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We calculate the probability distributions of the largest local Lyapunov exponent for three Hamiltoni-
an systems at different values of the energy E, for a set of increasing values of the length in which the tra-
jectory is partitioned. The systems we study are the Hénon-Heiles model and the classical Ar; and Ar,
clusters. We show that these distributions contain much information about the dynamics of the system
and, in particular, can be used to study the evolution of ergodic properties as the internal energy of the
system increases; therefore, even though the inequivalence of chaos and ergodicity does not allow one to
consider Lyaponov exponents to be a direct measure of ergodicity, the sample distributions of short-term
Lyapunov exponents can be used to evaluate the extent of ergodic behavior in the various situations.

PACS number(s): 05.45.+b

I. INTRODUCTION

The spectrum of Lyapunov exponents [1-3] has prov-
en to be one of the most useful diagnostics to detect and
quantify chaos (for a general review see Ref. [4]). Posi-
tive (or negative) Lyapunov exponents measure the
asymptotic average exponential (powers of 2) rate of
divergence (or convergence) of nearby orbits in phase
space and are by definition ‘“‘global” quantities in time.
Exponential divergence implies that predictive power re-
garding trajectories shows extreme sensitivity to the level
of initial information; hence any system with at least one
positive Lyapunov exponent is said to be chaotic.

The concept of “local” Lyapunov exponents was exam-
ined [5], set aside for a time, and then came of interest
again recently [6-8]. In this approach the exponential
rate of divergence is averaged only over short stretches of
time. Of course, then the results on any two distinct
stretches can be different, but it turns out that the distri-
butions of such results are in fact invariants of the
dynamical system. For strange attractors these distribu-
tions tell about the variation of predictability over the at-
tractor [7]. For Hamiltonian systems it has been suggest-
ed that they could be used to separate the power spectra
into a regular part exhibiting very sharp peaks, generated
by the motion in the vicinity of invariant tori where the
divergence of nearby orbits is algebraic (i.e., the largest
Lyapunov exponent is zero), and a chaotic background
consisting of broadened features, generated by the motion
in the regions where the divergence is predominantly ex-
ponential [6]. The concept was also used to demonstrate
[8] the nonmonotonic energy dependence of the
Lyapunov exponents, K entropy, and fractal dimension of
trajectories of the Ar; cluster [9] in terms of the geometry
of the underlying potential surface.

Intrigued by these results, we decided to take up the
analysis of conservative systems more complicated than
the standard map considered in Ref. [6]; in Ref. [10] we
gave some results for the classical Ar; cluster [8,9,11,12].
In this paper we examine the probability distributions of
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the largest local Lyapunov exponent for the Hénon-
Heiles Hamiltonian [13], and for a larger Lennard-Jones
classical cluster Ar; as a function of the total energy of
the system under consideration. In addition we present
more details about our calculations for Ar;. To get the
distributions at a given energy we partition the trajectory
in phase space into intervals of equal length and calculate
the largest Lyapunov exponent separately for each inter-
val; we repeat this process for a set of increasing values of
the length of the intervals.

We find that in general the situation is not quite as sim-
ple as in Ref. [6], and if indeed one has to distinguish be-
tween regions of regular motion and regions of chaos, it
is because they generate qualitatively different kinds of
distributions: only in the limit of “global high chaos” do
both kinds of regions cooperate to produce multifeatured
distributions for which it is meaningful to attempt the
separation of the power spectrum into spikes and broad
background. But the fact that regular regions can be as-
sociated with distributions with very clear properties
defines in itself a way to distinguish these regions from
the chaotic ones. Moreover these distributions quite
clearly show the evolution of ergodic behavior with in-
creasing energy, and at fixed energy allow one to identify
distinctive, separable time scales for different extents of
ergodic behavior. In fact for a realistic system such as
the Ar; or the Ar, cluster they give illuminating informa-
tion about the dynamics; in particular for Ar;, a system
with more than one stable equilibrium structure [12],
they immediately show the relative importance of the
various potential minima, and the time scale for the tran-
sitions between them.

The paper is organized as follows. In Sec. II we give
some technical details on the computational method, in-
troducing the Hamiltonians for our systems and the algo-
rithms used to generate the trajectories and to calculate
the Lyapunov exponents. In Sec. III we present our re-
sults for the three systems we have studied, showing how
the qualitative features of the distributions vary with the
energy of the system. To extract the properties of the
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distributions we analyze their scaling behavior as a func-
tion of the length of the partitioning interval, and we also
study the time autocorrelation function of the local
Lyapunov exponents. Moreover, we show that for Ar,
and Ar, the correlation between short-term Lyapunov ex-
ponents and short-term average kinetic energy yields
plots which can be used as tools to understand the dy-
namics. One can then perform a power spectrum
analysis analogous to that presented in Ref. [6]. Finally,
Sec. IV contains a discussion that concludes the paper.

