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Stochastic model for a wavelike exothermal reaction in condensed heterogeneous systems
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The relationship between the stochastic and deterministic approaches to the description of the dynam-
ic behavior for a nonlinear reacting system is studied. A self-propagating exothermal reaction in a
heterogeneous medium has been chosen as an example. A stochastic model for this phenomenon is

developed. The system is composed of cells characterized by temperature and degree of conversion,
their transformation probability being dependent on temperature. Computer simulation showed that
stochasticity reveals itself in the generation of disturbances that are absent in the deterministic model.
For a well-developed steady-state regime, the distributions of the mean temperature and degree of con-
version are close to those given by the deterministic model. Under the conditions of planar-wave-front
instability, the stochastic model possesses a mechanism for spontaneous transfer to a stable regime from
arbitrary initial conditions (temperature distribution, etc.) due to origination, propagation, and disin-

tegration of disturbances. Such behavior agrees with experimental data and is not predicted by the
deterministic model.

PACS number(s): 64.60.Ak, 05.50.+q

I. INTRODUCTION

At present the description of the dynamic behavior of
nonlinear systems where the processes that are stochastic
in nature take place is the subject of extensive investiga-
tions. Classical examples are the reaction-diffusion prob-
lems, processes in biological systems, etc. [1]. In such
systems, diverse structural, phase, and chemical transfor-
mations proceed in isothermal and nonisothermal condi-
tions, their velocities being dependent on temperature,
reagent concentrations, and other factors. The changes
in these spatially distributed parameters due to the trans-
formations have, in turn, an inverse effect on the reaction
rates, i.e., these systems possess a feedback mechanism.
In a number of systems, a positive nonlinear feedback,
coupled with diffusional instability, causes the origin of
traveling waves. The systems with wavelike localization
of chemical, phase, and/or structural transformations
(e.g. , reaction front in the case of a single reaction) are
particularly interesting. The typical example for a
comprehensively studied process of such a type is the
combustion phenomenon in heterogeneous media [2].

Traditionally, the models for nonlinear reacting sys-
tems are expressed in terms of partial-differential equa-
tions using the mean-field approximation of the system
parameters. Usually, such a deterministic approach en-
ables one to describe the dynamic behavior, including

steady-state regimes, bifurcations, instabilities, and oscil-
lations, and even a transfer to chaos [1]. However, chem-
ical reactions, structural transformations, and phase
transformations are stochastic events by nature, and the
mean-field approximation reveals only average values of
the process velocities. Therefore, it is interesting to ana-
lyze the role of a stochastic factor in the models for sys-
tems with traveling waves, and to reveal its inAuence on
the origin of instabilities and dynamic behavior. It seems
reasonable to select a relatively simple well-studied non-
linear system for such an investigation.

For this purpose, in the present work we have chosen a
solid-state wavelike self-propagating reaction in a hetero-
geneous medium [the so-called self-propagating high-
temperature synthesis (SHS) or the combustion synthesis,
of refractory borides, carbides, intermetallic compounds,
etc. , which is a promising energy-effective method for de-
veloping and producing advanced ceramic and composite
materials [3]]. The regularities of this phenomenon have
been comprehensively studied in numerous experimental
works [4], as well as in theoretical investigations within
the framework of the deterministic model [2], using both
computer modeling [5,6] and analytical methods [7]. It
has been demonstrated that variation of the system pa-
rameters changes the dynamic behavior from a steady-
state wave-propagation regime into an unstable one with:
(a) self-oscillating mode [5], (b) the so-called spin combus-
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tion [6], when one or several hot foci follow a spiral tra-
jectory along the specimen surface, and (c) transition to
chaos [7].

Recently, a number of stochastic models for nonlinear
reacting systems has been developed [8]. Nevertheless,
the analysis of a relationship between the stochastic ap-
proach and the deterministic one has not yet been prop-
erly outlined. Therefore, the present work is aimed at de-
veloping a simple stochastic model for a self-propagating
exothermal reaction in a heterogeneous medium, and to
compare the results of computer simulation with those
obtained within the deterministic approach, in order to
reveal the principle similarities and differences between
them.

