„],which differ in exactly one position, i.e.,

I
v,", li„,i ) (i„,i

1 =1n' m

(2.3)
fico, ( [i„I') = E,lm Jm n I I l, l~~. . . , lm 1,jm, lm + l~. . . , I+ I

I [i„]) = li„i,, . . . , i~) = li, ) li, )e .
oo li~) (2.4)

that form a (M =I )-dimensional basis in the state space

Without loss of generality we assume V,"; = V; ", . This
n m m n

diagonal interaction will be shown to be generic for the
cooperative stochastic dynamics that is exhibited when
the network is coupled to the environment (e.g. , heat
bath or optical fields). In Sec. III we will give examples
for physical systems that are approximately described by
this network model.

The product states

—E,
i i lrl &I +1) r l~ I

N
0 + y ( ymn ymn
'm~m jm n m n

n =1
num

(2.8)

which may be interpreted as a renormalized transition
energy between the states j and i of subsystem m, de-
pending on the neighborhood [i„)' = [i„,n Am ].
Ace, =E —E, is the transition energy for the isolat-

m~m ~m m

ed subsystem. The Pauli master equation of the open
quantum network then takes the form [20]
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d
P(l1&l2». . . 1N »r')=

dt

I
[R; ([1„I )p(l1, 12, . . . , lm 1,J, / +1, . . . »lN»r)

1 j =1

R—i; ([i„]')P(i l, i2». . . , i „i,i +„.. . »1N, t)] .
~m'm (2.9)

p([i„];t) is a diagonal element of the network density
matrix. The rate R; ( [i„I ) for the transition j ~i

'm~m

might depend on the states of all other subsystems [i„I'
as the transition frequency co; 1 ( [i„I ) is—due to the di-

agonal interaction —a function of the states of the other
subsystems. This is the origin of a complex network dy-
namics: If the interaction between the subsystems van-
ished, the Pauli master equation (2.9) would reduce to a
set of independent rate equations for each subsystem.

The diagonal density-matrix elements p([i„];t) in the
Pauli master equation (2.9) still evolve continuously in
time and therefore do not describe the stochastic dynam-
ics of the open quantum system. This is not surprising
since the density matrix describes a "mathematical" en-
semble, i.e., a hypothetical infinite ensemble of identical
copies, and not a single system: A diagonal density-
matrix element gives the probability to find an arbitrary
ensemble member in the corresponding state. Neverthe-
less, stochastic dynamics can now easily be derived from
this rate equation if one interprets the associated Markoff
process as the "real" dynamics of the single system [10]:
This process [i„(t)] is a "random hopping" in state
space, [i„],defined by the "hopping" rates R; ( {i„I').
This interpretation is consistent with the ensemble inter-
pretation of the Pauli master equation: The superposi-
tion of different realizations [i„(t) I

', 1 = 1,2, . . . , L of the
Markoff process gives the correct ensemble limit [28,29]

I

age in a metal-oxide-semiconductor field-effect transistor
(MOSFET) [4]) we get for the local energies entering Eq.
(2.2),

E
n

AE
1?

—aF s (3.1)

Pf1, Il + 1 —P n + 1 Il — JS,S +~ $ +I,S n n+1 (3.2)

Both the coupling to the external field and the interaction
among the defects might be realized by different static di-
pole moments of the two states s„. This model is
equivalent to the one-dimensional Ising model with
magnetic field 0=aF —AE /2 and exchange inter-
action J. J)0 means "ferromagnetic"- and J(0
"antiferromagnetic"-type coupling. The eigenenergies
(2.6) are

N

E&,
)

= Hg s„—J g—s„s„+, .
n=1 n =1

(3.3)

a is the coupling constant to the external field F. For
convenience, we use the "spin variable" s„=+1 instead
of labeling the states by natural numbers as in (2.2).

We now consider a one-dimensional chain of identical
defects with nearest-neighbor interaction that leads to an
energy decrease (increase) of amount J if the two neigh-
bors are in the same (opposite) state, i.e., the only non-
vanishing matrix elements in Eq. (2.3) are

1
L

p([i„j;t)= lim —g Q 5.
~ L, ,

'n'n'"' (2.10) For the transition energies (2.8) we get

where the stochastic dynamics ("quantum noise") is elim-
inated. Some limitations for the stochastic interpretation
are discussed in [10].

