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Domain-growth scaling in systems with long-range interactions
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The growth kinetics of a system quenched into the ordered phase from high temperatures is con-
sidered for systems with power-law interactions of the form 1/r"+, with 0&o.&2. For o. &1, the
characteristic scale L (t), which describes the growth of order at late times, is predicted to obey the con-
ventional Lifshitz-Slyozov and Lifshitz-Cahn-Allen laws, L (t) —t ' and t ' for conserved and noncon-
served scalar order parameters, respectively. For o. & 1, the results L(t)-t' ' + ' and t' "+ ', respec-
tively, are obtained. For a vector order parameter, we find L(t)-t' ' + ' and t' for conserved and
nonconserved fields, respectively, for all o & 2.

PACS number(s): 64.60.Cn, 64.60.My

I. INTRODUCTION

When a system described by a scalar order parameter
is quenched from the homogeneous high-temperature
phase into the two-phase region, domains of the two pure
phases are formed and coarsen with time [1]. The late
stages of domain growth are well described by a scaling
phenomepology [2]: the equal-time two-point correlation
function has the form

C(r, t)—:(P(x, t)(C)(x+r, t)) =f(r/L(t)), (1)

where

HLR [p]= (JL~ /2)

x fd" f d x'[P(x) —P(x')]'/~x —x'~
(3)

is the long-range part of the Hamiltonian. The short-
range part is typically taken to have the Ginzburg-
Landau form

HsR[$]= fd [x(V'P) /2+V(P)], (4)

where P is the order-parameter field, L (t) is a charac-
teristic length scale ("domain scale" ) at time t after the
quench, and f (x) is a scaling function. The angled
brackets in (1) indicate an average over initial conditions
and thermal noise.

For systems with purely short-ranged interactions, the
form of the growth law for L(t) is well understood:
L(t)-t'~ for a conserved order parameter [3—5], while
L(t)-t'~ for a nonconserved order parameter [6,7].
For nonconserved fields, the t' growth follows simply
from the observation [7] that the domain-wall velocity is
proportional to the local curvature. A typical velocity is
of order dL/dt while a typical curvature is of order 1/L.
Equating these gives L(t)-t' . For conserved fields,
the t' growth law can also be derived from intuitive ar-
guments [3]. For this case, however, a renormalization-
group (RG) approach, based on the assumption of scal-
ing, is available [4,5] and will be employed.

In this paper we generalize these domain-growth laws
to systems with long-ranged interactions, falling off with
distance as r ' + ', where d is the spatial dimension of
the system. A suitable coarse-grained Hamiltonian func-
tional is

H [4 ]=HLR [4') +HsR [0] (2)

where V(P) has a local maximum at /=0 and global
minima at /=+go. The precise form of HsR is, however,
unimportant in what follows.

For a conserved order parameter, the RG treatment,
discussed in detail below, leads to the prediction [4,5]
z =d +2—y for the dynamic exponent at the T=0 fixed
point, " where y is the scaling dimension of the Hamil-
tonian (or minus the scaling dimension of the tempera-
ture T) at the T=O fixed point that controls phase order-
ing. Invariance of the domain morphology under simul-
taneous rescaling of length and time, I.~bL, t ~b't, im-
plies the growth law L (t)-t'~'. The growth exponent is
simply 1/z, so determining the growth law reduces to
finding y. For short-range interactions, y =ysR =d —1

follows from elementary arguments. It will be shown
that the long-range part of the Hamiltonian scales with
exponent yLR =d —o [essentially, this is just power
counting on Eq. (3)]. Thus long rangeinter-actions areir-
releuant for cr) 1, and z=zsR=3. For o (1, however,
J„R is relevant and z=zLR =2+0.. We conclude that
L(t)-t' for o ) 1, and -t' ' + ' for cr ( l.

