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Fluctuation-diffusion relationship in chaotic dynamics
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We consider the fully developed chaos in a class of driven one-degree-of-freedom nonlinear systems.
In analogy to Kubo relations in statistical mechanics, we have quantitatively related the maximal posi-
tive Lyapunov exponent, which is characteristic of divergence of trajectories, to the spectral density of
fluctuations of the appropriate dynamical variable. A numerical experiment is carried out to confirm the
qualitative validity of the theoretical prediction. A generalization of the relationship for N-dimensional
Hamiltonian system has been given.
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I. INTRODUCTION

The driven one-degree-of-freedom nonintegrable sys-
tems have been the standard paradigms in nonlinear dy-
namics which exhibit classical chaos [1]. The essential
hallmark of chaotic behavior is the positivity of the larg-
est Lyapunov exponent [2] (while its negative or zero
value indicates'the periodicity or the marginal stability,
respectively) which characterizes the exponential diver-
gence of two initially nearby trajectories. Obviously this
divergence is related to deterministic stochasticity and
the associated fluctuations of the dynamical variables.
The question is whether one can relate this divergence of
trajectories, which in turn results in diffusion in phase
space, to these Auctuations. The object of the present pa-
per is to address this point. We show that (i) the equation
describing the separation of two initially nearby trajec-
tories assumes the form of a simple harmonic oscillator
with a stochastic frequency while the source of this sto-
chasticity is the Hamilton equation of motion for trajec-
tories and (ii) the maximal positive Lyapunov exponent
can be quantitatively related to the special density of the
fluctuations. This is analogous to Kubo relations [3] in
nonequilibrium statistical mechanics. A numerical ex-
periment is carried out which confirms the theoretical re-
lationship. A generalization of the relationship between
the Lyapunov exponents in 2X directions and the Auctua-
tions in an N-degree-of-freedom Hamiltonian system has
been pointed out. The relation that we derive here shows
that the theory of stochastic differential equation with
multiplicative noise [4] can provide a very natural
description for the present and also other related issues in
both conservative and dissipative chaotic dynamics.

The rest of the paper is organized as follows. In Sec. II
we derive the Auctuation-diffusion relationship for a
driven one-degree-of-freedom system. In the next section
we verify the proposed relationship numerically on a sys-
tem with a double-well potential. In Sec. IV we general-
ize the relationship for X-degree-of-freedom Hamiltonian
systems. The paper is concluded in Sec. V with some
critical remarks.

II. THE FLUCTUATION-DIFFUSION
RELATIONSHIP

Q = —V'(Q)+g coscot (2)

where the overdot and the prime denote the
differentiation with respect to time t and space coordinate
Q, respectively.

We now consider two nearby trajectories Q, Q, p and
Q+bg, Q+hg, P+hP at the same time t [where P is
the additional degree of freedom due to the driving term
expressed through P = co with initial condition
P( t =0)=0] in a three-dimensional phase space. The time
evolution of the separation of these trajectories is then
determined by

bg = —V"(Q)b Q (3)

in the separation coordinate space b,g, Eg, and hP [if we
set the initial cor)dition bP(t =0)=0, then b,P(t) =0 for
all t &0].

The standard prescription [1,2,5] for calculation of the
largest Lyapunov exponent is to solve the trajectory (2)
and the separation equations of motion (3) simultaneously

To start with, let us consider the following Hamiltoni-
an for the driven one-degree-of-freedom systems de-
scribed by the coordinate Q and the momentum P:

H=P /2+ V(g) —gQ cos(cot) .

The first, second, and third terms represent the kinetic
energy, potential energy, and the driving term, respec-
tively. g and co are the coupling constant and the fre-
quency of the external driving force. V(g) is assumed to
be nonlinear such that nonlinearity renders the overall
Hamiltonian nonintegrable. Throughout this present
work we consider g much above the critical threshold for
stochasticity [1] so that full chaos sets in. It is in such a
situation one can treat the dynamical variables Q and P
as stochastic variables.