II. DEVELOPMENT OF A STOCHASTIC MODEL

The heterogeneous wavelike exothermal reaction prop-
agates through a powder mixture of initial solid sub-
stances (e.g., Ti + C to produce titanium carbide). Trad-
itionally, the SHS processes are described by the deter-
ministic model for thermal combustion consisting of the
equations for heat transfer and chemical reaction kinetics
[2]. Wherever the reagent particles are nonregularly spa-
tially distributed and have a nonuniform surface struc-
ture, shape, size, etc. , chemical reactions and structural
transformations of the particles are stochastic in nature.
The times of their transformations are randomly distri-
buted around an average value. According to Ref. [3],
the time scales for the interaction processes in the SHS
wave are 10 —10 s. A relatively small number of
particles situated in the region that is 1—100pm wide
can react during this time. The stochastic effects that are
connected with the particles' heterogeneity inhuence on
the processes in the combustion wave may prove to be
noticeable, especially under unstable conditions. There-
fore, it is rather important to take into account the effect
of stochasticity on the system behavior.

We consider a two-dimensional problem for the
reaction-front propagation along a semi-infinite strip or a
cylindric shell. It is assumed that there is no reagent
mass transfer along a sample, and thermophysical param-
eters are the same for both the initial substance and reac-
tion product and are independent on temperature.
Within the framework of the deterministic approach, the
model is described by the following equations:

=aV T+ =f(g T)ar '
p~ at' at

where g is the conversion degree; T is temperature; a, Q,
c, and p are the thermal diffusivity, heat release per unit
volume, specific heat, and density, respectively.

In the stochastic model, the two-dimensional region is
composed of square cells with a side h. Using cells is a
simple way of introducing a scale of spatial inhomogenei-
ty into the combustion model. A cell is characterized by
temperature 0 and conversion degree g, both of which
are random quantities. Their values are updated at a
discrete moment of time with a time step r. At the
(n+1)th time step, a temperature of a cell with coordi-
nates i,j is determined by the expression

8(i,j,n +1)=O(i, j,n)+ [ri(i, j,n +1) —g(i, j,n)]
pC

+ [8(i —l,j,n)+8(i +1,j,n)

+O(i,j —l, n)+O(i, j+ I,n)

—40~(i,j,n) ] . (2)

The second term on the right-hand side (rhs) of Eq. (2)
denotes a heat release in the cell due to a chemical reac-
tion, and the third term on the rhs denotes heat cruxes
from the neighboring cells. Equation (2) is a discrete ana-
log of heat transfer equation (1) for an average tempera-
ture &8&.

The reaction is ignited by a hot wall. For a striplike
specimen, in the transverse direction (at the specimen
edges), the adiabatic boundary conditions are used, while
for a cylindrical shell, the periodic ones are used.

In the simplest model for chemical reaction, a cell is
assumed to be burnt in a time ~. The conversion degree g
attains two values: 0, initial: and 1, burnt. Cell transfor-
mation during this time step is a random event, whose
probability p is determined by the cell temperature.

In order to reveal a relationship between this model
and the deterministic one [see the system of equations
(1)],let us pass to average quantities and continuous time.
Under isothermal conditions for the temperature 0, the
average portion of cells burnt to a temporal moment n v. is
&g&(n)=1 —(1—p)", p=p(e). Passing to a continuous
time, assuming the traditional conditions for the Poisson
processes [9], and implying that the transformation prob-
abilities for different cells in the time ~ are independent,
we obtain p(r) =Ax+0(r) with A, = limp/r. Under these

7~0
conditions, the portion of the cells that are burnt during
the time r is & r)( t ) &

= 1 —exp( —A, t ). This is consistent
with the kinetics of the first-order reaction

=[1—
& &(r)]A, .

at
(3)

Within the framework of the deterministic approach [see
Eq. (1)], the kinetic function used in the model that is
considered is f(g, t)=(l —g)A, (T), with g=&ri&. The re-
action rate temperature dependence can be described by
the Arrhenius law, p(O) =zr exp[ E/(R 8)].Th—e simi-
larity of the expressions for the chemical transformation
rate in the deterministic model and that in the stochastic
one is violated in the nonisothermal case. For a domain
S containing a relatively large number of cells N, we ob-
tain the relation