III. PHYSICAL REALIZATION
OF QUANTUM NETWORKS

A. Interacting two-level defects in a heat bath

The single defect n is described by a two-level system
(states s„=+1,energy spacing b,E). With an additional
linear coupling to a static external field F [e.g. , gate volt-

A'ro ( s ')= E($7l I S ),$2, . ~ . , Sm ],$,$m + ], . . . , S~ I

—E
+r

2Hs —2Js (s—+,+s, ) . (3 4)

The coupling to a heat bath leads to spontaneous "spin
fiips" s ~—s with a rate R, ( [s„]'). As it is unmis-

m

takable, co, ( [s„]') and also the transition rate R, ( [s„]')
m m

need only the one subscript s . The dynamics of this "ki-
netic Ising model" is governed by the rate equation (2.9)
specialized to [30]

X
P( 1» 2»'' »SN» ) X [ — ([ n] )P( 1» 2»'''» m —1& m»Sm+1»'''& N»dt m

m =1

—R, ( [s„) )p(sl, s2, . . . , s 1,s, s +1, . . . , SN, t)] . (3.5)

The principle of detailed balance that holds for systems in thermal equilibrium [31]states that each term in the brackets
on the right-hand side of (3.5) vanishes individually in the stationary case,

([ ] )P(S1» 2» ~
& m —1» m» m+1». » N) s ([ n] )P( 1» 2» . » m —1» m» m+1»» N) . (3.6)
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On the other hand, the stationary state (thermal equilibrium) is characterized by a Boltzmann distribution. Thus,
without modeling the heat bath in detail, Eq. (3.6) determines the ratio of the transition rates

R, ( [s„]')
R, ([s„]')

fico, ([s„]') '

k, T
2=exp s [H +J(s,+s +)]k, T (3.7)

A possible choice for R, ( [s„] ) consistent with Eq. (3.7) is the familiar Glauber model [30,32]

R, ([s„]')=~ = 1

m T0
1 —tanh s [H+J(s +,+s, )]

1
(3.8)

The parameter ~0 determines the time scale of the dynam-
ic process. As the transition rates only depend on the
two next neighbors, we use the notation R, (s „s +, ).

m

The stochastic dynamics [s (r)] becomes observable if
the two states s = —1 and s =+1 are connected —via
the associated electrostatic field —with the control of
different electric current states.

B. Charge-transfer quantum-dot array
in an incoherent electromagnetic field

Synthetic quantum networks should allow for more de-
tailed structural and dynamical control. Here we study
an array of charge-transfer quantum dots [33] (Fig. 1)
coupled via their dipole-dipole interaction [34] as a proto-
type system [19]. Quantum dots with such complex
internal structure have not yet been realized. However,
two-dimensional quantum-well structures of that type
[35] or simpler zero-dimensional quantum dots [16—18]
are already under experimental control.

The relevant spectrum of a charge-transfer quantum
dot consists of I =3 levels (see Fig. 1): The highest
valence-band states 1 and 2 are localized within different
potential wells; the lowest state in the conducting band 3
is delocalized over the whole dot. The Fermi level has to
be pinned between level 1 and the higher level 2 to allow
for an optically induced charge transfer between states 1

and 2 via the transient state 3. The specific spatial locali-
zation of the three states is associated with different static
dipole moments [34]

(3.9)d2= d& =de d3=0
e, points in the axial direction of the dot.

The dominant part of the interaction H„between two
quantum dots is the dipole-dipole term [34]

ynm 1

4~«OIR„ I'

X d; d; — (R„d; )(R„d, )
3

nm

(3.10)

R„ is the separation vector between the two dots and e
the relative dielectric constant of the embedding semicon-
ductor material.

The coupling to the electromagnetic field leads to tran-
sitions j ~i in subsystem m with a rate

R, ( [i„]')=W, +B, , U(co, ( [i„]')) . (3.1 1)

is the spontaneous and B;
&

U(co;
&

( [i„]') ) the
'm Jm 'm~m 'm~m

induced transition rate. B; =B, are the Einstein
'm~m ~m 'm

coefficients and U(co) the spectral energy density of the
electromagnetic field. W; is zero for co; i ( [i„]')(0,

'm~m 'm~m

i.e., 8'pi &3$ W3p 0.
The specific structure of the quantum dot is connected

with a hierarchy in the spontaneous transition rates due
to the small overlap between states 1 and 2 ("localization
selection rules" ) [33]. For our prototype quantum dot
typical orders of magnitude are [36]

CB VB 8'j3 = 8'~3 =10 s8 —1

&p~ 10 s
—i

(3.12)