II. COMPUTATIONAL METHOD

Hénon and Heiles introduced the Hamiltonian named
after them in the context of astronomical dynamics [13].
In our context, its most straightforward interpretation is
that of a system with the two stretching vibrational de-
grees of freedom of a linear triatomic molecule with
periodic boundary conditions [14]:

H=Lpl+phH+1l(x2+y2+2xly—1y?) . (1

The potential is binding for E < 1; the equipotential at
E=1 is the equilateral triangle x=x+(y—1)/V3,
y = —%. The Poincaré surface of section for energies
< & shows smooth lines [Fig. 1(a)], representative of the
fact that the system is close to integrable, and the thin
layers of stochasticity associated with the resonances be-
tween the degrees of freedom, though densely distributed
through the entire surface of section, occupy only a negli-
gible fraction of the total area [15]. For energies =~ we
can see three kinds of orbits [Fig. 1(b)]: simple invariant
curves like the ones found before, multiple-loop curves,
and apparently ergodic orbits. At energies ~}, except
for the persistence of a few regular curves, almost all the
surface area is occupied by chaotically distributed inter-
sections [Fig. 1(c)].

To describe the classical Ar; and Ar; clusters we take
the Lennard-Jones Hamiltonian

6
J , (2)

where n =3 for Ar; and n=7 for Ar,, p; are the linear
momenta for the atoms, r;; are the interatomic distances,
and the parameters m, o, and € are chosen to match the
experimentally obtained values for argon, namely,
m=39.45amu, 0 =3.4 A, and e=1.67X 10" 4 ergs.

The trajectories are generated by using the following
molecular-dynamics algorithm:

2 : 12

n
D;
H=3Y —+4e Y
=1 2m ij=1
(i<j)

g
’

g
’

ij ij

_ T 14
qi(tn)_qi(tn~l)+ mpi(tn )+ rm aq’ (t,,-l) 5 (3a)

_ T | AV 14
pi(t,,)—p,-(t,,_l)+~—2 -—aqi (t")+—8q,~ (¢, _¢) (3b)

(the velocity version of the Verlet algorithm [16,17]). In
Egs. (3) g; are the coordinates, p; are the momenta, V is
the potential, m is the mass, and 7 is the time step; the
latter should be chosen small enough to conserve the to-

tal energy of the system during the simulation, and we
took 7=0.01 for the Hénon-Heiles integration and
7=10"'* s for the argon clusters integrations (this choice
makes one vibrational period of argon correspond to
100-150 steps). For the argon clusters we chose the ini-
tial conditions so that the center of mass and the total an-
gular momentum are zero, and they remain constant dur-
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ing the simulation. A temperature T can be defined
through the equipartition theorem as the mean vibration-
al kinetic energy for the run, i.e.,

(3n —6)kpg
where kj is the Boltzmann constant, n is the number of
atoms, (3n —6) is the number of vibrational degrees of
freedom, and { E,;, ) is the kinetic energy averaged over
a long trajectory.

As stated, our goal is to obtain and study the distribu-
tions of sample values of the largest Lyapunov exponent
on various time scales. For a d-dimensional space the lo-
cal Lyapunov exponents A{M, ANV, ... A are calculat-
ed by propagating the Jacobian along the trajectory for
N —1 steps, yielding

AN AN AN
(271,27 ,...,27 )
N—1 1/N
= |magnitude of eigenvalues of J] J(x,) »
n=0

(5)

where J(x,,) is the Jacobian matrix of the propagators for
each phase-space variable [18,4]. Of course the
Lyapunov exponents would be found exactly by taking
the limit N — o0.

The algorithm for computing the Lyapunov exponents
involved calculating the Jacobian matrix at each time
step, multiplying that matrix by the cumulative product
of all the previous ones, and diagonalizing the final prod-
uct after N time steps. Those eigenvalues are then con-
verted to Lyapunov exponents by taking their logarithm
and dividing by N. This method in the long-time limit
should be equivalent [19,20] to that of Benettin et al. [3],
and has been verified in this work to be so. Notice that
even if we are only interested in the largest Lyapunov ex-
ponent we still have to calculate all of them to find the
maximum, since in a relatively small number of time
steps the repeated application of the Jacobian matrix
might not have completely succeeded in aligning an arbi-
trary vector to the direction of the eigenvector corre-
sponding to the largest eigenvalue.

In the present case one is interested in calculating the
largest Lyapunov exponent A" =max, {A{™] for a set of
increasing values of N. To speed our algorithm by saving
matrix multiplications we limit ourselves to the following
values of N: (27}, i=7,8,9,10,11,12,13, or
N;=1{128,256, ..., 8192}, since for each of these values
the product after IV, time steps can be obtained as the
product of two N; _; matrices. Previous tests had demon-
strated that our simulations begin to lose mechanical re-
versibility between 5000 and 10000 steps, so that our
longest averages are still within the range that maintains
that reversibility.