For nonconserved fields, no exact RG treatment is
available [5]. However, the growth law may be simply
derived as follows. The wall energies in a domain
volume" I ", associated with the short- and long-range
parts of the interaction, scale as L ' and I. ", i.e., as
L ' (which is just the wall area) and as L", respec-
tively. The force per unit area acting on the domain
walls scales as the energy density, giving a force per unit
area of order I. ' and L for the short- and long-range
parts of the interaction. Again, the long-range interac-
tions are only relevant for o. ( 1. For o. ) 1, the wall cur-
vature provides the dominant driving force. Equating the
driving force to the typical wall velocity dL/dt gives
L(t)-t'~ for o ) 1 and L(t) —t' "+ ' for o (1.

The paper is organized as follows. Section II contains
a brief outline of the RG treatment for the conserved
case. Further details can be found in Refs. [4,5]. It is
noted that the RG approach gives (up to an overall con-
stant) the amplitude in the expression for L (t) as well as
the growth exponent. The T dependence of the ampli-
tude for T +To (where Tc is the crit—ical temperature) is
particularly relevant, in view of the requirement that it be
consistent with conventional static and dynamic scaling
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near Tc. All the results derived below satisfy this check.
The nonconserved case is discussed in Sec. III. It is em-
phasized that, for long-range interactions, the growth law
cannot be derived from a naive dimensional analysis of
the equation of motion. The corresponding results for a
vector order parameter, both conserved and noncon-
served, are given in Sec. IV. The paper concludes with a
summary of the results.

II. CONSERVED SCALAR ORDER PARAMETER

We start from the equation of motion

dPk/dt = —A, k "(5H[P]/5$ k), (5)

The utility of RG methods is suggested by the empirically
observed scaling form (1) for the two-point correlation
function, and the observation that the whole "domain
morphology" seems to scale with L (t).

In the RG approach [4,5], we imagine eliminating
modes pk with /k /b (k (A, and then rescaling momenta,
times, and fields according to 4=lr'/b, t =b't', and

pk &&(b't')=b ~ pk. (t'). In addition, the coupling con-
stants defining the coarse-grained fixed-point Hamiltoni-
an pick up a factor b~ from the RG transformation. Di-
viding through the coarse-grained equation of motion by
a factor b " to reinstate the right-hand side to its pre-
vious form, and suppressing the primes, we obtain

b ~+" '( I/Ak")(dPk/dt) = —(5H[/]/5$ k) .

In Eq. (7) we have omitted additional terms, generated by
the RG transformation, which do not have the same form
as the terms in (6). In particular, one expects a term of
the form (1/I )dpk/dt to be generated. However, there
can be no additional terms of the form k "dpk/dt since
this is singular at k =0 and such terms cannot be generat-
ed by the elimination of "hard" modes. It follows that,
just as in critical dynamics [8], the renormalization of A, is
trivial, namely,

(1/A, )'=b" ~ " '(1/A, ) . (8)

Provided 1/k is nonzero at the fixed point, therefore, we
have immediately

z —0+p —y (9)

We note that for p sufficiently small, 1/A, will iterate to
zero at the fixed point of the nonconserved system. This
will happen for p &z„,+y —d, where the subscript nc in-
dicates the nonconserved fixed point. Then the conserva-
tion law will be irrelevant [5] and z will be given the re-

where pk is a Fourier component of the order-parameter
field, and @=2 for a conserved order parameter. Since
keeping p arbitrary presents no extra difficulties, we will
do so and set p=2 in final results. Note that, for
0(p(2, Eq. (5) interpolates between (standard) con-
served [8] and nonconserved fields (although the field is,
of course, conserved for any p, )0). We have omitted a
Langevin noise term in (5), since it can be shown to be ir-
relevant to the asymptotic scaling behavior [4,5]: the late
stage scaling is controlled by a T=O fixed point. After
dividing through by kk", we obtain

(1/Ak")(dPk/dt)= —(5H[P)/6$ k) .

i.e.,

JLR =b" JLR,

yLR

(12)

(13)

The point here is that, as in the renormalization of I/A, ,
there are no nontrivial contributions from coarse grain-
ing because JLR multiplies a term singular in k as k —+0.
The analogous argument at the critical fixed point [9] is
responsible for the result gLR=2 —o. ; the extension to the
T=0 fixed point has been discussed previously in another
context [10].