03

E

C:

GaAs

Ga, „AI„As

In the following we will set 8',2=0. Typical values for
the transition energies are [34]

D D
D D D D D D D

c( E„(eV)

Ga 1- As1-y y

Go, „AI„As

spacer

p
—doped region

%CO ]3 46023 1 eV0 0

Ace&2= 10 meV,0

and for the dipole-dipole interaction (3.10) [34]

(3.13)

FIG. 1. Charge-transfer quantum dot and its spectrum. An
asyrnrnetric double-well potential is shaped in the valence band
(VB) and conducting band (CB). In the ground state, level 1 is
occupied and level 2 is free. Parameters v =0.4, x =Q. 2,
y =0.01.

ynm P™ y™ Pnm 0 01 meV (3.14)

for two quantum dots n and m with dipole moment d =8
e nm (see Fig. 1), axial direction e, perpendicular to the
separation R„with IR„ I

=100 nm, and a=12.
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Restricting ourselves to the essentials of the charge-
transfer dynamics defined by Eq. (2.9) we assume an elec-
tromagnetic field that fulfills the condition

B, U(co; (Ii„]'))(( 8'&3, &~3 (3.15)

(state 1)="s= —1, (state 2)="s =+1, (3.16)

this effective rate equation has the same form as (3.5)
with the effective rates

B, U(co, ([s„]'))
P7 +~ m m

(3.17)

for the transitions s ~—s . In order not to get con-
fused with the parameters of the first model, we have la-
beled the following abbreviations with a bar:

for all possible neighborhoods Ii„] and i j
=13,31,23, 32. A direct light field coupling between the
two states 1 and 2 can be neglected. The hierarchy (3.15)
implies an immediate decay of the transient state 3 after
excitation. With an adiabatic elimination procedure the
corresponding rate equation (2.9) then reduces to an
effective rate equation with only two states per subsystem
(see Appendix A). If we introduce the new nomenclature

pled by a "probing" light field combine to "effective"
states that are connected with different luminescence in-
tensities. The stochastic signal in this reduced effective
state space is thus mapped onto the luminescence intensi-
ty. Interpreting our states s =+ 1 as such effective
states gives the possibility to directly observe the stochas-
tic signal [s (t)] in this network realization.

To conclude, the stochastic dynamics of our two
quantum-network realizations is described by the same
type of rate equation (3.5), though with different expres-
sions for the transition rates (3.8) and (3.17), respectively.
The transition rates in the optically driven quantum-dot
array can, in principle, be adjusted at will as a function of
the transition frequencies co, ( Is„]')by the spectral ener-

m

gy density of the driving light field. The first model in
thermal equilibrium is restricted in its dynamical reper-
toire by the condition of detailed balance (3.7) and con-
trollable only by two parameters, temperature T and stat-
ic external field I'. Observation of the stochastic signal
[s (t)] exploits the fact that the physical properties of
state s = —1 and s =+1 are different, being connect-
ed, e.g. , with a high (low) current state or two different
luminescence intensities.

IV. RANDOM TELEGRAPH SIGNALS

8'23..= 8 1,
13 31. B

1

B23 =B32..—B1,
(3.18)

CO 13
— C03 1'.—CO

N

r), ([s„}')=r), —g c „s s„,
n =1
num

with

(3.19)

Cmn Cnm

d2

4~«OIR. I'

(3.20)

Especially note that 8' and co, denote transitions from
the transient state of the three-level model to the state s,
whereas 8', and co, belong to the transition s~ —s.
From (3.9) and (3.10) we get for the renormalized transi-
tion frequency (2.8)

The stochastic quantum dynamics can be observed
only in very refined experiments. The reason is that large
systems are usually approximations of a "mathematical
ensemble" (i.e., their Hamiltonian can be written as a
sum of noninteracting identical Hamiltonians) in which
the "quantum noise" is eliminated. A simple example is
a gas of atoms whose interaction can be neglected. Sto-
chastic dynamics will thus be observed only in very small
systems (where the ensemble consists of only a few or
even one member) or in larger systems where a certain in-
tersubsystem interaction leads to cooperative dynamics
and prevents the system from approximating a
"mathematical" ensemble. Experimental examples for
the first case are, e.g. , single ions in a Paul trap [1—3] or
single defects in a solid matrix [12,13,37]. The second
case seems to be realized in very small tunnel junctions
where large-amplitude current Auctuations are explained
by a correlated defect dynamics [6]. Our quantum-
network model even shows how a transition between a
single system and ensemble behavior may be controlled
by the environment.