& g &(n + I ) —& r) &(n)

g [1 g(i j,n)p[8—(i,j,n)]] .
1

ij ES
(4)

Equation (4) reduces to a similar expression for the deter-
ministic model, if we omit the correlations between
g(i, j,n) and O(i,j,n) and substitute &p(8) & for p(&O&).
In this case we have & r)(n + 1)—g& )&n
=(1—&q&)z(&8&)r.
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The above considerations make clear the difference be-
tween the stochastic model and the deterministic one
(considered as a system of equations for average quanti-
ties). The former takes into account the correlation be-
tween the cell temperature 0 and cell conversion degree

This results in the continuous generation of distur-
bances, which are absent in the deterministic model.

III. NUMERICAL REALIZATION
OF THE MODEL

In the proposed stochastic model, the combustion pro-
cess is the result of the interaction of a great number of
homogeneous elements obeying comparatively simple
rules. For both the idea and irnplernentation, the process
is close to the cellular automata method, which is widely
used in the modeling of crystal growth, reaction-diffusion

I

processes, spin systems, hydrodynamic problems, etc.
[10,11]. This method yields a convenient and computa-
tionally effective mechanism for constructing the models
for dynamic systems in the cases when relatively simple
regularities of cell interactions are known. It should be
noted that in the framework of this method the proposed
model can be easily modified to study different interac-
tion mechanisms; e.g. , the effect of adjacent cells on the
transformation probability in a given cell (autocatalysis
or self-deceleration by the reaction product), a random
distribution of the activation energy for chemical reac-
tions in different cells, a multistep reaction with a great
number of cell states, etc.

In the computer-program realization of the proposed
model, the temperature of each cell, 0, is an integer pa-
rameter in the range 0—255. Equations (2) and (3) are
rendered dimensionless to give

O(i,j,n +1)=Q(i,j,n)+ [kN]
1",S

neighbors of i,j
[O(r, sn) —O(i j,n)]/N

+Q[g(i, j,n +1)—ri(i, j,n)],
EST

p(O)=zrexp R(Q+Q )

where Q~ = ( T —To ) /ST, k = a r/h ', Q =QST /pc~
Qo= To/ST, Sr is the temperature scale, To is the initial
temperature of cells, N is the scaling coefficient, N =256,
and the symbol [ ] means an integer part. The physical
process is specified by the two traditional combustion pa-
rameters p= R T, /E, y =pcR T, /( EQ ), with T, being the
final reaction temperature under adiabatic conditions,
T, =Q/(pc)+ To.

Since an explicit finite-difference scheme is used to cal-
culate the temperature field, the upper limit for the
coefftcient k is k =0.25 due to the loss of stability [6].
Therefore, the k value was fixed at 0.125. The specimen
length used in the calculations was =10'~, where L M is

the width of the combustion-wave preheated zone. The
specimen was ignited by a hot wall with a constant tem-

perature slightly higher than the adiabatic one. A com-
putational grid was shifted along the sample, thus follow-

ing the combustion front propagation.

IV. RESULTS AND DISCUSSION

A. Comparison of combustion wave velocities
in the deterministic and stochastic models for a stable regime

Numerical calculations have been carried out for
different values of the P and y parameters and different
cell sizes h. Stable and unstable wave-propagation re-
gimes are studied. (Traditionally, in combustion theory
these terms pertain to the stability of a planar combus-
tion wave front [2]). The regime is called "stable" if the
values of the parameters p and y are within the range of
stable combustion for the deterministic model [5,12]. In
the deterministic model, a combustion wave velocity is
merely the velocity of an isotherm propagation. In the

I

stochastic model, the form of an isotherm fluctuates.
Therefore, a velocity can be determined as a ratio of a
cell number b,X that is burnt in the time At =n~, to this
time interval. For a short time interval, the combustion
velocity is a random quantity. However, its mean value
is constant for a rather great time interval under stable
combustion conditions. The effect of a cell size on the
thermal structure of the combustion wave is conveniently
characterized by the parameter M& =h /1„,with l„=u, ~
being the reaction zone width, where

