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Model-independent method for reconstruction of scattering-length-density profiles
using neutron or x-ray refiectivity data
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A model-independent method is developed for the reconstruction of the scattering-length-density

profile of a film on top of a known substrate or bulk from the measured reAectivity data. The method is

first tested on simulated reAectivity data calculated from profiles resembling those used in real experi-
ments. It is shown that the method is effective in faithfully reproducing the original profiles from the
simulated data. The method is then tested on experimental data from four different surface films. It is

found again that the method is capable of generating physically reasonable profiles whose calculated
reAectivities agree to within y =1 with the measured data. In the tests, detailed descriptions are also

given for the implementation of the method. Finally, a discussion is given with regard to the application
of the method and the precautions needed for using this method.

PACS number(s): 61.12.8t, 42.25.Cry, 78.66.—w, 61.10.—i

I. INTRODUCTION

X-ray and neutron reAectometry has found numerous
applications in the study of condensed-matter and soft-
condensed-matter samples. They include liquid surfaces,
solid thin films, magnetic materials, surfaces of complex
fiuids, polymer interfaces, and so on [1]. Though the
reAectivity measurement itself turns out to be very simple
and efficient, analysis of the reflectivity data remains a
difficult task [1,2] because of the lack of a systematic
model-independent method which can directly recon-
struct a scattering-length-density (SLD) profile from a set
of measured refiectivity data [1]. As a result, the
reflectometry technique has up to now relied largely on a
brute-force least-squares parametric fitting of the data to
assumed models. The manual least-squares parametric
fitting method works fairly well on some well-understood
samples with known profile models [3,4], but it becomes
hopeless for other samples when a suitable model is not
available. An example is the study of the adhesion on the
air-film and film-substrate interfaces by polymers ter-
minated with different functional groups, where the shape
of the SLD profiles are not known beforehand, making it
impossible to do parametric fitting. Another example is
the surface structure of a bicontinuous microemulsion for
which the surface structure is unknown [S].This is espe-
cially true when a new unknown physical property about
a sample is to be studied. Obviously, the lack of a
model-independent method has limited the usefulness of
reAectometry to samples with relatively simple surface
structures.

Although the inverse theory of reflection such as the
Gel'fand-Levitan method and the Marchenko method
were developed a long time ago [6—8], these methods do
not apply to the data processing of neutron and x-ray
reAectivity experiments because they require the
refiectance data (containing both modulus and phase),
while most reflectometers are capable of measuring the
refiectivity data only (without phase). The measurement

of the phase of the reflectance is inherently difficult, if not
impossible. Its implementation at a reflectometer would
mean sizable extra cost and undesirable complexity added
to the intrinsically simple and elegant reAectivity tech-
nique. Therefore, it seems more advisable to develop a
model-independent method which can process the phase-
less reAectivity data than to measure the phase so that
one can use Marchenko's method.

In this paper we present an alternative model-
independent method for the construction of SLD profiles
directly from the phaseless reflectivity data. This method
applies to reAectance data as well, although it is meant
for the phaseless experimental reAectivity data. The ar-
rangement of the paper is as follows: Section II presents
two simple examples to illustrate how the scattering-
length density of a sample is determined from reAection
data. Section III presents a step-by-step development of
the new method. Section IV describes the testing of the
method using simulated reflectivity data. Section V
discusses the testing on real experimental data. Section
VI summarizes this paper through a discussion of the na-
ture, validity, applications, and result interpretation of
the method.

II. TWO EXAMPLES OF DIRECT DETERMINATION
OF SLD FROM REFLECTION DATA

In this section we discuss two simple examples in
which the SLD profile can be obtained from the
reflectivity data directly. The first example is the deter-
mination of the SLD of a bulk medium from reflectivity
data. This is useful because in experiments such as x-ray
refiectivity study [4], the Fresnel refiection is used to
determine the SLD of a substrate. The second example is
the determination of the SLD of a uniform layer on top
of a known substrate. This is the simplest case of a film
on top of a substrate.
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A. Determination of the SLD of a bulk medium

The simplest reAection is the famous Fresnel reAection
given by

kp —k

kp+k

As expected, p can be calculated directly from a single
datum of reflectance r at a given kp =2~ sinO/A, , where k
is the wavelength of the probing radiation and 0 the angle
of the specular reAection. If only the modulus of r is
measured (in practice, lrl ), then we find, for real p,

p+ —+ (3)
ko lr (1«1),~ (1+lrl)'

where "+" and "—"correspond to positive p and nega-
tive p, respectively. This is a double degeneracy, meaning
that one measured datum lrl at ko corresponds to two
possible values of p, one positive and the other negative.
However, there are two ways to determine which sign to
choose. One is by preknowledge about the material com-
positions of the sample. The other is by measuring two
data lr, l

and r2l at two separate values ko=k, and
ko=k2. Then one substitutes the two data into Eq. (3) to
obtain four possible values: p+ from datum r, l

and p+
from datum r2l. If one of the two data is measured at
small or intermediate kp, then one of the following two
cases will happen: (1) p+ =p+ and p' Wp or (2)
p+Ap+ and p' =p . If the former (1) happens, the
correct SLD is p =p+ =p+, and if (2) happens, then

p =p' =p . The reasoning behind this is that the
correct SLD should not depend on the value of kp. An
example for this is as follows: Two data lr, l

=0. 1123 and
lrzl =0.2378 of lrl are taken at ko=ki =0.015 A ' and
kp k 2 0.030 A '. Four values of p are calculated
from the two data using Eq. (3) to be

p+ =6.50X 10 A

p' = —10.2X10 A

where k =[ko —4mp] ', with p denoting the SLD of
the bulk medium. If the reAectance r is measured, then
the SLD p can be expressed as

kp r
2

(2)(1+r)
B. Determination of the SLD of a uniform layer on top

of a given substrate

The reAectance of a uniform layer of SLD p and thick-
ness d situated on top of a substrate of known SLD p, is
given by

f i2kd

i2kdf b

kp —k
"f

(6)

where k =[ko 4vrp]'~ —and k, =[ko —4mp, ]'~ . If the
reAectance r is measured, the SLD of the uniform sample
can be expressed as

ps
kp a 1 —a

( I+a)~ 1+a

2

(7)

I'

CX = —2i kde
1 1'Ty

(8)

Equation (7) is a transcendental equation for p and it can
be shown that it has a single root. This equation applies
to the entire kp range. We can partially prove that Eq.
(7) has unique solution at least at large ko. At large ko, a
becomes

~p —2ikoda= r — e ' at large kp,
kp

(9)

Using Eq. (9), Eq. (7) can be solved for p as

kp
ps

p+ = —p' =p+ = —
p . In this case, the two data are

not capable of telling one whether p should be positive or
negative. In fact, it is not possible to resolve the "+"
double degeneracy using any number of data if they are
all measured at large values of kp. This implies that it is
the region of small and intermediate values of kp that
helps to remove the ambiguity due to the absence of
phase information in lrl.

p+ =6. 50 X 10 A —2k, d
.

1 —e
(10)

and

p = —697 X 10 A

According to the above argument that p does not depend
on kp and the fact that p+ =p+, we determine that the
positive sign is the correct sign and the correct SLD is
p=6. 50X10 A . This is an example of how the SLD
of the simplest sample could be determined from two
phaseless data.

It should be pointed out that if both data are taken at
large k& and kz, then lr, l

and lr2l «1. From Eq. (1)
and Eq. (3), it can be shown easily that

The measurement of a single reflectance datum at large
ko can determine p from Eq. (10), which is the special
case of the general relation Eq. (7) at large ko.

In practice, lrl is measured. The rellectivity is the
squared modulus of Eq. (4). We show that one datum

l rl
cannot determine p, but two data can if one of them is at
small or intermediate kp. At large kp, one can derive

m. [p +(p —p, ) +2p(p, —p) cos(2kod)]
p4

at large ko, (11)
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and p can be expressed as

p~= 1+ 1 —2
2 1 —cos(2kod)

' 1/2

(12)

ko [r[2
/3= at large ko,

7T P
(13)

Clearly, p+ =p, —p, meaning a datum at large ko can-
not resolve p from p, —p, a double degeneracy. However,
the measurement of an additional datum at small or in-
termediate ko can resolve this degeneracy. Let us discuss
how this could be done.