A. Isolated subsystem: Normal RTS's

For an isolated subsystem, Eq. (3.5) reduces to

The reduction of the stochastic dynamics to a lower-
dimensional state space (here from three to two) has been
possible as a consequence of the time-scale splitting, lead-
ing to effective transitions composed of "elementary"
transitions. In other scenarios concerning single quan-
tum systems [1,25] such a time-scale splitting is exploited
to observe the stochastic signal. Elementary states, cou-

with

1
R, =

27 o

H
1 —stanh

B

for the thermal model (3.8) and

p(s;t)=R, p( —s;t) —R,p(s;t), s = 1
d
dt

(4.1)

(4.2)
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B,U(co, )8')+ 8
(4.3) & ~

for the optical model (3.17).
The corresponding Markoff process is a random hop-

ping between the two states s =+1 with hopping rates
R, . A computer simulation is shown in Fig. 2. This
"normal" [7] two-level signal is characterized by an ex-
ponential decay of the correlation function

'2

(s(t)s(t+r)) =
R i+Re

4R iRi+ (R, +R, )

Xexp[ —(R i+R i)lrl] (4 4)

B. Two interacting subsystems: Minimal model
for complex RTS's

We consider two coupled subsystems as a minimal
model for more complex stochastic dynamics beyond
normal RTS's. The dynamics of this network proceeds in
a four-dimensional state space and can be visualized easi-
ly (see Fig. 3). It is defined by four transition rates
R, (s2) (s, ,s~=+1).

For our optically driven model (3.17) the correspond-
ing four transition frequencies are n~. (sz) =ru, —Cizsis2

1 1

as shown in Fig. 4. We assume that they are all different
and that the rates can be adjusted independently by the
spectral energy density function U(ni). Within this large
parameter space we restrict ourselves to the case

R, (
—1)=R,(1):=a

R i(1)=R, (
—1):=Ic2 .

(4.5)

For K, )K2 we have a "ferromagnetic" coupling of the
two subsystems as can be visualized in Fig. 3 where the

This result is valid for the stationary case, where the
correlation function does not depend on the absolute time
I; but only on the time difference ~. Usually observed
two-level RTS's, as, e.g. , in fluorescence intensity [1] or
electric current [9], are normal RTS's, and one is thus
lead to the conclusion that the underlying quantum dy-
namics is a stochastic two-point process. However, as
will be shown in the next section, cooperation between
single quantum systems may lead to "anomalous" two-
level RTS's, as found, e.g. , in small MOSFET's [14].

FIG. 3. Visualizing the stochastic dynamics of two coupled
subsystems in the four-dimensional state space [s„s2f. The
thickness of the arrows indicates the magnitude of the transition
rates. Ferromagnetic coupling for K& )K2.

thickness of the arrows denotes the magnitude of the
transition rates. The two subsystems tend to stay in the
same state in this case. As immediately seen from this
figure, the condition of detailed balance is fulfilled for the
choice (4.5): A necessary and sufficient condition is that
the product of the transition rates over every closed loop
in state space is equal for both directions [38]. Another
evidence is that this choice of transition rates can be real-
ized also by our thermal model: For N =2 subsystems
and H =0 we get from (3.8)

= 1K)—
270

1
K2—

2 T0

1+tanh J
k, T

1 —tanh
J

k, T

(4.6)

J'X//'X

r),(-i) a,(i)
$2= 1

Ferromagnetic coupling K, & K2, here, is expressed by the
more conventional statement J )0.

Stochastic traces s, (t) and sz(t) are depicted in Fig. 5

for different parameters K, /K2 1. For K, =K2 the two
subsystems are not coupled and jump independently. In-
creasing the ratio K&/K2 leads to a correlation of jumps.
For K& )&K2, the ferromagnetic order is established on the
fast scale 1/K& which on the slow scale 1/K2 looks as en-
trained jumps of the two subsystems. This result will be
generalized in Sec. IV C to a chain of X subsystems.

Stationary correlation functions can be obtained by
time averaging over the stochastic signal or directly by
solving the corresponding master equation [30]. The re-
sult is

—1

0 2 4 8 10 12 14 16 1S 20
time t (a ')

$2= 1
2C

$ = —1
1

$, =1

FIG. 2. Random telegraph signal s(t) of an isolated subsys-
tem. Parameters R, =R, =~.