For Ar; our simulations typically ran for 10°-10'° time
steps (total time of 107°-10"* s), and started from a
small number of different initial conditions that had al-
ready equilibrated. The distributions presented in this
work contain from =10° sample values for trajectories of
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length 128 to =~10° sample values of the Lyapunov ex-
ponents for trajectories of length 8192, and no smoothing
routine has been applied to them. Much shorter simula-
tions (=107) were found to give the same qualitative
amount of information, although the actual plots look
much rougher and might need smoothing routines. Ar,
results were obtained by trajectories of =~ 10% time steps,
while for Hénon-Heiles, for which the trends were more
immediately evident, sometimes we stopped after =10’
time steps; in any case we always show the raw data.

III. RESULTS

A. Hénon-Heiles model

Figure 2 shows four distributions for E =}, N =256;
we plot the quantity gNl_(k)dk, i.e, the number of times A,

the largest Lyapunov exponent, was found in a bin of size
2.5X 1077 bits per 1072 s versus A, given in bits per 102
s, for trajectories of 256 steps, our shortest averaging
length. The distributions are normalized in such a way
that the area under the curveis 1.

To discuss these results we again refer to Fig. 1: the
distributions (a)-(d) are obtained by the trajectories
whose Poincaré section is given in the inset and can be
compared with the general picture for trajectories of this
energy, Fig. 1(a). As we can clearly see the shapes of
these distributions are not even remotely Gaussian, as we
would expect if the local Lyapunov exponent were also a
global quantity with a small uncertainty, but present
well-defined features, albeit strongly dependent on the or-
bit. The shape also depends on the length of the parti-
tioning integral N; to illustrate this point Fig. 3 shows the
results for the same orbits as before, but for N = 1024: the
distributions do not fall one on top of the other, nor do
they do so for larger N.

Another interesting feature is illustrated in Fig. 4,
where we give the distributions for 256 step averages on
two orbits with Poincaré sections in the same class, the
“crescent,” to be compared with the distribution of Fig.
2(a), also a crescent: the shape of the distribution
identifies the type of orbit. But the Poincaré section of
Fig. 4(a) is smaller, and the Poincaré section of Fig. 4(b)
is larger than our original choice of crescent, Fig. 2(a),
and we can observe that although the shapes of these
three distributions are very similar the peak distinctly
moves to the right as the crescent becomes larger, or on
average larger crescents correspond to more chaos than
smaller ones. In this sense the distributions ¢ and d of
Fig. 2 belong to the same “kidney” class in Fig. 1(a), and
their distributions both show three peaks, with b, the
larger kidney, presenting more “chaos.” At E = the
most disordered orbit is d, which can be obtained as the
limit in which the crescent shape goes into a complicated
self-intersecting curve, and accordingly its distribution
has the largest average value of the lot.

What happens now when we raise the energy of the
system to, say, E =1? Let’s look at it in the reverse order
as before. At this energy the orbit corresponding to d at
E=2L has become chaotic, and the distributions start
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looking smoother [Fig. 5(a) for N=256]; however, the
distributions for the smaller crescents still show peaks
[Fig. 5(b)], while the distributions for the larger crescents
are intermediate between the ones for regular and the
ones for chaotic behavior, with small peaks on a continu-
ous, unimodal background [Fig. 5(c)]. The distributions
for a small [Fig. 5(d)] and a large kidney [Fig. 5(e)], and
the one for a five island orbit [Fig. 5(f)] present complete-
ly resonant behavior.

It is clear now what happens for still higher energies,
up to E=1: the general case will give a smooth curve
[Fig. 6(a)], but regular orbits like the one shown in the in-
set of Fig. 6(b) will still present peaks (both of the distri-
butions of Fig. 6 are for E=1).

One final remark in this section is that all the distribu-
tions shown here have a quite large first bin (the one that
corresponds to very small Lyapunov exponents) that can-
not be directly plotted in the figures because it falls out-
side the scale; however, the total area under the curves
given is always normalized to 1, and therefore the relative
size of the first bin can be indirectly appreciated through
its effect on the apparent areas in the figures.

B. Ar; cluster

To discuss our results for Ar; we are going to need the
caloric curve for the system (Fig. 7), i.e., the graph of the

gN(}\.)
(a) 0.06 1 _' (
0.04 1 )
0.02 1
’ 0.001 0.002 3
gn(k)
(c) 0.06 1 . .
0.04 1
0.02 K
+ L n'.-
0.001 ' 0.002 )

FIG. 2. gy(A)vs A at E=1,

x=0. The units for A are bits per 1072 s.

temperature as defined in Eq. (4) versus the energy per
particle. The curve increases smoothly for a while, then
has a kink between the energy of ~—1.15X 10" % and
—0.9X 107 !* ergs/atom, at a temperature around =29
K, and finally increases again. Ar; has one stable
geometry, the equilateral triangle: the kink corresponds
to the energy where the cluster can “open up” in any of
three equivalent ways and then go back to the original
configuration; in clusters the passage over the saddle be-
tween two potential wells is associated with the “melt-
ing” transitions between a solid structure and a floppy
shape [9]. Figure 7 roughly divides the energy range in
three intervals, below, at, and above the critical tempera-
ture.