If p=p„ it reduces to Fresnel reflection and the con-
clusion was proven in Sec. II A. If p =p, /2, then Eq. (12)
becomes a single solution. So the question rests with the
case pWp, and pWp, /2. For different p and p, —

p in the
layer, k would be appreciably different at small and inter-
mediate values of ko, due to the effect of k in the ex-
ponential factor in Eq. (4). This phase factor contains
useful information about the magnitude of the SLD of
the layer. In contrast, at large ko, k becomes ko in the
cosine term in Eq. (11), so the SLD p does not affect the
phase factor (cosine term) and the datum at large ko only
contains information about the heights of two steps but
does not contain much information about the actual
value of the SLD of the layer itself. According to this
reasoning, we determine the SLD p by the following
steps: (1) measure one datum

~ r, ~
at one large ko =k &,

and use Eq. (12) to calculate p+ and p,' (2) measure
another datum r2 at a small or intermediate ko=k2,
(3) use Eq. (4) to calculate refiectivities ~r+ ~

from p+ and
~r

~
from p at the same ko=kz, and (4) compare these

two numbers with the measured datum ~rz~ and choose
either p+ or p depending on whether r+ ~

or r
agrees better with ~r2~ . This is a fairly simple procedure
and we demonstrate it by an example. Suppose one mea-
sures a layer of d =50 A and obtains a datum
~r~ =4.54X10 at ko=k& =0. 1 A . Equation (12)
gives

p+ =4.52X 10 A

p = —2 52X10 A

Then another datum ~rz~ =0.130 is obtained at a small
ko = k2 =0.006 A '. Then we calculated the
reflectivities of p+ and p, at ko=k2=0. 006 A ', re-
spectively, and find ~r+ ~

=0. 130 and ~r
~

=0.126. By
comparing ~r+ ~

and ~r ~
with the measured datum

[r2), one sees that (r+ ( =)rz( . This means that p+ is
the correct SLD of the uniform layer =4.52 X 10 A
In fact, this is a very faithful reproduction of the correct
SLD as compared to the known SLD p=4. 50X10
A which was used to generate the two data
~r~ ~

=4.54X10 at ko=k& =0. 1 A ' and ~rz~ =0.130
at ko k2 =0.006 A

C. Nonlinearity in reflection

The above examples showed how the reflectivity data
at small or intermediate ko can be used to resolve the de-
generacy in the SLD values calculated from one phaseless
reflectivity datum. This was made possible by the ex-
istence of nonlinearity in the reflectance-profile relation-
ship. To explain this, it is useful to make a comparison
between reAection and diffraction. In conventional
diffraction [9], the amplitude of the diffracted wave is
proportional to the Fourier transform (FT) of the sample
profile, and this is a linear relation typical of a weak
scattering. In reAection, at small and intermediate ko
where the SLD of the film is not negligible compared to
ko the reAectance is not a simple FT of the profile but in-
stead a highly nonlinear function of the profile, as can be
appreciated from the Parratt's recurrence relation [10].
It is this nonlinearity that has added to the resolving
power of the reflectivity technique. Due to this non-
linearity, the different parts of a SLD profile are not
equally important to the measured reflectivity as they are
to the diffracted signals in a diffraction experiment.
Therefore, a different spatial orientation of the sample
with respect to the incident beam will result in a different
quality of resolution by a reflectivity measurement of the
profile. For example, to neutrons, a structure located at
the air-film interface is much more visible than one at the
film-substrate interface. This is because, at small or inter-
mediate ko, the phase and intensity of the wave are drast-
ically changed by the SLD in the front portion of the film
before the wave reaches the film-substrate interface, re-
sulting in a weaker illumination of the rear portion of the
film than of the front portion of the film. Therefore,
when the sample is Aipped with respect to the beam, the
reAectivity at the small and intermediate ko range would
change appreciably. This means that the reflectivity can
resolve the orientation of the sample. In contrast, in
diffraction, the wave number is essentially equal to the
free-space wave number ko throughout the film, and the
wave is in a weak-scattering region such that the incident
wave illuminates each part of the film with the same in-
tensity and with a phase linearly related to the spatial
coordinates inside the profile. As a result of the linearity,
the diffraction intensity from a one-dimensional sample
would remain unchanged when the sample is Aipped with
respect to the incident beam, and consequently diffraction
intensity cannot resolve orientation. This explains why
the small- and intermediate-Q (or nonlinear) region of a
reAectivity curve adds extra resolving power to that
curve, as compared to a diffraction intensity curve which
does not contain such a nonlinear region.

III. MODEL-INDEPENDENT METHOD
FOR CONSTRUCTION OF p(z)

FROM MEASURED DATA r(ko) OR ~r(ko)~

In reflection experiments, either the reflectance r (such
as in electromagnetic and acoustic refiection) or the
refiectivity ~r~ (such as in neutron and x-ray refiection) is
measured as a function of the free-space wave number
ko =2~ sin0/X, with O denoting the grazing angle of in-
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cidence and A, the free-space wavelength of the wave.
Suppose M data 2)(ko; ) (i = 1,2, . . . , M) (2)= r or

~
r~ )

are obtained at distinct values ko, (i =1,2, . . . , M); the
task of reAection data processing is to determine in the
fullest possible way the SLD profile p(z) characterizing
the reAecting sample situated on top of a known substrate
or bulk medium of SLD p, . Since the measured refIection
or reAectivity data, which are considered the raw materi-
al for the construction of the SLD profile, are in numeri-
cal form and are discrete in ko, it suffices to know the
correct numerical values of p(zj) (j =1,2, . . . , N) and
there is no loss of generality in so doing. In the follow-
ing, a scheme is described for the determination of p(z~ )

(j = 1,2, . . . , N) from measured data Xl(ko, )

(i =1,2, . . . , M).

A. Discretization of SLD profile p(z}

The sample film is situated on top of a given substrate
or bulk medium of SLD p, as depicted in Fig. 1. The re-
gion of interest is z =( —d, 0) and it is equally divided
into N sections, each of which has the same thickness 6
such that Nh=d. This is referred to as an equal-interval
division method in this paper. The SLD within each slice
is regarded as a constant equal to the average SLD in
that slice, and the number of thin slices N can be any-
thing as long as it is sufficiently large so that the finest
structure in the profile can be appropriately represented
in accordance with the resolution of the experiments.
The continuous profile p(z) is now replaced by the
discretized version p~ = [p „pz, . . . , p~ ]. Obviously,
lim~ p~ =p(z).

According to the data processing scheme to be present-
ed, N is chosen to be N =2" (n =0, 1,2, . . . ). It must be
stressed that p&, p2, . . . , p& are not necessarily indepen-
dent of each other and should not be regarded as N in-
dependent unknowns. This means the determination of

~s
substrate

p„p2, . . . , pz does not necessarily require X M. This
point will be discussed in more detail in Sec. III B.

The above method of division applies to a region
z =( —d, 0) in which the functional shape of p(z) is total-
ly arbitrary. If there is a region of known SLD profile in
the sample, then the SLD profile in that region should be
regarded as fixed and is not part of the unknowns to be
solved for. Then the sample can be first treated as con-
sisting of three regions: one known region somewhere in-
side the sample, and two regions with unknown SLD
profiles to be found. The above method of equal-interval
division should be applied to each of the two regions sep-
arately. In general, if there are n& regions of known SLD
profiles and n„regions of unknown SLD profiles, the
equal-interval division method should be applied to each
of the n„regions to discretize each of the n„unknown
profiles, while the SLD profiles of the nj, known regions
are fixed. The profile of the entire sample is the combina-
tion of the individual subprofiles, and all the unknown
subprofiles are to be determined from the measured data
jointly by the method given later. This treatment allows
the incorporation of preknowledge and constraints on a
sample profile.

It should be pointed out that the use of the equal-
interval division method is for preserving the model in-
dependence of our solution scheme. Any use of unequal-
interval division would be equivalent to an assumption
about the derivative of the profile (i.e., about how fast a
profile varies at different spatial positions). The viability
of the use of equal-interval division is guaranteed by the
fact that any continuous or discrete profile can be faith-
fully represented by a discretized profile with equal-
interval division as long as N is sufficiently large.

B. Relation between the SLD profile p&
and the refiection data ( r or

~
r~ )

The solution of the Schrodinger wave equation in the X
uniform slices gives the reflectance r(ko) in terms of the
profile pz through a recurrence relation [10],

2ik,. + lb, + )R;+)+r;+)e
i +16

1+R,+ &ri+&e

-d

(i =N —1,N —2, . . . , 2, 1,0),
where b, ;+, is the thickness of layer i + 1,

k, +, =(ko 4vrp, +, )'~—

the wave number in layer i + 1,

R;+, =(k; —k;+, )l(k;+k;+, )

(14)

FIG. 1. Geometry of reflection of a plane wave (x-ray or neu-
tron) from a sample film of thickness d situated to the left of the
origin of the z axis. The right of the origin z =0 is a semi-
infinite medium called the substrate or bulk with SLD density

p, . The labels "1," "r," and "t" denote the amplitudes of the
incident, reflected, and transmitted waves, respectively. The
sample is discretized into N slices of equal thickness h=d/N.
A continuous profile p(z) can be accurately represented by the
discrete version for sufficiently large N.

the Fresnel reAectance of the interface between the layers
i and i + 1, and

r~ =(k~ —k, )/(k~+k, )

the Fresnel reAectance of the sample-substrate interface.
Obviously, ro is the reAectance of the entire n-layer as-
sembly, and it is straightforward to calculate ro for a
given p& using Eq. (14). Since a continuous profile can
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always be discretized, Eq. (14) is the most efficient
method for calculating r and ~r of any given p(z).