The Hamilton equation of motion corresponding to (1)
is given by
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for Eg and b,g as functions of time t T. his is then given
by

g(t) = V'(Q) —V"(Q;) . (5)

[Instead of V"(Q,') we could have chosen the average
& V"(g) & as the reference state and defined fluctuations
as g(t) = V"(Q)—&

V"(Q) & for which & g(t) & =0. ]
Insertion of (5) in (3) leads to the following equation:

Ag+ [ V"(Q,')+g(t)]b, g =0 . (6)

In terms of scaled time r defined as r= [ V"(Q;)]'~ t and
a= [V"(Q,')] ', where a is the strength of fluctuations
we rewrite (6) as

d b,
+co (~)hg =0,

dr2
(7)

with

f —+ oo

d(0) ~0

where the norm ~~d(t)ll is defined as
[(d(t)[[=[A,g +b,g ]' . A, is a direct measure of two
initially nearby trajectories. Some authors [6] have
defined A, with additional trajectory averaging.

Our next task is to interpret Eq. (3) as a stochastic
differential equation with multiplicative noise where the
source of noise is the deterministic stochasticity in Eq.
(2). To this end we now define the fixed points Q, which
satisfy V'(Q, )=0. Since V(g) is nonlinear, Q, are, in

general, multivalued. We choose the stable equilibrium

Q,
' for which V"(Q,') )0 as the reference state and define

fluctuation g( t) of V"(Q) as

QQ2 Qg 2

d7. Eg =A bg
b, gb, g b,gag

(10)

where the matrix A is the sum [4] of a sure part AD and a
stochastic part A

&
with

Equation (9) is the exact Hamilton equation of motion.
For K much beyond the stochastic threshold ~, when
chaos has fully set in one can treat Q(r) or g(r) as a sto-
chastic process. The frequency ~ of the harmonic oscil-
lator (7) then becomes stochastic [9].

We must emphasize two points at this stage. First we
must consider ~))~, for a complete stochasticity [7] (or
in other words the measure of regular region is
overwhelmingly small). Second, to calculate g(t) from (9)
and (5) we make no approximation. So the stochastic
process g(t) is exact.

We have thus established that the time evolution of the
separation of two initially nearby trajectories follows the
equation of a harmonic oscillator with fluctuating fre-
quency. Over the last several decades many authors have
studied this system [4,8] to illustrate the effect of random
coefficients in differential equations in connection with
wave propagation, mechanical system, line broadening,
lasers, etc. We see here that chaotic dynamics also offers
a similar situation. A classic comprehensive treatment
has been given by van Kampen [4]. What follows next is
that we use a standard result [4] to the present problem
and show how the fluctuation in frequency leads to diver-
gence of initially close trajectories. Essentially one con-
structs the equation of motion for the second moments
from (7) and (8). These are

co (r)=1+a((r) .

Rescaled noise source equation (2) is given by

d2 + V'(Q) =~ cosQ~,
d 7-2

(8)

(9)

A, =aj(t)B .

B represents the matrix

0 0 0
0 0 —2

where V'(g) = V'(Q)/[ V"(Q,')], fI=co/[ V"(Q;)]' ',
and a =g /[ V"( Q,') ].

0 0

The equation of motion for the averages [4] is given by

&~g'&

&~g'&

&agog&

lX C3

1 cxc +Ac I

0 2

cx cp 2 2cxc

&~g'&

&~g'&

&Aging &

(12)

where

c, = f « g(r)g(~ —r') &&sin2r'dr',

c2= f «g(r)g(r ~') &&(1—cos2r')dz',

c3 = J « g(7 )g(r w') »(1+ cos2r')d—r',
c=&g(t)&, and «x, x, »=&x,x, &

—&x, &&x, & .

The dynamics of separation of nearby trajectories is

I

then determined by the following relevant eigenvalue ob-
tained up to second order in e:

A,a=ex (c3 c2 )/2

What is immediately apparent is that the positivity of
AD leads to instability or divergence of &b,Q +AQ
We then identify A,0/2 as A, , the largest positive Lyapunov
exponent as defined from a purely dynamical point of
view in Eq. (4), and obtain
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A, = —,'a (c3 —c2) .