Let us start by looking at the distributions for the low-
energy—low-temperature regime. Figure 8 shows two
N =256 distributions for E=1.610X10"* ergs/atom,
T=4.15 K, whose only difference is the initial condition
of the argon cluster. Again on the y axis we plot
gN’_(k)dk (or the number of times A was found in a bin of

size 2.5X 107 * bits per 107 * s for trajectories of length
N;). On the x axis the Lyapunov exponents are given in
bits per 10™# s; the area under the curve is normalized to
1.

The distributions differ markedly, and show no tenden-
cy to converge over all the time scales we have probed,
however long the run is. In fact, substantially they corre-
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0.02 : i
.}. . " -
- 0.001 0.002 )
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(d) 0.06 (g:‘
0.04
0.02 1
) 0.001 * 0.002 )

N =256, for four different initial conditions, with the insets giving the relative Poincaré sections at
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FIG. 3. gy(A) vs A at E=-L N=1024, for the four different initial conditions of Fig. 2. The units for A are bits per 10" % s.

122

spond to motions on different torii, and their shapes stay
unaltered for what for practical purposes can be con-
sidered infinite time for all lengths of partitioning N;.
Moreover, the averages and the standard deviations of
these distributions depend on the initial conditions for
any N;. Thus we conclude that at this temperature there
is total nonergodicity up to at least tens of us. In this
case even averaging over 10’ time steps will still only give
a local Lyapunov exponent [21,22].

Of course after looking at the distributions for the

Hénon-Heiles model Fig. 8 does not seem as shocking as
it seemed to us in the beginning. In fact as in the
Hénon-Heiles case the shape of the distribution can be re-
lated to the orbit. Moreover, even more clearly than in
the Hénon-Heiles case, we can see that as we increase the
energy of the system adiabatically, keeping the shape of
the orbit unaltered, the shape of the distribution stays
clearly recognizable: Fig. 9 shows the distributions at
E=—1.526X10"'* ergs/atom, T=10.10 K, of two or-
bits evolved from the ones to which Fig. 8 refers.

gN( A) gn( A)
L] ” . ﬁ,
(a) 0.06 1 - Y (b) 0.06 T R}
0.04 . 0.04 1
0.02 1 0.02 1 R
0.001 0.002 ) 0.001 0.002 3
FIG. 4. Two more distributions gy(A) vs A at E= %, N =256, with the insets giving the relative Poincaré sections at x =0. The

units for A are bits per 1072 s.



47 PROBABILITY DISTRIBUTIONS OF LOCAL LYAPUNOV ... 3163

In fact we observe nonergodicity up to T=~16 K: in
addition to E=—1.526X10"1* ergs/atom we have
probed the energies —1.457 and —1.429X1071*
ergs/atom, corresponding to the mean temperatures
14.56 and 16.13 K; again, all these distributions, being
only finite statistical samples of hypothetical infinite dis-
tributions, depend on initial conditions, and in this ener-
gy range, very sensitively. However, the higher the tem-
perature, the less the dependence on the initial condi-
tions; at T=16.13 K distributions derived from different
initial conditions almost coincide visually, even though

gn(k)
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(a) 0.04 1
0.02 - -_' '-'--'.'-.'.- 5
I¥. ®,
- .
.n’-. [
0.001 0.002 0.003
gN(M
* Va
(c) 0.04 1 AN
. .‘\‘.
0.02 1 . )
. -'5._-.-
l'..-
0.001 0.002 0.003
gn(A)
(© 404} ]
0.02 ; .
L] ! .
L ] 1)
D o s a
g™ -
. ”~
p—
" 0.001  0.002 0.003 )

the average and standard deviations of the distributions
are still different.

Another way to appreciate the same phenomenon, lack
of ergodicity, is to look at the time autocorrelation func-
tion of the local largest Lyapunov exponent,

(AN ()= AN () N AN (0)—(Ay(0))))

FN(t):

over the entire range of energies. A quantity like this
quickly goes to zero if there are no long-time correlations
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.- ,
(b) 0.04 { . \
T
0.021
0.001 0.002 0.003
gN(k)
(d) 0.04 1
0_02 <+ ..-.'.l - -l
.F..
-‘”-l"‘
" 0.001 0.002 0.003 )
gN(X)
T
(f) 0.04 . [~
0.02 1 )
=t ;-
. -
I'.‘ b
" 0.001 = 0.002 0.003

FIG. 5. gy(A) vs A at E =—8“, N =256, for six different initial conditions, with the insets giving the relative Poincaré sections at

x =0. The units for A are bits per 10™ % s.
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FIG. 6. gy(A) vs A at E= %, N =256, for two different initial
conditions, (a) one chaotic, and (b) one regular with their Poin-
caré sections at x =0. The units for A are bits per 107 ?s.

in the system. Instead, at low temperature " (¢) precise-
ly shows long-time correlations, as we can see in Fig.
10(a): a strange periodic pattern, strongly dependent on
the initial conditions, appears as the time autocorrelation
function at T=14.56 K for the N =256 distribution and
a particular but arbitrary choice of the initial conditions.
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.
.
0.0 = L
-0.20 -0.15 -0.10 -0.05