Comparing (10) and (13) it follows that Ji a is ir-
relevant at the short-range fixed point for 0.) 1, and
relevant for o. & 1. In the latter case, the long-range in-
teractions drive the system to a new long-range fixed
point at which the whole Hamiltonian scales with ex-
ponent y„R. This follows from the exact recursion rela-
tion (12): provided JLa is nonzero at the fixed point, Eq.
(12) holds.

Inserting these results into (9) gives the final result
T

p+1, o) 1

p+0, 0 &1 (14)
L

For the case p=2, corresponding to standard diffusive
transport, one has z=3 and 2+0. for o. ) 1 and o. & 1,
corresponding to growth exponents of —,

' and I/(2+cr),
respectively.

The above approach may readily be extended to gen-
eral temperatures T & Tc. Thermal fluctuations on scales
up to the equilibrium correlation length g lead to a reduc-
tion of the coarse-grained Hamiltonian, on scales larger
than g, by a factor of the surface tension X, and of the
coarse-grained field variable by a factor of the equilibri-
um order parameter M. Thermal Auctuations do not re-
normalize the transport coefficient A, . The asymptotic
behavior [L (t) ))g] for general T is obtained by insert-
ing these factors into the T=O Langevin equation (5).
Absorbing all the factors into an effective X yields
A(L)~(X/M )A, on scales L ))g. The "domain scale"
L (t) is thus given by L(t) =[A,( oo )t]'~', or, specializing

suit for the nonconserved system (see below) instead of
(9).

It remains to determine the exponent y, which is the
scaling dimension of the Hamiltonian at the T=O fixed
point. For short-range interactions, one has simply, for a
scalar order parameter,

ysR =~ (10)

since at T=O the energy cost of reversing a coarse-
grained local variable (i.e., creating a domain of reversed
spins) in the ground state scales as the surface area. The
effect of coarse graining on the long-range part of the
Hamiltonian is simply obtained either by power counting
in real space or by writing HLR in terms of the Fourier
components of the field:

HLRI 0)—JLRX k 0k% —k .
k

Under the RG length and field rescalings, HLR retains
the same form but with new coupling constant
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to p=2,
(A,Xt/M )', o. &1

(~X, r /M') "~'+' o. &1 . (15)

For the case o. & 1 we have to define what we mean by the
"surface tension" XLR. For short-range interactions X is
defined in terms of the free energy cost AF associated
with a domain wall of area A, separating domains of op-
posite magnetization in a system of length L ))g, by the
relation AI' =X A. For long-range interactions, with
o (1, the free energy cost is no longer independent of L
for L &)g. Instead, one has AF(L) —XLRL for a sys-
tem of linear dimension L, consistent with (12) and the
interpretation of b,F(L) as a "coarse-grained coupling at
scale I.." The same line of reasoning gives, on setting
bF(g)=O(1), the result XLR-g ' ' as the generaliza-
tion to o. & 1 of the usual Widom-Josephson scaling law

g
—(d —I)

We can now check that (15) is consistent with critical
dynamic scaling as T~Tc. Using the above scaling
forms for X and XLR, together with M —g
gives L (t)-g(t/g ')'~ for o ) 1, and L (t)
—g(t /g' ')' ' + ' for 0 ( 1, where z, =4 ri is the —critical
dynamic exponent for a conserved order parameter [8].
These forms for L (t) are exactly as expected from critical
scaling.