= (1/z) exp[E/(R T, ) ] is the reaction completion time
at the adiabatic temperature and u, is the analytical esti-
mate of the combustion wave velocity. The quantity u, is
determined from the following considerations. During
the temperature mean time of the reaction completion ~,
the wave propagates over a distance u, ~, while the
characteristic length of the preheated zone is of the order
of (ar)' . Since L =(ar)' =u, r, where

T.I/r= [1/(T, —To)]f (1/z) exp[ E/(RT)]dT—
0

=y/r for y « I,
we obtain the estimation for a combustion wave velocity,
u, =(ya/r )'~ . In Table I, the values of analytically es-
timated velocity (according to Ref. [2]), u„the mean ve-
locity (u ), calculated in the stochastic model, and the
velocity obtained by computer calculation within the
deterministic model, ud, are compared on the natural
scale, us=(a/r )' . It is seen that for Mz (2 the
values of u„(u), and ud are rather close, i.e., the
developed stochastic model demonstrates a good agree-
ment of the combustion velocity with that received
within the deterministic approach.
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B. Analysis of two-dimensional instabilities

Figures 1 and 2 show the unrolling of a cylindrical
shell with temperature fields at different time moments
with temporal step t =a/u, . The regime with p=0. 08
and y =0.13 (Fig. 1) is typical of the random focuses with
elevated temperature that move together with a front,
gradually spreading and interacting. This regime qualita-
tively corresponds to the experimentally observed auto-
oscillating regime in the form of the pulsations of front
sections [13]. Figure 2 corresponds to the regime with
p=0. 12 and y=0. 12. A hot focus appears at the mo-
ment t*=4.46 and m.oves along the spiral path. During
three revolutions it has covered a distance of about 12
preheated zones, LM =a/u, . After having faced another
focus it disintegrates into several small focuses and van-
ishes. This behavior is consistent with the observed tran-
sition to a spin regime [13].

Within the deterministic model, the linear theory of
stability against small-magnitude perturbations has
shown that one- and two-dimensional disturbances can

TABLE I. Combustion wave velocities obtained by the sto-
chastic model (u ) (computer calculation) and by the deter-
ministic one (analytical estimation u, and compUter calculation
ud).

Dimensionless velocity

develop when the following relations are satisfied, respec-
tively [12]:

K)= 9. 19
&1, K, = 8.91 V

(1+3. 1P+3. 1P ) (1+3.1P+3. 1P )

In the stochastic model, one-dimensional disturbances
are not observed. In the deterministic model, at K& & 1,
under undisturbed initial conditions the constant-pattern
wave-propagation regime changes into a self-oscillating
one with a planar front [5] (i.e., with linear isotherms).
For a low E2 value, a spin combustion mode was ob-
served [6] under a sufficiently great two-dimensional per-
turbation of temperature field.

To analyze the originating two-dimensional distur-
bances, it is convenient to use the amplitudes of the

max

Fourier expansion of the value N(y, t)= g rI(x,y, t)h,
x=0

which is the amount of burned substance in a longitudi-
nal cross section. After summarizing along the sample
length, the random shape of the "spotted" combustion
front gives a function of transverse coordinate y and time
t. The Fourier spectrum is calculated with a temporal
step of the order of w . After this, harmonic amplitudes
are averaged in time. The thus obtained spectral function
characterizes two-dimensional disturbances of the corn-
bustion front. Figure 3 shows spectral functions for the
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FIG. 1. Temperature charts for P=0.08 and y =0. 13;
=a /u, is the width of the preheated zone,

O*=(O—T, )/AT, hT= T,R /E, t*=t/(L~/u, ).