Energy (10 erg/atom)

FIG. 7. Caloric curve for Ar;. The energy is in 107 !* ergs
per atom and the temperature is in kelvins.
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FIG. 8. gy(A) vs A at T=4.15 K, N=256, for two different
initial conditions of Ar;. The units for A are bits per 10~ ' s.
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FIG. 9. gy(A) vs A at T=10.10 K, N=256, for the two
different initial conditions of Ar; in Fig. 8. The units for A are
bits per 10 s,
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FIG. 10. T'y(t) [Eq. (6)] at T=14.56 K for (a) N =256, (b) N =512, (c) N=1024, and (d) at T=18.15 K for N =256.
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FIG. 11. gy(A) vs A at (a) T=18.15K, (b) T=28.44 K, (c) T=30.65K, (d) T=36.71, K, for N=256 (+), N=512 (<>), N=1024
(A), N=2048 (0), N=4096 (X ), and N=8192 (V). The units for A are bits per 10~ *s.
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TABLE 1. Average value of A at T=18.15 K, 28.44, 30.65,
and 36.71 K, for N =128, 256, 512, 1024, 2048, 4096, and 8192.
The units are bits per 10~ *s.

N 18.15 28.44 30.65 36.71
128 1.13X1072 1.63X1072 1.47X107% 1.59X 1072
256 6.98X 1073 1.09X1072 1.05X1072 1.05X107?
512 4.92X107% 9.58X107° 8.98X107% 8.84X107°
1024 4.08X107% 9.00X107% 8.29X107% 7.76X107°
2048 3.57X107% 8.83X1073 7.98X107® 7.34X107°?
4096 3.36X107° 8.78X 1073 7.89X 1073 7.19X1073
8192 3.28X107° 8.76X 1073 7.86X107° 7.14X10°°

For comparison we give the time autocorrelation func-
tion at T=18.15 K for the same N =256 distribution,
showing the normal rapid decay to zero [Fig. 10(b)]. The
energy where I' y () stops showing long-term correlations
also depends on the initial conditions, but we find that
the patterned behavior always disappears at ~16 K, and
in most cases at even lower temperatures, indicating that
not all the (distorted) tori vanish at the same energy.

In Figs. 11(a), 11(b), 11(c), and 11(d) we present our re-
sults for the energies —1.394, —1.165, —0.939,
—0.792X 10~ '* ergs/atom, corresponding to the temper-
atures T=18.15, 28.44, 30.65, 36.71 K. In these pictures
the distributions gNi(k)d A (or the number of times A was

found in a bin of size 2.5X 10 * bits per 10~ s for
trajectories of length N;) are plotted for
N,;={256,512,...,8192}; the Lyapunov exponents are
given in bits per 10™* s. The area under each curve is
proportional to the number of sample intervals for that
curve and the area under the curve N;=256 is 1. The
reason for using this normalization is mainly graphical
(this way of plotting gives all the results at a glance), but
also the scaling reflects the fact that in reality we have
two times more data for the distribution 8w, than for the

distribution &N, -

We immediately see that the distributions for
T=18.15 K and T=28.44 K are unimodal for any N,
while for T=30.65 K there are two peaks for N; =256,

512, and 1024, and for T=36.71 K there are two well-
defined peaks only for N;=256. A comparison with Fig.

TABLE II. Standard deviation of A at T=18.15, 28.44,
30.65, and 36.71 K, for N =128, 256, 512, 1024, 2048, 4096, and
8192. The units are bits per 10" s.

T

N 18.15 28.44 30.65 36.71

128 5.77X107% 5.57X107° 6.61X107° 6.62X1073
256 1.75X 1073 3.73X107% 4.40X107° 4.21x107?3
512 1.69X1073 2.33X107° 3.16X107% 2.87X1073
1024 1.03X 1073 1.74X1073 2.69X107% 2.41x107?
2048 8.21X107% 1.31X107% 2.21X107° 1.92X1073
4096 6.78X107% 9.56X107* 1.67X107° 1.50X1073
8192 5.29%X 1074 6.86X107% 1.25X107% 1.17X1073

7 shows that these results are consistent with this inter-
pretation: for T close to the transition region the cluster
exploring pathways over the three saddles around the
minimum on the potential surface on short-time scales
‘“‘sees” the phase space separating into two regions. One
is a highly chaotic region with high kinetic energy (the
motion in the well) and a much less chaotic region with
high potential energy (the motion around the saddle).
This interpretation is confirmed by the fact that both

gn() Ex)

(b)

FIG. 12. gy(A) vs A, E, at (a) T=28.44 K and at (b)
T=30.65 K for N=256. The volume under the surface is nor-
malized to unity. The units for A are bits per 107! s. The
units for Ex are 107!° erg. Notice that the low-energy peak in
(b) clearly develops out of the ridge visible on the bottom right
of (a).
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at T=30.65 K and T=36.71 K the Lyapunov exponent
distribution strongly correlates with the distribution of
the short-term averages of kinetic energies: an example is
given in Fig. 12, where we can see gn, as a function of

both A, the largest local Lyapunov exponent, as well as
(En(N;)), the short-term average kinetic energy, for
T=30.65 K, N;=256 [Fig. 12(b)], and contrast it with
T=28.44 K, N; =256 [Fig. 12(a)]. Of course Fig. 11 (or
Fig. 12) also gives an estimate of the relative importance
of the two regions. Moreover we can see that while for
T=30.65 K the separation of trajectories into trajec-
tories that move in the high-chaos region and trajectories
that move in the low-chaos region is meaningful up to
trajectories of length N;=1024, at T=36.71 K trajec-
tories of length N =512 already overlap both regions.