FICx. 4. Dipole-dipole renormalization of the unperturbed
energy levels (dashed) of subsystem 1 due to subsystem 2.
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teraction. Figure 6 shows stationary sample traces for
the macrovariable $(t)=+~, s„(t) and the thermal
transition-rate model (3.8) with periodic boundary condi-
tions, %=10, H=0, and different values J/k sT. For
J/k&T=O the transition rate R, (s &, s +&) does not

m

depend on the state of the two neighbors and each sub-
unit changes its state independently. Increasing J/k~T
(ferromagnetic coupling) leads to a cooperative dynamics
of the subunits. The Auctuations become larger and for
large enough J/k~ T only two-state fluctuations between
the extrema S =+N remain. The increase of the relevant
time scale as seen in Fig. 6 will be explained by Eq. (4.24).

If we assume that any transition s ~—s of a defect
induces the same current change, the RTS of the current
should map linearly upon the macrovariable S(t). Note
the striking similarity between these simulations and
their temperature dependence with the observed current
fluctuations [6]. A comparison of the qualitative
behavior leads to an estimate of our model parameter J.
Here we obtain as an order of magnitude J= 10 meV. Of
course, strictly speaking, only time averages as correla-
tions functions should be compared and not time sections
of a realization of the stochastic process itself. Therefore,

K)
exp( —2I~2~r )

KI +K2

K2+ exp( —21~, ~r~) .
K)+K2

(4.7)

10

—10

r
7

(a)

For K)WK2, the correlation in either subsystem no longer
decays just exponentially, the RTS's are anomalous due
to the coupling between the subsystems. The cross corre-
lation between the two subsystems is

K)
(s, (t)s2(t+r)) = exp( —2a2~r~)

K) +K2
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pI. I
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K] +K2

(4.8)
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4K)(S(t)$(t +r) ) = exp( —2a~~r~ ) .
K)+K2

(4.9)

C. Linear chain: Large-amplitude RTS's

We examine the stochastic dynamics of a linear chain
of localized two-level systems with nearest-neighbor in-

For a, ) 1~2 (ferromagnetic coupling) it is positive, for
K) & Kp (antiferromagnetic coupling) it is negative, and for
K) =Kg it vanishes as expected for any ~. For ~=0 and in
the limit K& 0)Kp we get maximal correlation
(s, (t)s2(t) ) = 1, in the limit I~, &&1~2 maximal anticorrela-
tion, (s, (t)s2(t) ) = —1. The fact that all correlation
functions are a sum of exponentials is a consequence of
the detailed balance condition. In this case the eigenval-
ues of the so-called relaxation matrix are all real [31].
For later reference we, finally, include the correlation
function for the variable S =s&+sz, which is obtained
from (4.7) and (4.8),

10 ~
5
0.

r—
(c)

0.0 0.5 2.0

10.

—10

0.0 0.5 1.0 1.5 2.0
jp t / wo

2.5 3.0

FIG. 6. Sample traces S(ti g„s~„(t)=for the stochastic
model (3.8). Chain length N=10, external field H =0. (a)
J/k&T=O, (b) J/k~T=0. 8, (c) J/k~T=1. 6, (d) J/k&T=2. 4.
Transition from uncorrelated noise to cooperative two-level
fluctuations.
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much more experimental data are needed.
Figure 7 shows on ever finer time scales how this

large-amplitude two-level signal emerges on a coarse-
grained scale as a consequence of correlated jumps of the
single subsystems. For HWO, this large-amplitude RTS
becomes asymmetric (Fig. 8), which also will be explained
by Eq.(4.24).

The stationary correlation function (S(t)S(t +r)) can
be calculated from the time-dependent solution of the
rate equation (3.5) [30],

10

—10

0.0 0.5 1.0 1.5 2.0
10 t /wo

2.5 3.0

FIG. 8. Asymmetric large-amplitude two-level random tele-
graph signal. H/J =0.02, J/k~ T =2.4.