26. 28 27.90 28. 9 27. 70 30.24 30.96

FIG. 2. Temperature charts for P=0. 12, y =0. 12.
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3c

i, P = 0.12, 7 = O.i2
2, P = 0.08, y ~ 0.13
2, P = 0.08, 7 = 0.15
4, P = O.iR, y = O.iR

would react during the jth step is determined by the ex-
pression p(k~g)=C„"p"(1—p)" ". A mean value of k
amounts to ( k ) =np, and the variance is Dk = np (1—p).
It should be noted that at large N the distribution p(k ~ g)
approaches the normal one, with the same average value
and variance. Since p « 1, it may be considered that

D&np =N~W(8)(1 —g) . (5)

D ',

0

FIG. 3. Amplitudes 2 (I ) of low-frequency harmonics of the
Fourier spectrum of the function X(y) describing the front
shape (I is the harmonic number): curve 1, P=0. 12, y=0. 12,
K, =0.75; curve 2, P=0.08, y=0. 13, K&=0.91; curve 3,
P=0.08, y =0.15, Kz = 1.05; curve 4, P=0. 12, y =0.20,
K~ = 1.26.

different values of the P and y parameters at Mi, = 1. The
sample width is 128u, ~

Unlike the deterministic model, there is no clear
boundary between stable and unstable regimes. Su-
perheated sites randomly appear when several adjacent
cells undergo transformation in a short interval of time.
The criterion for wave stability against two-dimensional
disturbances Kz is somewhat lower than that for the case
of one-dimensional disturbances K&. Therefore, under
unstable conditions this results in the predominant devel-
opment of two-dimensional disturbances of the combus-
tion front. Apparently, this throws light on the absence
of a stable auto-oscillating regime, with a Aat front in the
stochastic model for the two-dimensional problem. Dis-
turbances become more pronounced with a decrease in
the Xz value.

C. EfFect of a cell size on the onset and development
of two-dimensional instabilities

Let us study a mechanism of disturbance generation in
the stochastic model. We should analyze a sufficiently
small region S parallel to the combustion wave front, in
which the temperature 0 is considered to be almost con-
stant. In the direction of the wave propagation the size
of this region is of the order of the reaction zone width,
l„=(yar )', while in the transverse direction its size is
about (a v )'~ . Region S having the square of
(1/y)'~ l„contains N cells,
N=(1/y)' l„/h =(1/y)' M&. At small cell sizes, the
number N is rather great. The transformation probabili-
ty for one cell during a given temporal step ~ is
p=rz exp[ E/(R8)]= W(8)—r Within the r.egion S,
these probabilities are implied to be equal for all of the
cells. If before the jth temporal step the degree of con-
version in the region S equals g, then the amount of un-
reacted cells is n =N(1 —g). The probability that k cells

In the stochastic model, a disturbance is generated by the
deviation of the instantaneous number of burnt cells from
a mean one. Since heat removal from the reaction zone
corresponds to mean heat release, the excess heat remains
in this region, thus resulting in the superheating of the
latter. Increasing the temperature accelerates the chemi-
cal reaction, and a disturbance starts to grow. A magni-
tude of superheating may be estimated under the assump-
tion that the deviation of k is of the order of its difference
from the mean value, ~k —(k)~, in the domain S. As
long as each cell under combustion can elevate the tem-
perature of the region S containing N cells by a quantity
of ( T, —To ) /N, we obtain

60= (T, —To)
1V

[N~W(8)(1 —g) ]'~

(T, —To) MI, r
N 2 [y W(8)(1 —g)]'~

From Eqs. (5) and (6) it is easily seen that the maximum
deviation of heat release from its mean value is attained
in the region with maximum reaction rate (1—g) W(8).
In this case, the value of a locally elevated temperature is
proportional to cell size h.

The effect of cell size on the behavior of the stochastic
model is demonstrated in Table I. Increasing the cell size
decreases the combustion wave velocity. A difference be-
comes substantial at Mz )2. The distribution of temper-
ature and degree of conversion in the combustion wave
averaged across a sample are shown in Fig. 4 for different
Mz. The curves are superimposed for spatial coincidence
of the isotherm O=(T, —To)/2. As seen from Fig. 4,
the decrease in the wave velocity due to increased cell
size is bound up with the extending of the reaction zone.