Table I gives the average of the distribution for each
value N; at the various temperatures. Whatever the tem-
perature, A shifts toward lower values with increasing N,
implying that the asymptotic value for the largest
Lyapunov exponent can only be obtained with trajec-
tories of more than 10* steps.

Similarly, Table II gives the standard deviation of the
distribution for each value N; at the various tempera-
tures. Abarbanel, Brown, and Kennel [7] convincingly
argue that for predictive purposes this is the quantity
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that really matters, since broad distributions, even
without explicit bimodality, imply different rates of
growth of small perturbations in the evolution of the sys-
tem in different parts of the phase space and the presence
of “critical” regions of rapid changes. Of course in this
case the critical region is precisely identified by the ex-
istence of a second maximum in the distributions, and
has been seen to correspond to the motion in the poten-
tial well. More detailed attempts to classify the regions
for the generic argon cluster can be found in Refs. [8] and
[23].

Since in the limit N — o the local Lyapunov exponents
converge to the Lyapunov exponents, we expect the stan-
dard deviation o to go to zero as N— . In Ref. [7] a
scaling exponent v has been defined by o(N)~N ", and
we find that for temperatures in the range T€[18,37]
and for our set of N; values v=0.8-0.9, confirming pre-
vious results [7]; however, our estimate of v still shows a
systematic trend towards lower values at higher N, and
we do not judge it to have reached the asymptotic value.

A better way to look at the dependence on N on the en-
tire range of the distribution requires us to go back and
review our definition of local Lyapunov exponents. If
d(N) is the (infinitesimal) distance between two trajec-
tories at time NV, we define A implicitly by the relation

On(A)
0.031+ (b)
K
.
+
'
0.02} % +
°8% o +
%t +
%,: ° #-'
0.01 o’y R S pmiug
A%k
A
0.00!
0.010 0.020 A
On(A)
0.03 (d)

A

FIG. 13. ®,(A) [Eq. (9)] vs A at (a) T=18.15 K, (b) T=28.44 K, (c) T=30.65 K, (d) T=36.71 K, for N=256 (+), N=512 ({),

N=1024 (A), N=2048 (0), N=4096 (X ), N=8192 (V).
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_d(N) _ Ny
;L(N)———d(o) e . (7)
A more precise definition is [6]
_d(N) vy Niy
'u(N)m—d(O) N Ve . (8)

The difference between Ay and A) becomes meaningful
only if the local Lyapunov exponent is very small when
computed from sample intervals of many time steps, as
happens when the orbit is close to a regular region, be-
cause then the divergence of nearby points is described by
the algebraic exponent ¥ y.

These two kinds of behavior can be efficiently dis-
tinguished by noting that if the power-law corrections are
not important, then the probability distribution P(A ;N )
of sample Lyapunov exponents scales with N as
P(Ay;N)~e N®M for N— co; the asymptotic function
®(A) is known as the spectrum of effective Lyapunov ex-
ponents [24]. In general ®(A) has a minimum (=0) at
A=A’ and is positive and finite for A <A_,,,, where A, is
the Lyapunov exponent of the most unstable periodic or-
bit. From our distributions we can easily derive the
finite-N approximation [6]

1 P(?\.N,N)

Oy A)=—In—"— . 9
N(A) N anax(N) )
Plots of this quantity as a function of A at
N;={256,512,...,8192} for the various medium-high

energies considered before are presented in Fig. 13.
(Remember that to get a meaningful result the power-law

P(f)
0.010 (a)

0.005

2.0 f

P(f)
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0.0 1.0 2.0 §

FIG. 14. Power spectra calculated separately for the two
(a) regular and (b) chaotic.

kinds of motion of 77=30.65 K:
The frequency is in 102 s™!
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behavior should be just a correction on the dominant ex-
ponential trend.) We see that for all these energies the
plots at different N; present a certain degree of data col-
lapse. In fact, if we exclude the points belonging to the
curve N =256, starting from the right of the figures we
can clearly distinguish a region where there is pure ex-
ponential scaling law at medium-large values of A, and
then a region where the power-law exponent has stronger
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FIG. 15. (a) Minima for Ary; (b) schematic view of the local
minima and transition states.
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and stronger influence towards smaller and smaller values local Lyapunov exponents for a cluster at 7=30.65,
of A. =—0.939X10"!* ergs/atom, to separately get the