For a given N, ro is an analytical function of X vari-
ables p, (i =1,2, . . . , N), though its form becomes com-
plex and highly nonlinear for large N. For convenience,
the index "0" is dropped from the N-layer reAectance ro,
and one can write Eq. (14) formally as

r(ko) =P(ko, p~),
r(k )~ =~P(k, P )~

(15)

(16)

where P is an analytical function to be calculated accord-
ing to the recurrence relation Eq. (14) down to i =0. For
M ideal data, 2)(ko, ) (i = 1,2, . . . , M) at ko;
(i =1,2, . . . , M), Eq. (15) or Eq. (16) produces M equa-
tions of the following form:

~2)(ko;) —V(ko;, p~) =0 (i =1,2, . . . , M), (17)

where 2)( ko; ) could be either r or
~
r

~
and V (which

represents a function) could be either P or P depending
on whether r or

~
r~ is measured. Equation (17) is an

ideal exact equation relating the exact data Xl(ko; ) to the
exact SLD profile p&. Since in practice, the reported
data are 2)(ko, ) (i =1,2, . . . , M) which are statistical
averages with uncertainties +o', (i = 1,2, . . . , M), Eq.
(17) can only be satisfied with an uncertainty cr, if the
measured data 2)(ko, ) are substituted for 2)(ko, ).
Therefore,

2)(ko, ) —V(ko, , p~) ~0, (i =1,2, . . . , M), (18)

where p& is the profile consistently determined from the
data 2)(ko;). Clearly, when o; becomes very small, Eq.
(18) approaches Eq. (17). Due to data uncertainties, the
profile pz determined from Eq. (18) has uncertainties
hp&. Physically speaking, this means that the
re Aectivities calculated from p& and that from

p&+Ap& differ by an amount of the order of +0.;,' thus,

p~ and p~+Ap~ are undistinguishable by analysis of
the M measured refiectivity data. Equation (18) is the
equation which relates the measured reAectivity data

2)(ko;) [containing errors] to the SLD profile of the
sample. It is a set of transcendental equations, the solu-
tion of which supposedly will yield p&.

However, as often happens, the M equations in Eq. (18)
might be mutually inconsistent. The level of inconsisten-
cy varies from case to case. The cause may be due to a
few sources. First, the normalization of the reflectivity
data at the critical edge sometimes is severely affected by
the existence of diffuse scattering and other reasons, and
a reAectivity curve could be shifted from the actual curve
by an amount capable of upsetting Eq. (18). Second, the
transverse inhomogeneity existing in the structure of the
sample profile may affect the validity of the recurrence
relation Eq. (14), which is based on the assumption of the
transverse homogeneity, to such a degree that the use of
Eq. (14) or Eq. (15) for the calculation of V in Eq. (18)
would result in deviations from Eq. (18) by more than o.;.
Third, residual instrumental errors could also change the
relation between the reAectivity data and the sample
profiles. Due to these causes, Eq. (18) may not be

satisfied perfectly for all experimental cases, but, instead,
one may often find that the difference on the left-hand
side of Eq. (18) may exceed o, or 2o'; or 3a; and so on for
some values of i. This may severely jeopardize the solu-
bility of Eq. (18) unless it is generalized to allow for the
extra deviations due to the above causes. We define an
integer inconsistency level ~=0, 1,2, 3, . . . , such that a
profile, p& satisfying

, Q(ko, ) —V(ko, „p~) ~ro; (i =1,2, . . . , M) (19)

is called a level-~ profile, meaning that it has an incon-
sistency level w. In Eq. (19) the subscript r of, 9(ko;)
indicates the level of inconsistency of the data. In this
way, when Eq. (18) cannot be satisfied, it will be fine if
Eq. (19) is satisfied. Note that r=0 corresponds to the
case of exact data from a perfectly one-dimensional
profile. The test profile for a level-~ case is, 'pz.

In addition to Eq. (18) and Eq. (19), there is another
important relation between the profile p& and the data

2)(ko, ) (i =1,2, . . . , M), namely, the relation between
M and N. Equations (18) and (19) indicate that there are
M equations from M data altogether; thus, the maximum
number of independent unknowns determinable from the
M equations [Eq. (18)] must not exceed M. However, this
does not necessarily mean %&M. For example, Fig. 2
shows a bilayer on top of a known substrate of given p, .
The top layer is —,

' the thickness of the underlying layer.
Obviously, the number of independent unknowns is 2.
But according to the method of equal-interval division in
Sec. II A, at least four unknowns are needed (N =4) in
order to enable the discretized profile to represent the ac-
tual profile. Since only two of the four unknowns are in-
dependent, two measured data (M =2) are sufficient for
the determination of the profile (p2=p&=p4&p&), result-
ing in N )M. In general, if the N unknowns are not all
independent, it is fine to have 1V ~ M.

p(z)

Pg

Pp P3

Ps

FIG. 2. A bilayer sample containing two independent un-
knowns requires four (X=4) variables (p &, p„p3, and p4) for
appropriate representation according to the equal-interval
division method described in Sec. III A.

C. Outline of scheme for determination of p&

The scheme we propose for the determination of p&
from the M equations given by Eq. (18) is a scheme of
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motion. This is so because it works in the following way:
A test profile, 'PN at an assumed initial position, PN
starts to move in the solution space under the action of a
force field which will be defined and explained in Sec.
III D. When the test profile reaches a point such that Eq.
(19) is satisfied for i =1,2, . . . , M and the inconsistency
level w cannot be reduced any further, the motion stops
and the final test profile, fPN coincides with the final solu-
tion profile ~ PN, i.e., ~ pN=~ PN. The two essential
parts of this scheme obviously are how to construct the
test profile 'PN and how to implement its motion.
Through numerous tests on simulated reAectivity data,
we find it optimum to construct the test profile by a
method called the lumped-dimensions method (LD) given
in Sec. III D, and the motion of the test profile is most
efficiently implemented using the quasi-Newtonian
mechanics (QNM) described in Sec. III E.

D. Construction of the test profile

by the lumped-dimensions method

ning of the groove is delumped gradually until each lump
becomes a single dimension in the N-dimensional space
for v=n. Therefore, when a test profile monotonically
delumps its dimensions, it is said to be following the
groove in the domain of the definition of Eq. (19).

Mathematically, the groove abides by the following
delumping sequence, using the notations

t— t n n n n
~PN (P1~P2~P3»PN )

and

t—v t v v v v
~P2 (Pi~P2~P3~ . . ~P2 ).

(i) v=O: The test profile, 'p, =(p, ) is one dimensional,
defined by the N-dimensional lumping

P1 2 P3
'

PN =P1

and this is the starting stage of the groove.
(ii) v= 1: The test profile, 'pz=(PI, pz) is two dimen-

sional, obtained by the N/2-dimensional lumping

When N is very large, such as 1000, the domain of
definition of Eq. (19) in the solution space becomes enor-
mous; thus, there are a huge number of possible paths
which the test profile could take. Letting the test profile
move freely in the domain along an arbitrary path would
prove time inefficient as well as susceptible to getting
trapped in some corners of the domain. Considering the
corresponding monotonic increase in the complexity of
the reAectivity curve as the shape of a SLD profile succes-
sively increases its complexity to a sequence —single lay-
er, bilayer, quadrilayer, octolayer, etc.—we found that
there exists a groove in the domain of Eq. (19) in the solu-
tion space and it is possible to make the test profile track
this groove systematically provided the test profile is con-
strained properly. The groove we have found is one
along which the motion of a test profile gains complexity
monotonically according to the sequence of monolayer,
bilayer, quadrilayer, octolayer, etc. To implement the
tracking of this groove according to the above sequence,
we construct a 2 -dimensional constrained test profile

,'P . from the N-variable discretized test profile 'PN.