(S(t)S(t+&))= g g SS'p({s„j)p({~„'j;r) (4.10)

with S =g„s„and S'=g„s„'. As above, p({s„j) is the
stationary solution of the rate equation. p{s„'j;r) is the
time-dependent solution for the initial condition
p( {s„'j;0)=ii„6,; it can be interpreted as the condi-

tional probability that the system is in the state {s„'j at
time r if it was in state {s„j at time 0. For H =0, the
sum over {s„'j in (4.10) can be calculated analytically
[30],

X S p({s j'r) Sexp
I stt I

7 Q

(4.1 1)

(S(t)S(t +r) ) = g S p( {s„j)exp —(1 —y)2

Is„ I
7Q

=(S )exp —(1—y)2

TQ
(4.12)

Thus the noise spectrum of S, i.e., the Fourier transform
of the correlation function (4.12), turns out to be a simple

with y=tanh(2J/k&T). This sum is the time-dependent
expectation value of the macrovariable S' that decays
simply exponentially. Inserting this result into (4.10)
gives

Lorentzian shape [7] of width ( 1 —y ) /r0 that decreases
with increasing parameter J/ks T. The expectation value
(S ) of the Ising chain with periodic boundary condi-
tions can be calculated by means of the transfer matrix
method [39]. The result is

( 2) (1 —g )(1+g)
(I+&~)( I —~)

(4.13)

with g = tanh( J/k~ T). As the stationary expectation
value of S vanishes for H =0, ( S ) gives the mean-square
deviation of S. For J/k~ T =0 (g=0) we obtain the re-
sult of N independent subsystems (S ) =N. In the limit
J/k&T~ oo(rt~l), the fiuctuations become as large as
the system size N, i.e., (S ) =N . For N =2 and replac-
ing J by J/2 (no periodic boundary conditions in Sec.
IV B), Eq. (4.9) is recovered from (4.12) and (4.13).

Finally, by deriving an eAective two-level rate equation
we show that the large-amplitude two-level signal that
emerges for large enough parameter J/kB T again
represents a normal RTS: The ensemble of correlated
two-level subsystems behaves as a single two-level quan-
tum system in this limit. For the case H =0, to which we
restrict ourselves presently, the stationary probabilities
p(S =Ns) for the "macroscopic" states
{s,s, . . . , s j(s =+1)are [39]

10.

0

2 cosh
J

T

NJ
exp k, T

N

+ 2 sinh
J
BT

N

(4.14)
—10

3.100 3.105
10 t/T

3.110
The condition for the appearance of large-amplitude
two-state fluctuations

10.

0.
L

(b)

1 —[p(N)+p( —N)] «1
then turns out to be equivalent to

N «N,

(4.15)

(4.16)
—10

3.103 3.104
10 t / wo

3.105
with

ln tanh
J

tBT (4.17)

FIG. 7. Finer time scale of the first large-amplitude jump in
Fig. 6(d). It is the result of a correlated stochastic dynamics of
the subsystems on a faster time scale.

In the thermodynamic limit N~ ~ g has the significance
of a correlation length [39]
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r(s s +„)=exp (4.18)

As a consequence. large two-state Auctuations are observ-
able in finite systems if the correlation length is larger
than the system size N.

In conjunction with Eq. (3.8) condition (4.16) implies
an order of magnitude splitting in the transition rates,
N R, (s, s),N R, ( —s, —s)

((R, ( —s, s), R, (
—s, —s),R, (

—s, s),R, (s, s) .

d
dt

p(Ns;t)=R' ~,p( Ns—;t) R~—,p(Ns;t) . (4.20)

Here, only H(& J has to be presumed. The hierarchy
(4.19) is the analog on to the condition i&&((a., in Sec.
IVB. Equation (4.19), in turn, allows an adiabatic elim-
ination procedure in Eq. (3.5) resulting in the desired
two-state rate equations for the macroscopic states
S =Ns (see Appendix B),

(4.19) The effective transition rates RN, are

2NA(s)R, (s,s)R, ( —s, —s)[R, ( s, s) —R, (
——s, s)]

RNs R, (
—s, —s)I (s)A(s) —R, (s, s)1 (

—s)A( —s)
(4.21)

where

I (s)=R, (s,s)+2[R, ( —s, s) —R, (
—s,s)] (4.22)

I

lent agreement. For Nl H /ks T (( 1 we obtain from
(4.21) with the transition-rate model (3.8)

4J +NsH
+Ns +Oexp

B
(4.24)

R, ( —s, s)

R, (
—s, s)

(4.23)

~N, =1/RN, is the mean time spent in the state Ns. Fig-
ure 9 compares the results for ~N, from our simulations
with the adiabatic approximation (4.21) and shows excel-

10

10

(a)

10

10 ~ I

2.0 2. 1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
J / I&ET
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t-

, (b)

10 I I

—4 —3 —2 —1 0
10 H/J

FICx. 9. Mean time ~+~ spent in the macroscopic states
S =+N. Comparison of the simulations (O, ~+&', ~,~ &) with
the adiabatic result (solid line) (a) as a function of J/k~ T with
pH/J =0.02, and (b) as a function of H/J with J/k~ T =2.5.