The spectral functions for stable and unstable combus-
tion regimes are shown in Fig. 5. The sample width is
constant and equals 128l„.At different MI, values, the
number of cells across the sample is different. For a
stable combustion regime (Kz =1.41) the front distortion
is caused by permanent generation of disturbances in the
stochastic model. Therefore, the transverse long-wave-
length distortions of the combustion front are noticeable
only for rather large cell size. Under the conditions of
the thermal instability of the combustion front
(K&=0.82), the parameters of long-wavelength distur-
bances are determined mainly by the thermophysical and
macrokinetic properties of the medium and slightly de-
pend on cell size (see Fig. 5). The origination of long-
living hot foci moving along the combustion front is ob-
served at all the M& values. However, with increasing
M& the frequency of forming and decaying such foci
grows, while both the lifetime and the distance covered
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by these foci along the front decrease. Therefore, their
behavior becomes more random. With increasing Mz,
the difference in the spectrum of transverse disturbances
for stable and unstable combustion conditions decreases.

In the stochastic model and in the deterministic one,
the combustion wave velocity and the distribution type of
(8)(x), (t))(x) along the wave are close for the stable
combustion regime and at small cell sizes. In both mod-
els, at small E2 values two-dimensional disturbances may
develop. The greatest difference in the properties of the
models arises when the values of the P and y parameters
are in the transition region from stable to unstable com-
bustion conditions. In the stochastic model, the cell size
affects the system behavior, extending the combustion
zone under the stable combustion mode and increasing
the frequency of hot focus generation and disintegration
under the unstable regime. These effects reveal them-
selves only at sufticiently large cell sizes.

5.0-

2.0-

1.5-

0.0 (

) ~ ~ 0.5

D. Evolution of disturbances under unstable conditions

To study the regularities of the disturbance evolution
both in the stochastic and deterministic models, the fol-
lowing computation experiment has been carried out un- 2.5-

2.0 "

1-0-

20

KO-

2.5-

2.0

A

~2~I
V

0.5-

30

0.1
4 0 (L

FICx. 4. Combustion wave structure for P=0. 16 and

y =0.25: (a) averaged dimensionless temperature (0*), and (b)
degree of conversion & r)) (curve 1, Mq =0.5; curve 2, Mq =1;
curve 3, MI, =2; curve 4, MI, =4).

FIG. 5. Amplitudes of the low-frequency harmonics of
Fourier spectrum of the N(y) function at different values of the
parameter MI, under stable (curve 1, P=0. 16, y =0.25,
K2=1.41) and unstable (curve 2, P=0. 12, y=0. 13, EC2=0. 82)
combustion conditions (a) Mz =0.5, (b) MI, =1, (c) Mq =2, (d)
Mg =4.
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(a) g ~ +.0

0.$-

O.O

F&G. 5. (Continued).

der unstable conditions, K2 & 1, for a relatively small cell
size, M& ~ 1. The temperature and degree of transforma-
tion fields calculated by the stochastic model have been
used as initial data for the deterministic one. This per-
mits us to trace the subsequent evolution of disturbances
when their generation no loner operates. Also, it gives us
an opportunity to compare the patterns of combustion
waves obtained within the two models at a sufficiently
long time, i.e., to reveal the effect of perturbations gen-
erated within the stochastic model upon the stability of a
wave-propagation regime under various values of the P
and y parameters.

It is known that in the deterministic model the onset of
a spin combustion mode is observed at E2 & 1 only under
a sufBciently great perturbation introduced "manually"
into the temperature field [6]. For the values of P=O. 12
and y =0.12 (J z =0.75) the stochastic model has
demonstrated the spontaneous origination of the spin re-
gime. During computer simulation, the rotating hot
focus has been observed to disintegrate after several revo-
lutions and then appear again at a random moment of
time. This is connected with the self-generation of a dis-
turbance great enough to destroy or to initiate the spin
combustion regime.

After the temperature and degree of transformation
fields corresponding to the well-developed spin regime
have been introduced into the deterministic model, the
latter demonstrates the further revolutions of the hot
focus. The spin velocity and hot-spot temperature (about
1.5 T, ) are the same in both the models.