We conclude this section by recalling that, for general
p, the result (14) holds only when (14) predicts a z larger
than the corresponding result for a nonconserued field.
Otherwise, the conservation law is technically irrelevant
and the nonconserved results are recovered asymptotical-

III. NONCONSERVED
SCALAR ORDER PARAMETER

( I/r)(ay/ar ) = —(Sa/Sy) . (16)

While the thermal noise has been omitted from (16), its
effects can be included, as in the preceding section, by
coarse graining to a scale larger than the correlation
length. At this scale, the temperature is effectively zero,
the Hamiltonian acquires a "surface tension" factor X,
and the field a factor M, the equilibrium order parameter.
In contrast to the conserved field, however, the kinetic
coe%cient I also acquires a temperature dependence
after coarse graining [5,8].

Following Allen and Cahn [7], we can estimate the
left-hand side of (16) in the vicinity of a domain wall by
introducing a coordinate g normal to the wall. Then

(ay/ar ), = —(ap/ag ), (ag/ar ), . (17)

Now (ag/at)& is just the normal velocity v of the wall.
Also (ap/ag), =M/g, the change in p across the inter-
face divided by its width. Thus we estimate

The essence of the argument for the nonconserved case
was given in the Introduction. In this section we give a
little more detail, and generalize the results to all T & Tc.

The equation of motion for nonconserved fields is the
p =0 version of (6). In real space it reads

(ay/ar ), -(M/g)v . (18)

The right-hand side of (16) can be estimated as the excess
energy density divided by the order parameter. The ex-
cess energy in volume L (t) scales as XL (t)», giving con-
tributions of order XL (r) ' and XLRL (t)d ~ associated
with the short- and long-range parts of the Hamiltonian,
respectively. The short- and long-range parts dominate
in the scaling limit for o. ) 1 and o &1, respectively, so
the right-hand side of (16) is estimated as (after coarse
graining to include thermal fluctuations)

X/ML, o &1
(19)XLR/ML, cr (1 .

Using the estimates (18) and (19) in the equation of
motion (16) gives

I Xg/M L, 0. ) 1

1 XLRg/M L, o (1, (20)

and finally

(r Xg r/M')'", ~&1
(rx, gi/M')'"'+ ~ o &1. (21)

For a conserved order parameter, the growth law can
be obtained by simply replacing (10) by the equivalent re-
sult for vector fields, namely,

sR d 2 (22)

This standard result follows from the fact that the energy
of an imposed rotation over a scale L is distributed uni-

For T~ Tc we can check our results against conven-
tional critical scaling. Using the scaling forms given in

Sec. II, and also [8] I —g ', we find

L (t)-g(t/g ')' ' in both regimes, consistent with critical
scaling, with z =2 for o. & 1 and z = 1+o. for o & 1.

Equation (21) contains our main results for noncon-
served scalar fields. We note that these results could not
have been obtained from a naive dimensional analysis of
(16), which reads in Fourier space (up to constants)
diaz/dr = —I (k +JLRk )Pz, plus nonlinear terms.
Naive power counting, ignoring the nonlinear terms,
would predict L (t)-t' for o (2, and a crossover value
of o. equal to 2, both of which are incorrect for scalar
fields. In this sense, the fact that just such a naive
analysis gives the correct growth law for short-range in-
teractions is both fortuitous and misleading.

In order to make the growth laws (21) more physically
transparent, it is instructive to consider the collapse of a
single spherical domain of, say, negative order parameter,
in an infinite sea of positive order parameter. We take
the initial radius R (0) of the domain to be very large
compared to the width g of the domain wall. Then the
growth laws (21) suggest that the time for the domain to
shrink to zero should scale as [R (0)] and [R (0)]'+ for
o. ) 1 and o & 1, respectively. These results are verified in
the Appendix.