The exponential temperature and external-field depen-
dence of this model perfectly agrees with experimental
observation [4] for ra= 10 s and J=10 meV; the sys-
tem size N and. the other parameters AE and u would
have to be obtained from more detailed experimental
data. Whereas this exponential dependence is usually ex-
plained as a thermally activated switching of a single de-
fect state [7,40] (i.e., by a temperature dependence of pa-
rameter ro), here it is a consequence of the interaction
among the defects.

Finally, we show how the thermal realization (3.8) can
be "simulated" by the optical one. At first sight, the
long-range dipole-dipole interaction (3.20) seems to
prevent such a mapping as the transition rate (3.8) de-
pends only on the three possible states s +,
+s,=0, +1 of the two nearest neighbors. However,
Eq. (3.19) defines for each of the two values s =+1 three
nonoverlapping frequency bands where the central fre-
quencies given by the next neighbors are separated by
b,co=2CO (nearest-neighbor dipole-dipole interaction Co)
and all other subsystems form the "inhomogeneous"
bandwidth 6co=4CO g„z I/n =0.808CO (cf. Fig. 10).
If, additionally, the unperturbed transition frequencies B&

and co, are separated well enough,

IBi —co —il )2&co+5co=4. 808CO, (4.25)

can then be adjusted independently by taking U(co) to be
constant over each frequency band. The optically driven

all six frequency bands mutually do not overlap and the
six transition rates depending only on the states of the
nearest neighbors

R, (s, s),R, (
—s, —s), R, ( —s, s) =R, (s, —s),

s =+1 (4.26)
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model may "simulate" the thermal model in this case.
The orders of magnitude (3.13) and (3.14) show that the
condition (4.25) is fulfilled for our model system. The sig-
nal S (t) could be monitored in the resonance fluorescence
signal caused by an additional "probe" light field (cf. Sec.
III B).

V. SUMMARY AND DISCUSSION

Our quantum-network model is rather general and not
based on a special scenario; it can be applied to driven
systems and systems in thermal equilibrium alike. It
demonstrates how large-amplitude few-level RTS's
emerge through the cooperative dynamics in an ensemble
of interacting quantum subunits. The main prerequisite
for the emergence of correlated jumps is an order of mag-
nitude difference in the transition rates (4.19) leading to a
kind of avalanche dynamics. Those correlated jumps are
a signature of mesoscopic quantum behavior in the sense
that the underlying stochastic quantum dynamics be-
comes visible on the mesoscopic scale via a collective
variable S =g„s„.

FIG. 10. Frequency renormalization in the linear chain. The
two nearest neighbors lead to a splitting h~ of the transition
frequencies 6, of the isolated subsystem m. The other subsys-

m

tems give the "inhomogeneous" bandwidth 5co.

Our model can explain the appearance of low-
temperature few-level fluctuations in the current noise of
small tunnel junctions. The model parameters obtained
by fitting the experimental data are of reasonable order of
magnitude. Analogous effects in the optical properties of
molecular-structured materials are predicted. The
dynamical repertoire should even be larger in this driven
system than in the thermal system, which is restricted by
the detailed balance condition. In an array of charge-
transfer quantum dots complex random telegraph noise
and novel fluctuation phenomena should be controllable
by an external light field. It should lead, e.g. , to very
unusual luminescence properties.

Only for simplicity and in order to demonstrate the
generic nature have we focused on two states per subsys-
tern and nearest-neighbor interaction; this has allowed us
to exploit the otherwise superficial similarity with the Is-
ing model. The appearance of large-amplitude RTS's
does not sensitively rely on the translational invariance of
our model nor on the periodic boundary conditions.
Even spatial parameter fluctuations (to be expected in a
defect gas [6]) will not destroy the two-level signal as long
as the (now spatially dependent) transition rates obey Eq.
(4.19). However, those fluctuations are expected to modi-
fy the noise spectrum. Preliminary numerical simula-
tions for a two-dimensional lattice indicate that large
RTS's are not restricted to one-dimensional models ei-
ther: As the RTS occurs for conditions opposite to the
thermodynamic limit, corresponding dimensionality
e6'ects as for phase transitions should not be expected.
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APPENDIX A