Rewriting (c3 —c2) in terms of spectral density of fluctua-
tions one obtains the desired relation (scaled) as follows;

A, (theory) A, (dynamical)

TABLE I. Computed values of maximal Lyapunov exponents
[Eq. (13a)] for different values of g compared to dynamically cal-
culated values.

f (& g(r g(r —r'»cos27 dr' .
2 0

(13)

This relation becomes more simple if ( V"(Q) & is used as
the reference state instead of V"(Q;) and define

g(t) = V"(Q)—( V"(Q) &. The unscaled equation assumes
the following form and we have (since ( g & =0)

9.0
10.0
10.5
11.0
11.5
12.0

0.0585
0.0489
0.0502
0.0479
0.0440
0.0385

0.0496
0.0502
0.0495
0.0502
0.0532
0.0477

t t —t' cos 2 V" ' t' dt'

2[( V"(Q) &]

o (ni) = f e ' '( J(0)J(r) &dr,
1

kT o
(13b)

where k is the Boltzmann constant and T is the absolute
temperature. The forrnal similarity of the expressions
13(a) and 13(b) cannot be overlooked and this carries the
message that our proposed relationship can be viewed as
an analog of Kubo relation in chaotic dynamics, where
we relate a maximal Lyapunov exponent, a transport
coefficient for Harniltonian system to the appropriate
correlation functions.

III. THE NUMERICAL EXPERIMENT

To verify the basic proposition (13) we have carried out
a numerical experiment on a driven one-degree-of-
freedom system described by a double-well potential

(13a)

Equation (13) relates the maximal positive Lyapunov
exponent to the spectral density of Auctuations at twice
the frequency of the "unperturbed" (a=0) oscillator.
This is the central result of the paper.

The above result associates the largest Lyapunov ex-
ponent with the correlation time of a multiplicative sto-
chastic process. More precise1y, the maximal Lyapunov
exponent is related to the cosine transform of the correla-
tion function of the curvature of the potential V(Q). The
appearance of curvature of the potential in the above re-
lationship is also indicative of the fact that it basically
concerns the stability of the motion since it was pointed
out by Toda [11]that the stability of the motion is deter-
mined largely by the curvature of the potential, at least
locally. It is also important to note that the Lyapunov
exponent is a measure of rate of divergence of initially
nearby trajectories, as a consequence of which the
diffusive motion in phase space takes place. The relation
thus may be interpreted as a fluctuation-diffusion rela-
tionship. The divergence of the second moments in the
present discussion is a consequence of the linear treat-
ment of the nonlinear potential V(Q).

Correlation function expressions are available for a
number of other properties. For example, a transport
coefticient, such as electrical conductivity, o., can be ex-
pressed as a Fourier transform of the current co'rrelation
function (J(0)J(r) & as follows:

V(Q)=aQ —bQ and the equations of motion (2) and
(6). To define the fluctuation g(t) we adopt ( V"(Q) & as
the reference state. The parameters chosen [7] are as fol-
lows: a =0.5, b =10.0, and co=6.07. The driving field
amplitude g is varied from 9 to 12. A direct numerical
calculation of the maximal Lyapunov exponent using the
well-known method of Benettin, Galgani, and Strelcyn
[2,5] yields the values varying from 0.0477 to 0.0532 as
tabulated in Table I, whereas the eigenvalues obtained by
a numerical evaluation of the exponentially fitted correla-
tion function are compared side by side. It is apparent
that for g =12 the discrepancy is =25%%uo. Keeping in

view the fact that our perturbation calculation is correct
up to =O(a r, ) the order-of-magnitude agreement
roughly demonstrates the qualitative validity of the pro-
posed relationship. A typical plot of decay of correlation
function (which is characteristic of chaos) is depicted in

Fig. 1 for a single trajectory.