Here v=0, 1,2, . . . , n, with 2n=N. It is apparent that
v~ n and the equal sign is true at the end of the groove.
To obtain 2 dimensions from N dimensions, we use the
lumped dimensions of a lumping ratio R, =N/2', mean-
ing every R dimensions in the total of N dimensions are
lumped into one dimension. In this fashion, N dimen-
sions are lumped into 2 dimensions in an elegant way.
As v changes from 0 to n, R takes a sequence of values:
N, N/2, N/4, N/8, . . . , 8, 4, 2, 1. The so-called groove
follows the sequence closely. At v=0, the lumping ratio
is % to 1, meaning that 2V dimensions are lumped into
2 =1 dimension. At v=1, the lumping ratio is N/2 to 1

and the total of N dimensions are lumped into 2'=2 di-
mensions. At v=2, one has R2 =N/4, so every N/4 di-
mensions are lumped into one dimension, and the total of
N dimensions turn into 2 =4 dimensions. As one ap-
proaches the end of the groove, the lumping ratio be-
comes very small. This is equivalent to saying that the
highly lumped dimension of the test profile at the begin-

n n n n — 1

PN!2+1 PN/2+2 PN/2+3 PN P2 &

and at this stage, the slope of the profile begins to exhibit
itself.

(iii) v=2: The test profile, 'p4=(p„p2, p3, P4) is four di-
mensional, constructed by the N/4-dimensional lumping

and

n n n ~ ~ ~ —n —2
PN/4+1 PN/4+2 PN/4+ 3 PN/2 P2 &

n n . . . n —2
PN/2+1 PN/2+2 P3N/4 P3 &

n n ~ ~ ~ — n —2
P3N/4+1 P3N/4+2 PN P4 '

This sequence continues all the way up to the last two
members, as follows.

(iv) v=n —1: The test profile

t n —1 g n —1 n —1 n —1y
~PN/2 ~P1 &P2 ~ ' ' ' ~PN/2 ~

is N /2 dimensional, defined by the two-dimensional
lumping

P1 P2=P1
n n —n —1 n n —n —1

P3 P4 P2 ~ . ~ PN —3 PN —2 PN/2 —1

n n —n —1

PN —1 PN PN/2

(v) v=n: The test profile has dimensions identical to
that of the ¹ ariable profile PN. The lumping is one
dimensional, or there is no lumping. This is the last
member of the sequence and corresponds to the last stage
of the groove.

Therefore, the entire groove consists of n stages corre-
sponding to the n members of the above sequence. At
each stage, the corresponding test profile moves under
the action of a force field resulting from a potential field,
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both of which are to be defined in Sec. III E. At an arbi-
trary stage v, the potential field and the force field are
denoted by W, (p ) and F (p"), respectively. Here, p is
the abbreviation of the test profile, 'p .at stage v and this

simplified notation will continue to be used in the follow-
ing discussion for sake of brevity. 'p .had been used in

previous sections because it was necessary for the
discrimination of various quantities when multiple quan-
tities were involved. Note that the test profile construct-
ed through lumped dimensions is sometimes referred to
as a lumped test profile in the following sections.

E. Motion of the test profile p in the force field F„(p ")
generated by Eq. (19)

Once the test profile p and the groove of its motion
are constructed, it is necessary to specify how it moves.
There are two parts to this issue: One is how it moves at
a given stage v of the entire groove. The other is how the
test profile makes the transition from a given stage to the
next stage when it completes its motion at the given
stage. For the first part, the potential field W, (p') is first
defined and the resulting force field F (p') is derived
from W, (p ). With this force field, as will be explained in
Sec. IIIE2, the implementation uses Newton's law of
motion combined with the Monte Carlo sampling method
to achieve a motion step. For the second part, the transi-
tion of the test profile is made using a continuity condi-
tion of the groove or the locus of the test profile in the
solution space or the force field. Therefore, the motion of
the test profile from the beginning to the end can be sum-
marized in four steps: (1) the test profile at stage v=0
was placed at an initial position (called initialization) as
described in Sec. III E1; (2) the one-dimensional test
profile p =(p, ) is propelled to move according to the
rules prescribed in Sec. III E2; (3) when it completes this
stage v=0, i.e., when p stops moving, a continuous tran-
sition is made to the next stage v=1, as discussed in Sec.
III E 3; (4) the new test profile P'=(p', ,pz) is propelled to
move in the same way as at step (2) according to Sec.
III E2; and (5) at the end of stage v= 1, a transition is
made to stage v=2 in the same way as in (3). This
transition-motion cycle, like the one in steps (2) and (3) or
the one in steps (4) and (5), is repeated until v=n. The
basic steps (1), (2), and (3) are detailed in the following
sections.

2. Motion of the test profile p "at stage v
in the force field F„(p")

The law of motion described below applies to any step
v=1, 2, . . . , n along the groove. It is derived from Eq.
(19) according to classical Newtonian mechanics. In the
derivation, the potential field is constructed first, and the
rules of motion of the test profile are then spelled out ac-
cording to the potential field.

(i) Potential field W' (P') and force field F (p'). Equa-
tion (19) can be written in a dimensionless form,

, &(ko;)—&(ko;, piv) (1 (i =1,2, . . . , M), (20)

the solution of which, p& is equal to the final value of
the lumped test profile p when the test profile reaches
the end of the groove. Before the lumped test profile
reaches the end point, the substitution of p' into Eq. (20)
for, p~ would result in the left-hand side of Eq. (20)
greater than the right-hand side of Eq. (20). Using this
phenomenon, we define M "image particles" which are
projections of the test profile in the reciprocal space or kp
space. These particles are defined to have the following
dimensionless potential energies at stage v:

, 2)(ko;) —V(k po) —1

tween these two bounds. For example, the average densi-
ty of the film might be a very wise choice.

In some situations, the sample SLD profiles are some
perturbed form of a known functional variation; in that
case one can use that known function as the initial condi-
tion of a test profile at stage vp provided the test profile
has dimensions (different from one dimension) capable of
representing the known profile. This is equivalent to
skipping the motion of the test profile at stages 0 up to
vp 1 resulting in saved time.

It is important to know that the scheme to reconstruct
the SLD profiles should depend on the initial conditions
to the least possible extent. Only in that way can the
constructed profiles be called the most objective profiles
ever determinable from the measured data. Of course, a
constructed profile should always undergo close physical
scrutiny before any solid conclusions could be drawn as
in the data processing of many other experiments.

l. Initialization ofp (i =1,2, . . . , M and v=0, 1, . . . , n) . (21)

In the absence of the sample, the reQection should be
the simple substrate Fresnel reAection. If the sample has
a constant SLD which equals the substrate SLD p„again
the reAection is the simple substrate reAection. If the
sample SLD profile p(z) is neither zero nor p„ then the
refIection becomes different from the substrate Fresnel
reAection. The difference directly rejects the SLD profile
p(z). It then seems very natural to set the initial value of
p at either zero or p, .

When the lower and upper bounds of the profile p(z)
are known beforehand, as is the case in many controlled
experiments, one can set p initially to be any value be-

As the lumped test profile moves from one stage v down
to the next stage v+1, these particles lose energies.
When v=n, they lose all energies to touch the "ground"
at zero potential. Sometimes, they can even fall into the
"grass" [meaning the data noise] and stay at a position
below the average ground level. In this case, c.; (0.
When all the M image particles hit the ground of zero po-
tential, the test profile is considered at the ground of a
group potential field W (p') defined by

(22)
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This potential field W (p') has a nonvanishing gradient
in 2 -dimensional space and exerts a force F (P ) on the
lumped profile which moves in it. The force field is sim-

ply

F (p')= —VW (P ) . (23)

Here the gradient operator is with respect to the coordi-
nates p . This force field determines how the test profile
moves along the groove in the solution space, as de-
scribed in following subsections.

(ii) Scheme of the motion of a lumped profile p in
F (p ). The test profile follows the groove discussed in
Sec. III D by making a continuous transition to the next
stage v+ 1 on completing its motion at a previous stage v.
At a given stage v, it gropes in the force field F (p') given
by Eq. (23) and moves in the direction of the force ac-
cording to Newton's law of motion. The force F,(p') has
2 components, and all of them vary as the coordinates p
change. This means the direction of motion of the test
profile changes a lot if one drags the test profile across
the domain of definition of F (p'). However, if we take
the average of F,(p ) over its domain of definition, there
is usually an average force which points to a certain re-
gion of the domain. For example, suppose the domain is
divided into two halves A and B and it is found that
W (P ) is averagely much higher in half A than in half B;
there exists a strong average force pointing from half-
domain A to half-domain B according to Eq. (23). It may
happen that the local force in 2 sometimes points to a
direction away from half-domain B, while that in B
points toward 2, contrary to the direction of the average
force. When the test profile moves in this field, we
choose to have the test profile follow the overall direction
of the force over the entire domain first before it follows
the local variations of the force field in a certain region of
the domain. In the above example, even if the test profile
starts at an initial position in 2 and the local force at
that point is pointing away from B, we would still like it
to move by jumping to B first and then follow the local
force in a region B. Once the test profile jumps into B,
obviously it can ignore 3 by scaling down its "leg
length" to one-half the dimension of half-space B (note
that the largest possible stride of the test profile is equal
to twice the leg length).