This kind of separation is what led Sepulveda, Badii, power spectrum of the low-chaos—low-kinetic-energy
and Pollak [6] to try to divide the power spectrum in a motion over the saddle, and the power spectrum of the
portion that came from the regular regions and a portion high-chaos—high-kinetic-energy motion in the potential
that came from chaotic regions. In fact, we use the data well (Fig. 14). Such a decomposition for Ar; was at-
from Fig. 12(b), which correlates local kinetic energy and tempted before [9] on the basis of the distributions for the

gN(AaEK) F

gN(’\’EK)

gn(), Ex)
(d)

FIG. 16. gy(A,Eg) vs A, Eg for Ary;, N=256 at (a) E= —0.355, (b) E= —0.341, (c) E=—0.328, (d) E=—0.300, (e) E= —0.280,
and () E=—0.265X10""3 ergs/atom. The volume under the surface is normalized to  for (a), (b), and (c) and to 1 for (d), (e), and
(). The units for A are bits per 10 '*s. The units for Ex are 10~ ' ergs.
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FIG. 16.

local kinetic energy only, and succeeded because, as we
can see from Fig. 12, the projection on the (Eg ) axis
gives quite separated peaks too.

C. Ar, cluster

In contrast with Ar;, Ar; has a fairly complicated po-
tential surface, with four distinct local minima corre-
sponding to four nonequivalent stable configurations;
Figs. 15(a) and 15(b) show a schematic view of the local
minima and transition states for this system, from which
we can see that the topology of the network of minima
and saddles connecting them is indeed much more in-
volved than in the previous case. Wales and Berry [12]
examined this structure in detail, and by short-term
averaging the kinetic energy of the cluster [9] were able
to separate the motion through the saddles from the
motion in the potential wells. This task we can perform
in a much more pictorial way by looking at the joint dis-
tributions of local Lyapunov exponents and local kinetic
energy: the succession of energies in Fig. 16,
E=-—0.355, (a), E=—0.341 (b), E=-—0.328 (o),
E=—0.300 (d), E=—0.280 (¢), and E=—0.265Xx10""
ergs/atom (f) shows very directly how the motion, first
confined in the deeper potential well, the pentagonal bi-
pyramid structure (a), starts seeing a second minimum,
the capped octahedron (b), and then a third one, the tri-
capped tetrahedron (c), and how high the energy should
be raised before the cluster becomes able to flow quickly
from one structure to another (f).

As is clearly explained in Ref. [12] the multimodality is
observable because the saddle crossing is a relatively in-
frequent event at the total energy in question, and the
short-term average kinetic energy for the various minima
are very different. We do not really observe multimodali-

gn(A Ek)

(f)

(Continued).

ty in the Lyapunov distributions, but the very fact that
they are so spread out is already enough to alert us about
the presence of regions in phase space that contribute
very differently to the chaotic properties of the cluster.
As for Ar,, if we plot the distributions for various N,, at a
certain point we observe the disappearance of multimo-
dality, and are able to define a time scale at which the
system is completely ergodic.

The apparent discrepancy between the energies in Fig.
16 and the saddle points in Fig. 15 is due to the fact that
for a cluster of this size, the total energy the cluster must
have in order to go over a saddle in an observable time is
roughly a factor of 2 greater than the barrier height.
Therefore a cluster with an energy of —0.355X 10713
ergs/atom is still basically confined in the pentagonal bi-
pyramid structure, its lowest minimum. But what hap-
pens at still lower energies? At E=—0.372X10"13
ergs/atom we were able to isolate three different behav-
iors: (i) basically ergodic behavior in the pentagonal bi-
pyramid [Fig. 17(a)]; (ii) basically ergodic behavior in the
capped octahedron well (if we put it there it does not
have enough energy to cross back) [Fig. 17(b)]; and (iii)
regular in the pentagonal bipyramid structure. There-
fore, even with so many degree of freedom, and at a rela-
tively large energy, regular motion can persist for a very
long time.

We also performed the power spectrum analysis for
Ar; at E=—0.328X10"!® ergs/atom, decomposing the
total power spectrum in portions generated by the motion
around the three lowest potential minima by using the
data from Fig. 16(c); Fig. 18 shows the results for the
three peaks identifiable in that picture, and again the
trend seems to be that the more regular motion is respon-
sible for the narrow features while the chaotic part gives
the background.
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IV. DISCUSSION

At this point we can examine the results and draw con-
clusions. First, let us review what we find for any system
at low total energy. In that situation the distributions of
local Lyapunov exponents are characterized by three
features: (i) they present spikes; (ii) they do not show a
smooth convergence with increasing N, the length of the
averaging interval; and (iii) they strongly depend on the
initial conditions. A careful analysis shows that distribu-
tions that present these characteristics correspond to to-
tally nonergodic dynamics, where the motion is confined
to (possibly strongly distorted) tori. The apparent para-
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FIG. 17. gy(A) vs A for Ar, at E=—0.372X10""
ergs/atom, N =256, for three different initial conditions.
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dox of having A_,, >0 with regular motion is solved by
considering the limit 7—0, i.e., by sending the time step
for the integration of the equation of motion to zero. In
such a process we see that A, does indeed decrease
linearly with 7, and can be then extrapolated to be zero at
7=0 as it should. In contrast, for a really chaotic regime
Amax Stays constant when we decrease 7. However,
different initial conditions give different slopes for the
linear dependence of A, on 7, showing that various tra-
jectories meet various amounts of potentially chaotic
“disturbances”’; we find in fact that for any 7 the distribu-
tions are still well defined, can be definitively associated
with the initial conditions, and give an idea of what per-
centage of the trajectory is spent in proximity of chaotic
regions.