IV. GENERALIZATION
OF THE RELATIONSHIP

FOR A HAMILTONIAN SYSTEM

The basic proposition Eq. (13) derived for a driven
one-degree-of-freedom Hamiltonian system, however, is
generalizable to N-degree-of-freedom Hamiltonian sys-
tems.
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FIG. l. A correlation function (g(t)g(t —r) ), is plotted as a
function of time r for the parameters mentioned in the text.
[g=10.0, initial conditions Q(01=0.05, P(01=0.0. Both the
units are arbitrary. ]
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To this end we consider a Hamiltonian

~(p q)=-,'(p p)+ «q» (14)

where p and q are the X-dimensional vectors of momenta
and coordinates, respectively. The equations of motion
are

b,q= V(t) —hq (16)

where V(t) is the N XN matrix of the second derivative
of the potential V(q). Defining an N XN fiuctuation ma-
trix g(t) as

V(t) =v 1+((t),
where v is the (scalar) modulus of the largest element of
the matrix V(t) evaluated at the stable fixed point of the
system [decomposition of V could also be made as
V=diag(w)+g, so that in each direction there is a
different time scale (co;)'~; in fact all that we need is a
suitable reference state], we may rewrite Eq. (16) as a res-
caled equation

hq= [1+a((t)]b,q .

Here t refers to scaled time v' t and o.=1/U. 1 is the
N XN unit matrix. Equation (15) should be similarly res-
caled.

Following exactly as in the previous case we obtain the
equation of motion for averages or the first moments,

(hq) 0 1 (b,q)
(&p) —1 —ac+ —,'a c, —

—,'a c ((&p)

where c is the average of N XN fiuctuation matrix g and
c, and c2 are the N XN spectral density matrices of fluc-
tuations as given by

c, = J ((((t)g(t —r)))sin2rdr,
0

c2= t I;
—~ 1 —cos2~ d~, c= t

0

The stability of the motion depends on the eigenvalues of
the 2NX2N matrix as given in Eq. (17) which can be
identified as the Lyapunov characteristic exponents A, , for
all 2N directions from the following relation:

0

q=~,~(p q)=p

p= —V~H(p, q)= —V V(q) .

We then introduce the variables Aq and Ap which mea-
sure the separation of two trajectories in coordinate and
momentum space, respectively, for which the linearized
equation of motion is

where Tis a 2N X2% matrix.
Equation (18) may be recognized as the generalized

fluctuation-diffusion relationship since it relates the
diffusive motion in phase space in terms of Lyapunov ex-
ponents for all 2N directions to the fluctuations in an N-
degree-of-freedom Hamiltonian system [10]. (Note that
exponents can be both positive and negative depending
on expansion or contraction of the relevant direction. )

V. CONCLUSION

Before concluding, some critical remarks regarding the
derivation need attention.

First, the stochastic process g(t) is determined exactly
by solving the Hamilton equation of motion (9) for
~))lr, . The special cases where g(t) is a Gaussian, sto-
chastic process or even a 5-correlated process have re-
ceived so much attention in the literature that it is neces-
sary to emphasize [4] that throughout the present work,
these assumptions have not been made.

Second, for a, however small but finite, the eigenvalue
k0 is always positive. This implies that no matter how
small the fluctuation is, the trajectory diverges. We
therefore believe that this relationship must be very gen-
eric in classical chaotic dynamics.

Third, we point out [4] that since van Kampen's equa-
tion of motion for averages (which is equivalent to the re-
sult obtained by second-order cumulant expansion) rests
on an expansion in ar, (where r, is the correlation time),
the stochastic g(t) must have a correlation time r, which
is small but finite compared to the "coarse-grained" time
scale over which the average quantities evolve [that r, is
small but finite is the only assumption made about the
stochastic process g(t) [4,7] ].

Fourth, in the calculation of eigenvalues we take care
of fluctuation strength of the order a . Therefore the
Lyapunov exponents are correct up to a leading order
=O(a ).

In conclusion, we have quantitatively related the
Lyapunov characteristic exponents to the spectral density
of the fluctuations of the dynamical variables. Since
Lyapunov exponents characterize the diffusive motion of
the system in phase space and mimic the behavior of
transport coefficients it is apparent that the relation is
analogous to Kubo relations in statistical mechanics,
which relate the transport coefficients to the spectral den-
sities of fluctuations in a linearized scheme. We hope
that the methods of stochastic differential equation for
multiplicative noise as employed in the present treatment
will also be useful in similar issues in dissipative chaotic
dynamics.
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