IV. VECTOR FIELDS
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formly over this length scale (rather than concentrated in
a domain wall), so that the associated energy density is
given by the "naive" L coming from the gradient term
in HsR [11], giving an overall energy scaling as L
On the other hand, yiR is still given by (13). For vector
fields, therefore, long-range interactions are relevant for
all cr & 2. Substituting (22) in (9), with @=2, gives the re-
sult

4, cr)2
2+cr, o. &2 . (23)

Thermal Auctuations can be included much as for scalar
fields, scaling H by the "spin-wave stiffness" p, (using
magnetic language) and P by M. The result is

(Ap, t/M )'i, o &2
L(t)- .

(ApiRt/M )' ' + ' cr &2, (24)

V. SUMMARY

The effect of long-range interactions on domain growth
in phase ordering systems has been determined. Naive
dimensional analysis of the equation of motion would
suggest that, if the interactions fall off with distance as
1/r +, long-range interactions are relevant for all o & 2.
For scalar fields, however, we find that the long-range
part of the interaction is relevant only for 0. &1. This
prediction is confirmed (see Appendix) by an explicit cal-
culation for the collapse of a single spherical domain.
For vector fields, the long-range interactions are relevant
for all o. &2.

For conserved scalar fields we obtain the growth laws
L(t)-t' for cr) 1 and L(t)-t' ' + ' for o &1, while
for nonconserved scalar fields, L(t) —t'~ and t'~"+
respectively. For vector fields with o. &2 we predict
L(t) —t'~' + ' and t' for conserved and nonconserved
fields, respectively.

Hayakawa, Racz, and Tsuzuki [15] have recently at-
tempted to calculate the scaling functions for the two-
point correlation functions of nonconserved systems with
long-range interactions, using the singular perturbation
theory approach of Kawasaki, Yalabik, and Gunton
(KYG) [16]. This starts from the equation of motion (16),

where pi R, scaling as g
' ', is the long-range

equivalent of p, . One can verify, using p, —g
~d ', that

conventional critical scaling is recovered in both cases for
T +Tee

Nonconserved vector fields are more problematical.
Even for purely short-ranged interactions, the growth
laws have not been determined unambiguously. Numeri-
cal simulations for vector systems [12], and experiments
on related nematic liquid crystals [13](described by a ten-
sor order parameter), are broadly consistent with t'~
growth, as predicted by a naive dimensional analysis of
the equation of motion. For the special case n =d=2,
however, Yurke et al. [14] have argued for the slightly
slower growth law L (t)-(t/lnt)' . Long-range interac-
tions are relevant for 0. &2. The absence of sharp inter-
faces for vector fields suggests the growth law L (t)-t '

for o & 2 (with possible logarithmic corrections for n =2),
consistent with naive dimensional analysis of the equa-
tion of motion.

with H given by (2)—(4), i.e.,

c)Q/Bt =V'P (d—V/dP) (5—H /5$) .

Although originally presented as an approximate di-
agrammatic technique, the KYG method is tantamount
to solving the linear equation obtained by omitting the—dV/dP term from (25), to yield a "linear" solution $0,
and then setting P = sgngo (or P =$0/ Po for vector
fields). This latter step takes into account, in an approxi-
mate way, the effect of the potential V(P), which con-
strains the field to have unit length almost everywhere at
late times.

It is clear from dimensional analysis of (25) that the
KYG approach gives L(t)-t' for o. &2, which is qual-
itatively incorrect for scalar fields. For purely short-
range interactions, the KYG method gives the correct
t' growth law for scalar systems as a result of two can-
celling errors: the detailed discussion of Sec. III shows
that both sides of Eq. (16) actually scale as 1/L (t) [see
Eq. (20)], not as 1/L (t) . The correct scaling is implicit
in the approaches of Allen and Cahn [7] and of Ohta,
Jasnow, and Kawasaki [17], which focus directly on the
motion of domain walls. Neither of these approaches,
however, readily generalizes to long-range interactions.

In conclusion, therefore, we note that systems with
long-range interactions, as well as being of interest in
their own right, provide a useful test bed for approximate
theories of the correlation scaling function. Any candi-
date theory for the correlation function should at least be
able to reproduce the growth laws derived here for non-
conserved scalar fields.