Depending on the initial conditions, at slightly higher
values of the total energy, the motion can be regular or
chaotic; the distributions corresponding to regular
motions have the same characteristics as before, but for
initial conditions in the chaotic regions the spikes disap-
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FIG. 18. Power spectra calculated separately for the motion
in the three lowest wells at E= —0.328X 10~ '3 ergs/atom. The
frequency is in 102 s~ 1.
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pear [see Figs. 5(a) and 6(a)]. Nevertheless the distribu-
tions still do not converge smoothly with N, as they
would if the accessible phase space were characterized by
a unique global Lyapunov exponent, which we were slow-
ly approaching. But in this interval of energy values even
when A, is definitively greater than zero there is anoth-
er piece of evidence that also prevents us from diagnosing
the situation as fully developed chaos: the power spec-
trum still consists of very narrow peaks, as though the
lines characterizing the very low-energy systems had sim-
ply acquired a “thickness” without yet merging in a con-
tinuous spectrum (for an example from Arj, see Ref. [9];
our data for Hénon-Heiles look very similar to this); the
information that we derive from the distributions of local
Lyapunov exponents is therefore consistent with the
power spectrum analysis.

For the Hénon-Heiles model the energy range for this
regime is approximately +<E <, where a random ini-
tial condition has a considerable probability of being in
the chaotic region, but the probability of escaping is
practically zero; but since one cannot raise the energy
any further without increasing the latter, in this model
you can never see what happens next. However, for Ar;
this situation corresponds to temperatures between ~ 10
and 18 K, well below the dissociation temperature, and
there is thus ample room for further investigations. We
find that for intermediate-high values of the energy,
—1.4<E<—1.0X10"" ergs/atom or 18<T <30 K,
the distributions of short-term Lyapunov exponents are
smooth, almost Gaussian, curves with no dependence
from the initial conditions, and show a reasonable con-
vergence with increasing N [Figs. 11(a) and 11(b)].
Therefore the system is fully ergodic and the accessible
phase space is characterizable by a single Lyapunov ex-
ponent. In this range the dynamics look completely
chaotic and the power spectra have nonzero components
in a large band of frequencies [9].

But at still higher energies a new effect shows up in the
distributions: now the energy is high enough to allow sad-
dle crossings, and this process leaves a signature on the
shortest N distributions in the form of bimodality [Figs.
11(c) and 11(d)]. In fact the motion in the saddle region
has a lower average value of A, and happens on time
scales comparable with the lowest N values presented
here. Hinde, Berry, and Wales [23] have shown how the
decrease in local K entropy (the sum of positive
Lyapunov exponents) in the saddle region is associated
with the “funnelling” of trajectories due to the shape of
the potential energy surface; the relation between the
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shape of the saddle and the local ordering effect for
different argon clusters has also been studied in great de-
tail [25]. However, our distributions not only give an im-
mediate hint that a new dynamical process is happening
but also reveal the time scale associated with it. The dou-
ble classification in average short-term kinetic energy and
local largest Lyapunov exponent (Fig. 12) allows then a
very precise separation of the motion in the potential well
from the motion over the saddle, which we have exploit-
ed to get the contribution to the power spectrum from
the different regions of the potential surface.

Our results for Ar; show that these ideas can be suc-
cessfully used even to study more complicated situations.
Here through the distributions we are able to identify
regular behavior in the potential minimum, ergodic be-
havior in the various potential wells, and saddle crossings
in the appropriate energy ranges. Even though the topol-
ogy of the potential surface is now much more involved,
the distributions gy(A,Eg) allow a good reconstruction
of the dynamical processes at the various energies, with
an estimate both of the time characteristically spent in
each potential minimum and the time for crossing from
one to another.

Our conclusion is therefore that the operation of
measuring the Lyapunov exponent can give much more
than a single estimate characterizing the system globally,
and furthermore that sometimes the global characteriza-
tion itself may be misleading. The usual technique to cal-
culate Lyapunov exponents requires one to consider plots
of A versus a number of integration steps, to discard the
transient portion and to concentration on the asymptotic
behavior: but our claim is that the “junk” at the begin-
ning of those plots, before they converge to nice stable
values, can give a great deal of additional information on
the dynamics of the system, and is in fact much more in-
teresting than the limiting values [25]. In particular our
results show how a study of the sample distributions of
Lyapunov exponents, as they evolve from local to global,
gives insight into how ergodicity evolves in time.
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