The unequality (3.15) that implies an immediate decay
of the transient state 3 after excitation leads to the fol-
lowing hierarchy in the occupation probabilities:

p(l1» l2, . . . , /N', t) ))p(/1»/2» ', 1»n —1, 3» lm +1». . . » LN» t)

))p(/1»/2». . . » /1 1, 3, 1/+1». . . , lm 1, 3, lm+1». . . , /N»t) ~). . .
» (Al)

where the i„here, take only the values i„=1,2. Each occupied state 3 reduces the occupation probability by one order.
The system of rate equations (2.9) can then be approximated "up to first order" by

N

P 1» 2»» N» X [ i 3P 1» 2»»»n —1»m+1»dt
m =1

Bi 3U(COP 3( [in ] '))P(i 1, i2, . . . , im»imim +». ». . » iN»t)] (A2)

for the elements containing no occupied level 3 and

2

P(/1»l2» ' ' »lm —1»3» m+1» ' ' » N» ) g [ 3 1 3 [ n I P(ll»/2». . . » m l»jm»/m+1». . . ' N» )

i

/ ~W 3p(l1»l2» ', lm —1»3»/m+1». . . » /N, t)]
~m

(A3)
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for the elements containing exactly one occupied level 3. The hierarchy (3.15) allows us to adiabatically eliminate the
"fast" variables p(i l, i2, . . . , i 1, 3,i +1, . . . , i&, t) by setting the time derivative in Eq. (A3) equal to zero. The result
Is

N

p(l 1, l2). . . , llv) t)—
dt

m =1

armI

8' 3U(&' 3( [ ln ] ))p(l 1) l2) ' ' ) lm —1) lm)l)n +1) ' «11V) t)

+7m
1 3

i 3 (~i 3([ n] ))P( 1) 2)''') m —1» m) m+1)''') N t))yam + ~m
13 23

(A4)

with i =3 i —. Introducing the new nomenclature (3.16) and (3.18) then leads to the more comprehensive form (3.5)
with the etfective rates (3.17).

APPENDIX 8

The transition-rate hierarchy (4.19) means that the formation of a cluster that begins with the "flipping" of one sub-
system in the homogeneous state is very unlikely. This implies, in turn, a hierarchy in the occupation probabilities

p(1, 1, . . . , 1;t),p( —1, —1, . . . , —1;t)

»p( 1, 1, . . . , 1, —1, —1, . . . , —1, 1, 1, . . . , 1;t)

++P(11 1 1 1 . 111, , 1, 1, 1, . . . , —111,. . . , 1t)))
(81)

Each cluster reduces the occupation probability by about one order. Up to first order, the rate equations (3.5) can then
be transcribed into rate equations for the probability p(S;t) (S = N, N+—2, . .—. , N) that the chain (periodic bound-
ary conditions) consists of two clusters, one with (N+S)/2 subsystems in state 1 and the other with (N —S)/2 subsys-
tems is state —1,

p(Ns; t) =R, (s, s)p((N —2)s; t ) NR, (s,s)p—(Ns; t),d
dt

d
p((N —2)s; t ) = 2R, (

—s, s)p((N —4)s; t )+NR, (s, s)p(Ns; t)j
—[R,(s,s)+2R, (

—s, s)]p((N —2)s;t), s =+1
d

p(S; t) = 2R1( —1, 1)p(S +2; t)+2R 1(
—1, 1)p(S —2;t)

(82)

(83)

—2[R 1( —1, 1)+R1(—1, 1)]p(S;t), S=—N+4, —N+6, . . . , N —4. (84)

(85)

with

The variables S =+N (82) are slowly damped with NR, (s,s). The adiabatic solution [dp(S;t)/dt =0] for the fast vari-
ables S = —N+2, —N+4, . . . , N —2 is from (83) and (84),

R 1(
—1, 1 )

p(S;t)=a(t) +b(t),
R I( —1, 1 )

R, (1,1)I (
—1)p(N;t) R, (

—1, —1)1 (l—)p( N;t)—
a(t)=N

R , (1, 1)I ( —l)A( —1)—R, ( —1, —1)I (1)A(1) (86)

and

R, (
—1, —1)R,(1, 1)A( —1)p( N;t) —R, (1, 1)R—, (

—1, —1)A(1)p(N;t)b(t)=N
R , (1,1)I (

—1)A( —1)—R, ( —1, —1)1 (1)A(l) (87)

For the expressions for I (s) and A(s) see Eqs. (4.22) and (4.23). Inserting (85) for S =(N —2)s into Eq. (82) eventually
gives the two-level rate equation (4.20).
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