The above paragraph is just a sketch of the motion
scheme we will present. The more detailed and rigorous
arguments are as follows: We know that when F (p ) be-
comes zero at some positions, the test profile might stop
moving. These positions may be either pits or peaks in
W, (P ). The peaks may have different heights from each
other, and the pits may have various depths. Only when
the test profile reaches the deepest pit can one say the test
profile has reached the end of stage v. As Eqs. (14) and
(15) are continuous functions of the profile, the peaks and
pits are smooth and well defined and they usually come in
smoothly joined pairs. Therefore, the entire domain of
definition of W (p") or F (p') is characterized by alter-
nating occurrences of peaks and pits in W (p ). The
domain can thus be divided into many subdomains, each
of which correspond to a region including a single pit and
the boundary of which is such that a test profile placed at

R =(R,R,R"„)
—1(R (1,

(24)

(25)

any position inside the subdomain would monotonically
move to the bottom of the pit if the test profile exactly
follows the direction of the force field F (p ) in that sub-
domain. Then the motion scheme of the lumped test
profile consists of two steps: (1) jumping into a pit and (2)
reaching the bottom of that pit. These two steps are re-
peated until it can no longer jump or move. At this
point, stage v of the groove is considered completed and
the test profile is ready to start the next stage v+1. This
might seem formidably time consuming, but in fact it is
not. The major reason is that the lumped dimensions
greatly simplify the structure of W, (p )=const. For ex-
ample, at v=O, W, (p ) is a one-variable function and it
takes a very short computation time in order to reach the
bottom of the deepest valley of the one-dimensional
curve. This becomes visually appreciable if a one-
dimensional function with multiple valleys is plotted
against a single variable on the abscissa. When v=1, the
complexity of W (p') only increases twofold. When v be-
comes large, although the structure of W, (p') becomes
very complex, it is not formidably time consuming for the
test profile to move because the test profile has by now
reached a position very close to the largest and deepest
pit in the entire domain of W, (p').

The motion of a test profile at a given stage v is com-
posed of many discrete moving steps. Each step can in
principle be calculated by solving Newton's equation of
motion (as in molecular-dynamics simulation). However,
as in Monte Carlo atomistic simulation, it is also legiti-
mate to use random numbers to generate the moves. The
difference between solving the equation of motion and the
use of random numbers is that only a fraction of the at-
tempted moves are accepted for the latter, while the
former uses all moves. The advantage to using the latter
for our present purpose is that one can save computation
times by skipping the enormous amount of work involved
in the more time-consuming calculation of the force due
to the derivatives [see Eq. (23)]. In (iii), we describe how
to use random numbers to generate moves. There is a
sampling cell which determines the size of the maximum
region which the random sampling can cover. This size
is designed to follow a decreasing sequence as the test
profile moves along within a given stage v. At the begin-
ning of the stage, we want to jump from pit to pit in the
entire domain of definition of W (p ), so the sampling
cell should be equal to the entire domain. But as the test
profile becomes more localized, the sampling cell size is
gradually reduced to focus on more important locations.
The gradual reduction is called the downscaling of the
sampling size and it is described in (iv). The downscaling
is also needed after the test profile jumps into a particular
pit. For a given number of samplings, a test profile can
move faster toward, and hit more precisely on, the very
bottom point of the pit if the sampling cell is scaled down
synchronously to su%ciently small values at the end.

(iii) Monte Carlo construction of random moue hp for
p . A 2'-dimensional random vector is generated as fol-
lows:
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50 PU PL (27)

where pU and pL denote, respectively, the upper and
lower bounds of the SLD in the sample, and they are usu-
ally known for a sample composed of known constituents.
The scaling factor 1 —p can be determined by

where R is a random number uniformly distributed in
the interval (

—1, 1). The random number can be gen-
erated using a regular generator such as the ones avail-
able in [11] or the ones used in standard Monte Carlo
simulations. This random vector R can be used to
create a random move hp in a sampling cell of diameter
5 by

Ap =5R
(26)

fi =50(1—p)~,

where 5 (q =0, 1,2, . . . ) forms a decreasing sequence
which controls the diameter of the sampling cell, p is the
percentage of reduction in each scaling, and (1—p) is the
scaling factor. At the beginning of the scaling, q =0, the
diameter of the scaling cell 50 is equal to the maximum
range of the SLD profile as determined in the following:

bp'=cF, (p') (c )0), (30)

where c is a positive constant. Equation (30) can be
rewritten as

F,(p') =—&0
QpV C

(31)

Since the random move can be a large step, especially in
case of jumps, Eq. (23) is best written in the form of a
dift'erence equation,

tional to the force it undergoes, and the proportionality
constant is a positive number called the mass of the body.
Consequently, for a stationary body at time zero, the spa-
tial displacement after a time lapse t is in the direction of
the force and is equal to the product of the force and the
squared time t divided by twice the mass. In the present
case of the motion of a test profile, the time t and mass m
are not defined and are of no importance. We are interest-
ed in how the displacement Ap is related to the force
F (p') because this determines the locus of the test
profile in the solution space. Therefore, we can express
Newton's law of motion as applied to the time interval in
which a given move is made as

1 M o.
(28) F (p)=—W (p +bp ) —W (p')

g —V

P
(32)

This definition guarantees that the scaling is sufficiently
slow such that a cell is properly sampled. The scaling se-
quence stops at q =s, such that

Substituting Eq. (32) into Eq. (31), we obtain

g—V/2
W'„(p +hP ) —W (P )= — ' (0 . (33)

5, 5,
~p and )p .

0 0
(29)

This enables the program to stop when the test profile
essentially moves negligibly.

(iv) 3 sequential forward backward wa-lk alternatiue to
the scheme in (iii) The sch. eme for generating a random
move in (iii) is called a random number scheme. To this
scheme, an alternative is to use a forward-backward
walk. In this scheme, a move is generated by increasing
or decreasing the value of a single component of the test
profile vector p'. This move is equivalent to the test
profile p making a walk forward or backward along a
given axis. For a given component p, there are only two
possibilities, one is an increase by a step size 5 and the
other a decrease by the same amount. This forward-
backward move is applied to every component of p
sequentially, but the sequence does not matter. When it
has been applied to all the components once, the above
sequential applications are repeated. The step size is
defined by Eq. (26) and it is scaled down in the same way
as described in (iii). This scheme was tested and found to
be more efficient than the scheme in (iii).

(u) ¹wtonian motion bp of p in the force field
defined by Eq. (23). The move constructed in (iii) and (iv)
may or may not be in accordance with Newton's law of
motion. If it is the former, then the test profile moves
forward. If it is the latter, the test profile should wait un-
til another random move constructed by (iii) is judged to
be in line with Newton's law of motion. Newton's law of
motion states that the acceleration of a body is propor-

Equation (33) is the final form of Newton's equation of
motion for a discrete move hp in the potential field
W', (p').

A move hp constructed in (iii) and (iv) is considered a
Newtonian move if it satisfies Eq. (33), and a non-
Newtonian move otherwise. The Newtonian motion of
the test profile in the potential field W, (p ) consists of
one Newtonian move after another Newtonian move.
When a Newtonian move is obtained the test profile
moves into the new position and waits to make another
Newtonian move. In this way, the test profile can move
from the beginning of a stage v to its end.

3. Transition from stage v to the next stage v+ 1

When the Newtonian motion of the test profile is
completed at stage v, the test profile stops moving and a
transition to the next stage v+ 1 is in order. During the
transition, the number of dimensions of the new test
profile p

+' has increased through the delumping of the
old lumped test profile Ap . The increase is a doubling
from 2 dimensions to 2 +' dimensions. The lumping ra-
tio of the test profile p

+ ' is accordingly halved compared
to that of p . The transition needs to preserve the con-
tinuity of the test profile from p to p +'. Fortunately,
this can be very easily done because the lumping scheme
in Sec. III D has already taken this factor into account.
The transition is illustrated in the following.

At the end of stage v=0, the test profile p =(p, ) is
recorded. This variable is a lumped pack of n variables.
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We cut the X-variable lump into two halves; each is a
lumped pack of X/2 variables. Then we have a two-
variable vector p „=(p„p,) with two equal components
and we set it to be the initial position of the test profile at
the beginning of stage v=1. The test profile p' makes
Newtonian moves until the end of this stage and the final
position p =(p,',p2) is recorded. Then the test profile is
ready to make the transition to stage v =2. Since each of
the two components of p' is a lumped pack of X/2 di-
mensions, cutting it into halves of X/4 dimensions would
create a vector of four components p;„=(p', ,p i,pz, pz )

from p'. We set this vector to be the initial position of
the new test profile p, then p is ready to start its
Newtonian motion at stage v =2. This bisection method
can be similarly applied at each transition.