If the spin combustion regime has not already formed
within the stochastic model, i.e., the temperature distur-
bance is still insufficiently great (e.g. , under a relatively
short time after the SHS initiation, or after spin disin-
tegration), then this temperature field introduction into
the deterministic model will never result in the spin-mode
origination. In this case, the system demonstrates
different kinds of behavior depending on the values of the
parameters P and y as well as the disturbance magnitude,
for example, combustion decaying.

Therefore, the deterministic model only gives a proper
picture of a well-developed regime of the spin combus-
tion, while the stochastic one is able to demonstrate a

transition to such a mode from initial undisturbed condi-
tions due to continuous generation of perturbations.

For the E2 value in the transient region from a self-
oscillating mode with a planar front to a spin regime
(P=0. 12, y=0. 14, %2=0.88), the two models demon-
strate a rather different behavior. In the stochastic mod-
el, a hot focus (or several foci) originates sporadically,
moves along the wave front with oscillating velocity, and
vanishes, this process being repeated at random time in-
tervals. The hot-spot lifetime is rather short, and the
length covered by it is less than one revolution. Such a
behavior is consistent with experimental observations for
a number of systems [13,14].

After the insertion of the temperature field generated
by the stochastic model in the deterministic one, the dis-
turbance degenerates into a protuberance, and the latter
splits into two parts moving in opposite directions along
the wave front. Such a process is repeated at equal time
intervals, combined with continuous-wave propagation in
the longitudinal direction. In the case of an undisturbed
temperature field, the deterministic model demonstrates a
self-oscillating combustion regime with a planar wave
front.

Therefore, in the region of planar front instability the
wave behavior within the deterministic model depends
not only on values of the P and y parameters but also on
the form and magnitude of the initial temperature field
disturbance. In this region, every pattern of wave propa-
gation has its own characteristic temporal scale, t, (e.g. ,
one revolution time in the spin mode, oscillation period
in the self-oscillating mode). In the stochastic model
two-dimensional perturbations are generated spontane-
ously; the greater the disturbance magnitude, the less its
probability. If the time interval td between the origin of
two disturbances that are sufticiently great to destroy the
quasi-steady-state pattern exceeds the characteristic time
of the latter (td ) t, ), then the mean wave-propagation
characteristics are close to those given by the determinis-
tic model for a certain region of P and y parameters. In
the case when such disturbances are generated frequent-
ly, t„~t„then the stochastic model demonstrates a
chaotic change in wave-propagation regimes. In this sit-
uation, the deterministic model is not able to predict the
system behavior. The results given by the stochastic
model are close to experimental data [13,14].

V. CONCLUSION

The comparison of the deterministic model for the SHS
phenomenon with the stochastic one shows that the
former gives an adequate description of steady-state reac-
tion propagation modes (e.g. , constant-pattern wave
propagation, self-oscillating regime, spin regime, etc.) and
ensures the criteria for stability loss, i.e., for conversion
of one mode into the other. But it does not provide the
mechanism for the change of regimes nor the description
of the system behavior in the transient region where the
planar wave-front pattern is unstable.

Within the stochastic approach, the transformation
probability introduced into the model reveals itself in
continuous generation of disturbances, their pattern and
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magnitude being dependent on the model parameters.
This provides a mechanism for the transfer to difFerent
regimes from arbitrary initial conditions (for a certain
value of the process parameters), thus providing an op-
portunity to trace the transition. Also, it makes possible
a spontaneous transfer from one regime to the other by
varying the system parameters (P and y) due to origina-
tion, propagation, and disintegration of disturbances.
The stochastic model gives us an opportunity to study the
system behavior in the transient region.

The behavior similar to that observed in the SHS pro-

cesses (constant-pattern wave propagation, self-

oscillations, spin mode) is known in a great number of
nonlinear phenomena (e.g., filtration, melting of a porous
substance, solid surface ablation under laser irradiation,
powder gasification, etc. [15]. We may expect that the
above conclusion should also be valid for such systems.
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