APPENDIX:
COLLAPSE OF A SPHERICAL DOMAIN

We start from the equation of motion (16), and seek a
solution with radial symmetry. Inserting the explicit
form for H, and choosing d = 3 for simplicity, gives (ab-
sorbing I into the timescale)

ar' r c)r r' —r['+
(A 1)

X[/(r') —P(r)] . (A2)

We seek a solution of (Al) in the form P=f(r —R (t)),
representing a shrinking domain of radius R ( t ), with the
domain wall profile function f (x) satisfying f (x)~ —1

for x « —
g and f (x)~1 for x &)g [we have taken the

minima of the potential V(P) to be at /=+I]. Putting
this form into (Al) yields

0=f"+[(dR /dt)+(2/r) ]f' —V'(f )

2mJrR 1 1+ r dr1+o r 0 ~r' —r~'+
1

~r'+r ~'+

X [f(r' —R) f (r —R)], (A3)—

Carrying out the angular integral, the final term becomes

2~Ji.R r dr1+o. r o ~r' —r ~'+
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where primes on f indicate derivatives, and the argument
of f is r —R where not explicitly given. From now on we
will not keep track of the constants in front of the final
term.

To derive an equation for R (t), we multiply the equa-
tion through by f'(r —R) and integrate through the in-
terface, using the boundary conditions that f' vanishes
far from the interface, and that V(f) and f have the
same values on both sides of the interface. In addition,
since f ' is zero except within a region of size g near the
wall, we can set r =R throughout. Noting also that the
integrals of f ' and f ' across the interface are just con-
stants, we obtain, up to constants,

dR 2 10= +—+— r'dr'
r' R~ '—+

X gsn(r' —R), (A4)

where, in the final term, we have used the fact that the
profile is essentially a step function to replace f (r' —R)
by sgn(r' —R). The integral in (A4) should therefore be
understood as a "principal part" integral: using the full
profile function f would cancel the singularity at r'=R
(at least for o & 1; for cr & 1, we need an explicit short-
distance cutoff'on the long-range interaction).

The final step is to evaluate the integral in (A4). The
variable change r'=Rx gives, for o &1 (where the in-
tegral converges, in a principal part sense) a constant
times R ' . It is not di%cult to show that the constant
is positive. Therefore the equation of motion for R takes

the form

dR/dt= (2—/R) —(JLR/R ), o &1 . (A5)

For large R the long-range part dominates. Integrating
(A5) gives the collapse time for an initial large radius
R (0) as t —[R (0)]'+ . Here "large" R (0) means large
compared to the crossover radius R*-JLR ob-
tained by equating the two terms on the right in (A5).

For cr & 1, the integral in (A4) remains finite in the lim-
it R —+ ~. The singularity at r'=R is handled by cutting
out the interval (R —a, R +a) from the integration range,
where a is a short-distance cutoK The resulting integral
has a limit of order a' for R ~~. The result is that
the long-range interaction renormalizes the curvature
term in the driving force, but is otherwise irrelevant for
large R: the collapse time scales as t —[R (0)],just as for
short-range interactions.

Note added in proof. J. Cardy (private communication)
has pointed out that in principle the system size L, can
occur in the domain-growth law as a second scaling vari-
able. A more general scaling form for L(t) than that
given here would be L (t) =t'~'f (t'~'/L, ), valid for
t ~ ~, L,~~, with t ' '/L, fixed. In this paper we have
implicitly assumed a well-defined thermodynamic limit,
i.e., that f (0) is finite and nonzero. Cardy proposes a
scenario where f (0)=0, and suggests [J. L. Cardy and B.
Lee (unpublished)] that this possibility is realized for
a (1 in the nonconserved one-dimensional scalar theory,
with z=l+cr [as in (21)] and f(x)-x for x~0.
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