F. Summary

In the following, we summarize Secs. III A —III E in a
procedure of six steps to construct a SLD profile from a
set of M reAectivity data. By following these steps, one
can construct a final profile from M measured reAectivity
data.

(1) The SLD profile of the measured sample p(z) is
represented by its model-independent discretized version

pz = (p„p2, . . . , p~) as discussed in Sec. III A and then a
so-called groove in the solution space is constructed by
the lumped-dimensions method (see Sec. III D). This
groove consists of n + 1 stages or sections
v=0, 1,2, . . . , n. It serves as a constraint to make p&
take the form of a test profile p which changes dimen-
sions at different stages according to 2 as it moves from
stage to stage.

(2) Depending on the specific sample, the profile p~
can be chosen to start moving from a specific starting
stage vo on the groove (vo may be 0 or other values no
greater than n), and the initial position at the starting
stage vo is chosen according to Sec. IIIE1. At this
stage, the groove constrains the profile pz to take the

Vp Vp
form of a test profile p

' which has 2 ' dimensions (less
than N =2").

Vp
(3) At the starting stage vo, pz in the form of p

' be-

gins to move away from a given initial position assigned
in step (2). The motion is carried out according to Sec.
III E 2. The way to do it is by generating a move hp

' ac-
cording to the schemes in (iii) or (iv) in Sec. III E 2, judge
if it agrees with Newton's law of motion in the form of
Eq. (33), and implement or reject this move depending on
whether or not it satisfies Eq. (33), respectively. When
the random number scheme in (iii) is used, this trial-
judgment act is repeated until no move is accepted for L
consecutive trials for L being statistically very large. If
the walk scheme in (iv) is used, the trial-judgment act
continues until none of the components of p

' is capable
of moving any further.

(4) At completion of (3), the size of the sampling cell

for generating bP ' is scaled down according to Eq. (26),
and (3) is repeated. When (3) stops again, the sampling
cell is. further scaled. The scaling continues until Eq. (29)
is satisfied. At this point, the motion of the profile at

stage vo is considered completed.
(5) When (4) is completed, the profile makes a transi-

tion to stage vo+1 according to Sec. III E3. At the new
Vp+ 1

stage, the profile p& takes the constrained form p
'

The motion is carried out in the same way as at stage vo,
namely, steps (3) and (4) are repeated.

(6) The three steps (3), (4), and (5) are repeated until
the motion at the last stage v=n is completed. Now, the
profile has reached its final position, and its value is
recorded as the constructed profile from the M data.

IV. APPLICATIONS OF METHOD
TO SIMULATED REFLECTIVITY DATA

A. The Cahn model in polymer segregation

When deuterated polystyrenes segregate, the air-
sample interface has a concentration profile described by
the Cahn model

—
( z + d ) /i. (34)

where PM and P„are the volume fractions of deuterated
polystyrenes at the air-sample interface and at ~ into the
bulk, respectively. If we choose the parameters PM =0.5,

=0.05, and A, = 100 A, then the corresponding SLD
profile would be

In this section we generate some reAectivity data using
the Parratt's recurrence formula for a few SLD profiles
which resemble the ones used in reAectivity experiments.
Then we apply the method developed in Sec. III to these
data and investigate whether or not said method can
faithfully reconstruct the SLD profiles. The term "recon-
struct" is used because in producing the M discrete
reflectivity data via the Parratt s formula, an original
SLD profile is cut into pieces and is turned into M
discrete dimensionless numbers from which one wants to
rebuild the SLD profiles.

The reason for using the simulated data is that the ac-
tual SLD profiles are known beforehand; thus, the
correctness of the reconstructed profiles can be checked
directly against the known profiles. In this way, the relia-
bility of the method itself can be confirmed, and this
serves as an indirect evidence that the SLD profiles
reconstructed by the method from measured reAectivity
data are correct. In the following, first, the simulated
refiectivity data from an exponential profile (or the Cahn
model) typical of polymer segregation at the air surface
are inverted. Second, the method is applied to the simu-
lated data from an error-function profile representative of
interdiffusion between two materials. Lastly, an oscillato-
ry profile resembling the surface structures of bicontinu-
ous microemulsions is simulated, and the reAectivity data
are inverted to reconstruct this profile. Although these
profiles are not exhaustive, their functional behaviors do
cover a wide range of complexities so that it is reasonable
to say this method can reconstruct most SLD profiles met
in real experiments if it can faithfully reconstruct the
above profiles. Note that a Gaussian noise of a few per-
cent is introduced into the simulated data in Secs.
IV A —IV C to simulate experimental errors.
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p(z) = 1.67 X 10 +2. 22 X 10 e (35)

(a)
original

verted

0

The dimension of p(z) is A . The parameter d is the
distance from the air-sample interface to the origin of the
z coordinate and is chosen to be 1000 A in this case.

Using the profile in Eq. (35), the refiectivity is generat-
ed by the Parratt's formula and is plotted in circles in
Fig. 3(b). Applying the method of Sec. III to the data,
we obtain a reconstructed profile as given by the solid
line in Fig. 3(a). The actual profile is plotted in dashed
line in the same graph. The reconstruction is faithful to
the actual profile. The reflectivity of the reconstructed
profile in Fig. 3(a) is calculated and plotted in solid line in
Fig. 3(b). The comparison with the simulated data in Fig.
3(b) is within 3%%uo. The conclusion from this example is

that the method works on segregation profiles like the
one in Fig. 3(a).

B. Error-function model in Fickian di6'usion

between two material regions

In the study of the diffusion between two material re-
gions of different densities such as between a protonated
polystyrene layer and a deuterated polystyrene layer, the
interface density profile would be an error function if the
diffusion is assumed to follow Pick's Law. Although de-
viations from the error function may occur when the den-
sities are very high or when constituents of the material
regions cannot be approximated by small spherical parti-
cles, the error-function model is still important because it
is representative of a class of density profiles resulting
from a transition from one density level to another.

Suppose a 750-A uniform layer of protonated polys-
tyrene (HPS) is placed on top of a 750-A uniform layer of
deuterated polystyrene (DPS) which in turn is situated on
top of a semi-infinite fused silica substrate. The neutron
SLD densities are 1.43 X 10, 6.4 X 10, and
3.48 X 10 A for HPS, DPS, and fused silica sub-
strate, respectively. Upon annealing for some time at a
certain temperature, the two layers diffuse into each oth-
er and the interface region becomes a gradual sloping-up.
If the diffusion is assumed to be Fickian, then the
sloping-up profile would be an error function. Suppose
the profile takes the following form:

0
—1200 —800

depth coordinate z (A)

p(z) = 1.43 X 10 +2. 50 X 10 1+erf
150

(36)

0.01

0.001

0.0001

0.00001
0.00 0.01 0.02 0.03 0.04 0.05

O

free —space wave number k, (A )

FIG. 3. Inversion of the simulated reAectivity data of an ex-
ponential profile given by Eq. (35). This profile is called the
Cahn model. (a) presents the reconstructed profile (solid line)
compared with the actual profile (dashed line). The profiles

—6 2
continuously merge into a uniform bulk of 1.67 X 10 A . (b)
is the calculated reAectivity (solid line) of the reconstructed
profile compared with the simulated data (circles).

This profile is calculated and plotted in dashed line in
Fig. 4(a). Note that in practice the reptation effect will
cause the actual profile to deviate from the standard form
in Eq. (36) I12].

The reflectivity of this profile is simulated using the
Parratt's formula and the data are given in circles in Fig.
4(b). Applying the method in Sec. III to these simulated
data, we obtained the reconstructed profile plotted in
solid line in Fig. 4(a). Apparently, the reconstructed
profile is in close agreement with the actual profile
(within 2%%uo). To further confirm the correctness of the
profile, the reflectivity of this profile is calculated and
plotted in solid line in Fig. 4(b) to compare with the simu-
lated data. The reconstructed profile does give a
reflectivity curve which is very close to the simulated
data. Because the experimental profile is at least similar
to the profile in Eq. (36) although it may not be exactly an
error function, the effectiveness of this method as applied
to the error-function profile in Eq. (36) gives one the
confidence to apply it to real experimental data measured
from an actual diffused profile. Besides the profile in Eq.
(36), we have tried similar profiles with different parame-
ters, substrates, and orientations with respect to the in-
cident beam; in all cases, the original profiles have been
faithfully reconstructed without exception.
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C. Damped oscillatory surface profile

It was recently discovered that the surface of a bicon-
tinuous microemulsion assumes a dam e"
orm ~ ,'. c ose representation of this surface structure

is the following function:

+( )
~, +d~&» sin[~(z+d)]

~(z +d)
where is the bulk Spb LD density, pM the maximum SLD
value at the surfsurface, g the correlation length, and
~=2m/D, with D denotin hg the domain-domain repeat

istance ~5~. For thhe present purpose, we choose the a-
rameters pb =3.0X 10 A =6

3p A and g =800 A. This profile is plotted in

dashed line in Fi . 5 a .'g. (a). It is then used to generate simu-
lated reAectivittivity data as gwen in circles in Fig. 5(b). Ap-
plication of the method in Sec. III t th do e ata results in a
reconstructed profile plotted in sol'd 1' ' F' .i ine m ig. 5(a). The

The reAectivit c
reconstructed profile is very clo t thse o e actual profile.

e reAectivity calculated from the reconstructed profile
is plotted in solid line in Fig. 5(b) d

'
an it is seen to agree

with the simulated data very 11 Th'we . is example is evi-
dence that the method would work 'll
~ ~

wor on osci atory profiles
success u appli-in reflection experiments. Examples of f 1

cations to real experimental data can be found in [5].
In conclusion, the method developed in Sec. III can

reconstruct faithfully the SLD r fil
above. This means

pro es as discussed
a ove. This means that it is reasonable to assume that it
can be applied to experimental data from similar sam 1ar samp es.
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V. APPLICATIONS OF METHOD
TO MEASURED REFLECTIVITY DATA

In this section we present some applications of the
method to the inversion of measured reAectivity data.
The reAectivity data to be used are from three different
types of samples: an AOT-D20-oil microemulsion sur-
face, a diffused polymer-polymer interface, and two end-
functionalized polymer samples exhibiting surface
adhesions [AOT is sodium bis(2-ethylhexyl)sulfo-
succinate]. In the following, we describe in detail the
three experiments and the analysis of the data using the
method in Sec. III. In essence, this section is a viability
test of the method under practical circumstances.

A. Surface structure of microemulsion D20-decane-AOT
of a=40, y=20at T =25.2 C

on a silicon substrate. Before the experiment, the sample
was a 850-A-thick DPS layer put on the top of a 5000-A-
thick HPS layer on a silicon substrate. Then it was an-
nealed to induce interdiffusion. Before annealing, the
DPS layer and the HPS layer have a constant scattering-
length density of 6.3X10-6 and 1.43X10 6 A-2 respec
tively. After annealing for 15 min at 155 C, the two lay-
ers diffused into each other, so the boundary between
them became more gradual. The detailed structure of the
density profile rejects the physical processes responsible
for diffusion. The measured neutron reflectivity data in
Fig. 7(b) (circles) are inverted with the method described
in Sec. III to yield the profile in Fig. 7(a) (solid line). In
this figure, the region z (—5850 A is air and the omitted
portion of the HPS layer (the SLD is 1.43 X 10 A )

extends to z =0, where it comes in contact with the sil-

In [5], three sets of measured reflectivity data from
bicontinuous C&oE4-D20-octane microemulsions were in-
verted using the same method as presented in Sec. III to
produce the SLD structures at the air-microemulsion in-
terfaces. It was discovered for the first time that the sur-
face regions were layered due to the presence of the sur-
face. For the purpose of illustration of the method in
such applications, we present here the reconstruction of
the surface SLD structure of another microemulsion con-
sisting of AOT, DzO (brine), and decane. The parameters
of this microemulsion are o'. =40, y =20, and T =25.2'C.
Note that the SLD values for the three components are
0.593X10, 6.38X1Q, and —0.487X jQ A, re-
spectively.

A neutron reAectivity experiment was performed on
this sample at the reAectometer at Saclay, France. For
the procedures and precautions used in this experiment,
the reader is referred to the description in [5]. The data
are shown in circles in Fig. 6(b). Using the method in
Sec. III to these data, we have obtained a surface profile
plotted in solid line in Fig. 6(a). It is found that this mi-
croemulsion, like C,OE4-D2 O-octane, also exhibits an os-
cillatory surface density structure. The physics behind
this phenomenon is expected to be the same as for C&OE4-
D20-octane. Since the main purpose of this example is to
illustrate the practical applications of the method, we do
not intend to discuss the detailed physics of this sample;
instead we refer the reader to [5] for more information in
this respect.

The refiectivity of the reconstructed profile in Fig. 6(a)
is calculated using the Parratt's formula and is plotted in
solid line in Fig. 6(b) for comparison with the measured
data. The agreement is within 3%. Aided by the appli-
cation of the method to the simulated reAectivity data
from a similar oscillatory profile in Sec. IVC, we are
confident that the reconstructed profile in Fig. 6(a) is
correct and reAects the actual surface structure of the mi-
croemulsion.

B. Dift'used interface pro6le of HPS-DPS bilayer

In Fig. 7(b) are plotted the refiectivities as a function of
ko. The circles represent the measured reAectivity by
Felcher, Karim, and Russel [12] from a polymer bilayer
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FIG. 6. Inversion of the reAectivity data measured from a
microemulsion sample consisting of oil-D20-AOT at a=40,
y =20, and T =25.2'C. The sample is in the one-phase region
in its phase diagram. (a) is the reconstructed profile (solid line).
The bulk has a SLD of 2.60X10 A . (b) is the calculated
reflectivity (solid line) of the reconstructed profile compared
with the measured data (circles).
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icon substrate. The interfacial density gap due to repta-
tion as discussed in [12] is observed in this figure. To ver-
ify the validity of this inverted profile, its reflectivity is
calculated against ko and plotted with solid line in Fig.
7(b). It follows the measured data very closely. Note
that the SLD profile deviates from an error-function
profile due to the reptation effect.

C. Adhesion properties of end-functionalized polymers

It has been contemplated that the neutron reAectivity
experiments could determine the effect of the end groups
on the surface adhesion properties of polymers. Experi-
ments were carried out on samples consisting of uniform
mixtures of polystyrenes. Seventy-five percent of each
polystyrene chain is protonated, while 25% of the chain

7 I I

o~

CO

Q)'e

4

Io~

CO 3-
~ ~

Q)

2

Q)

I

(a)

is deuterated. Then the deuterated end of the chain is
terminated with a lithium or Auorine tip. The samples
are situated on top of silicon substr ates of SLD
2.08X10 A . Since the sample is a uniform mixture,
obviously, the only places where structures can occur are
the air surface and the substrate surface. The middle of
the samples should be uniform bulk. For a given chain at
the surface, the terminated deuterated end could either
be drawn to the surface or remain unaffected by the pres-
ence of the surface. The former would result in a high
SLD density region next to the surface followed by a low
SLD density region corresponding to the protonated seg-
ment of the chains. Note that the high-density region
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FIG. 7. Inversion of the reflectivity data measured from a
0

diffused interface between a DPS layer of 850 A and a HPS lay-
er of 5000 A. The substrate is silicon of 2.08X10 A . The
sample was annealed at 155 'C for 15 min to induce diffusion. (a)
gives the reconstructed profile (solid line). (b) gives the calculat-
ed reflectivity (solid line) of the reconstructed profile compared
with the measured data (circles).

FIG. 8. Inversion of the reflectivity data measured from a
0

1125-A-thick polymer sample consisting of a mixture of poly-
styrene chains. Each chain has 75% of its length protonated
and 25/o of its length deuterated, and the latter is terminated
with a fluorine tip. This sample was annealed at 110'C for 16 h
to induce adsorption. The substrate is silicon of 2.08X10
A . (a) presents the reconstructed profile (solid line). (b) gives
the calculated reflectivity (solid line) of the reconstructed profile
compared with the measured data (circles).
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could be considerably wider than the length of the deu-
terated segment as the polymers are tangled together.
The latter would lead to a uniform region near the sur-
face. The neutron reAectivity experiments are supposedly
able to detect whether the former or the latter is the case
at both the air and the substrate surfaces. More than 20
sets of experimental data were obtained by Dr. J. Kober-
stein et al. (University of Connecticut) at the POSY
reflectometer at IPNS, Argonne National Laboratory.
However, the lack of a model-independent method to
reconstruct the SLD profiles from the data has prohibited
successful processing of the data. With the development
of the method' in Sec. III, we have successfully recon-
structed the profiles from some of these data given to us

by Dr. Koberstein. In the following, we present two ex-
amples to demonstrate the power of this method.

The first set of data were measured from a polystyrene
sample with fluorine termination. The data are plotted in
circles in Fig. 8(b). The reconstructed profile is given in
solid line in Fig. 8(a). In obtaining the profile, the middle
of the profile was constrained to be constant to save com-
putation time. It is seen that there is a high-density layer
at the front surface. This indicates that the Auorine tip
has the effect of adhesion to the air surface. The correct-
ness of the profile is confirmed by comparing the calculat-
ed refIectivity of the profile as given by the solid line in
Fig. 8(b) with the data shown by circles in the same
graph. Note that the high-density layer in the front is
followed by a layer of low-density region.

The second set of data were from a polystyrene sample
with lithium termination. The data are given in circles in
Fig. 9(b). The reconstructed profile is plotted in solid line
in Fig. 9(a). It indicates the occurrence of adhesion at
both the air and silicon surfaces. This seems to mean
that lithium has an afFinity to silicon as well as to air.
The calculated refIectivity of this profile is plotted in solid
line in Fig. 9(b). It is in good agreement with the mea-
sured data.

VI. DISCUSSION

65
O
M 0-1250 —1 000 —750 -500 —250 0 250

depth coordinate z (A)

0. 1

0.01

0.001

0.0001

0.00001
0.00 0.01 0.02 0.03 0.04 0.05

O

free —space wave number k, (A ')

FIG. 9. Inversion of the refl.ectivity data measured from a
0

1050-A-thick polymer sample consisting of a mixture of poly-
styrene chains. Each chain has 75% of its length protonated
and 25% of its length deuterated, and the latter is terminated
with a lithium tip. The sample was annealed at 110 C for 16 h
to induce adsorption. The substrate is silicon of 2.08X10
0 —2
A . (a) gives the reconstructed profile (solid line). (b) gives the
calculated reAectivity (solid line) of the reconstructed profile
compared with the measured data (circles).

A model-independent method for reconstructing the
SLD profile from a set of M reAectivity data has been
developed and successfully tested on both simulated and
measured data. It is model independent because no
preassumed SLD profile models are needed in order to
carry out the reconstruction calculation. For example,
the damped oscillatory structures in the surface region of
the microemulsion sample shown in Sec. VA had not
been known before a direct application of the method
given in Sec. III to the measured reAectivity data. The
reconstruction calculation unexpectedly produced such a
structure. In the inversion process using the method of
Sec. III, the surface region was discretized into 256 small
segments and the SLD values of all 256 segments were
self-consistently generated from the M reAectivity data
such that the calculated reAectivity of the final profile
agreed with the measured reAectivity data to within the
error bars of the data. The oscillatory form of the recon-
structed profile had not been preassumed; therefore, the
method is truly model independent. In addition, for N
sufficiently large, such a discretized profile of 1V segments
can represent most SLD profiles in a practical refIectivity
experiment. Therefore, the method is capable of recon-
structing SLD profiles of both discrete and continuous
functional forms free of preassumed models. However,
this does not exclude the possibility of incorporating
known constraints about a sample into the inversion pro-
cess. In fact, this can be very easily done. One example
is the use of a uniform bulk constraint on the middle sec-
tion of the adhesion sample in Sec. V C. Another exam-
ple is the use of the knowledge about the symmetry of the
diffused interface in Sec. V B.

In the implementation of the method, the thickness pa-
rameter d is largely a free choice as long as it is larger
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than the actual thickness of the sample. It should be large
enough to include the entire film (excluding the substrate)
within the spatial region ( —d, O) so that no SLD struc-
ture is lost. This requirement can be satisfied in three
ways: (1) If the actual thickness d, of the film is accu-
rately known beforehand, then d is set to d, ; (2) if d, is
only known approximately, then a conservative estimate
of the maximum possible value of d, should be used for
d; and (3) if nothing is known about the thickness of the
film, one can always use the maximum sensitive depth d,
of the probing beam as the value of d. The sensitive
depth d, is defined as the depth beyond which the SLD
structures cannot be detected by a reflectivity measure-
ment. It can be estimated from the experimental resolu-
tion Ako. In order to sensitively detect the existence of
an interface situated at d, from the air-film interface, the
reflectivity curve should preserve the oscillating features
due to the interference between the reAection from the in-
terface at d, and that from the air-film interface. This
means that there should be at least two data points within
each half-period of the oscillation. Since the minimum
distance between two data is Ako, this condition requires
that d, =~/2hko. This formula can be applied to both x
rays and neutrons. For a neutron reAection experiment,
suppose the uncertainty in kp is b, kp/kp 3%. This
gives Ako=6X10 A ' at ko=0. 02 A ', a typical
value. Then the sensitive depth is calculated to be
d, =2600 A. To be more conservative, one may relax the
requirement of two data points per half-period to one da-
tum per half-period. In this case, the sensitive depth is
determined by d, =sr/b, kp. According to this condition,

0
the sensitive depth becomes d, =5200 A. Using d, as d,
one is assured that the detectable region of the SLD
profile is effectively included in the interval (

—d, O). In
practice, case (2) is more common than cases (1) and (3).
For example, if the thickness of a polymer sample can be
determined by ellipsometry to a precision of 30%, one
may let the value of d equal 1.3 times the thickness deter-
mined by ellipsometry, and this d is sufficient to contain
the whole film in ( —d, O). To be more conservative, one
can even use 1.5 times the ellipsometric thickness as the
value of d. Once a conservative d is chosen as discussed
above, then the method in Sec. III will automatically
make the value of the reconstructed SLD profile in the
extra region of d —d, adjacent to air zero, or, alternative-
ly, it will make the reconstructed SLD profile in the extra
region of d —d, facing the substrate identical to the sub-
strate. In this way, the real thickness of the profile is
correctly recovered by the method.

Another issue is the number of segments X within the
total thickness d. It is essentially determined by the spa-
tial resolution of the probing beam. This resolution is
comparable to the wavelength of the wave. For neutrons,
the resolution is a few angstroms (say, 10 A), and for x
rays it is about one angstrom. For example, for d =1000
A in neutron reflection, % should be 100 in order to make
the pixel size of the profile comparable to the spatial reso-
lution of the probing wave. For typical neutron experi-
ments, since the sensitive depth is a few thousand
angstroms, X is about a few hundred. This number of
pixels can be handled very efficiently by our method on a

regular workstation such as a DEC 5000 or an IBM 6000.
In an experiment, there is an uncertainty in the ko

value and it is defined as the Ako/ko factor. It is about a
few percent (say, 2% to 10%) for neutron experiments
and is less than 1% for x rays. The measured reflectivity
is considered as an average of the reflectivity over a range
of exact ko values weighted by a Gaussian distribution
with a standard deviation Ako. In the method in Sec. III,
this factor is routinely implemented. The effect of this
factor is the smearing of high-frequency variations and it
is most significant at larger ko values. For example, the
interference between the reAected wave from the front
surface and that from the back surface would produce
some fast oscillations in the reflectivity curve if the sam-
ple is thick, but one may not be able to see them in the
measured reflectivity data due to the smearing effect of
the uncertainty in ko.

The roughness of surfaces are very common in practi-
cal samples. Since it has the effect of decreasing the
effective Fresnel reflectance of an interface in the same
way as a slope does to a sharp interface, it is accounted
for in the method by automatically making a rough sur-
face look like an interface with a slope. A fatter slope
signifies a rougher surface, while a steeper slope indicates
a smoother surface. By this token, the roughness param-
eter is not directly involved in the method. In neutron
reAection experiments, since the spatial resolution is a
few angstroms, a roughness of rms height of a few
angstroms usually cannot be detected by reAection.
Therefore, one should be careful in making conclusions
about the roughness of a surface from neutron reflection
data. A general caution is that arbitrary adjusting of the
roughness parameter using the Debye-Wailer factor in
order to obtain good model fitting may lead to an
artificial result.

The last factor in reflection is the absorption due to the
imaginary part of the SLD. The imaginary part of the
neutron SLD is discussed in [13]. For x-ray refiection,
the imaginary part of the SLD can be found in [14]. In
the present method, absorption is incorporated in the
program, but it has been negligible in the examples con-
sidered for neutron reAection.

The method in Sec. III has been developed for the pro-
cessing of neutron and x-ray reAectivity data, although all
examples used are from neutron reAection. Also it is ap-
plicable to the inversion of reAectance data. We have
tested the method on simulated reAectance data from
more than 20 profiles and the result has been positive
without exception. As a final word, it should be pointed
out that successful applications of this method to other
actual experiments depend on correct understanding of
the sample and the interactions between the beam and
the sample. It is advisable that constraints based on
correct prior knowledge of the sample be beneficially
used to save computation time and eliminate possible ar-
tifacts, and, lastly, that any reconstructed profile be scru-
tinized before conclusions are drawn.
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