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Local false nearest neighbors and dynamical dimensions from observed chaotic data
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The time delay reconstruction of the state space of a system from observed scalar data requires a time
lag and an integer embedding dimension. The minimum necessary global embedding dimension dz may
still be larger than the actual dimension of the underlying dynamics dL. The embedding theorem only
guarantees that the attractor of the system is fully unfolded using d~ greater than 2d ~, with d ~ the frac-
tal attractor dimension. Using the idea of local false nearest neighbors, we discuss methods for deter-
mining the integer-valued dL.

PACS number(s): 05.45.+b

I. INTRODUCTION

The method of false nearest neighbors [1] determines
the minimum embedding dimension necessary to recon-
struct the state space of a dynamical system from ob-
served data with time delay embedding [2,3]. This
method seeks that dimension dE in which vectors in R

y(k)=(x(k), x(k+ T), . . . ,x(k+(dz —1)T) ),
k = 1, . . . , N (1)

composed from scalar observations x(k)=x(t~+kz, )

with sampling time ~, describe points whose state-space
neighbors are a result of the dynamics rather than from
being projected near one another as an artifact of using
too low an embedding dimension. The embedding
theorem [2,3] tells us that dz) 2d„, where d„ is the
"box-counting" fractal dimension, is sufficient to unfold
the geometry of the attractor. The false neighbor method
[1] tells, from the data itself, the necessary dimension dz
for globally unfolding the attractor. Choosing an
insufficient dE will cause parts of the attractor which are
widely separated in the original, but unknown, state
space to overlap spuriously in the reconstructed space.
To detect this, the false nearest neighbors test constructs
vectors from the data in dimension d = 1, then d =2, and
so forth, asking at each stage what fraction of nearest
neighbors in the data set, as seen in dimension d, fail to
remain close in dimension d+1. When all nearest neigh-
bors are true, that is, do not significantly move apart
when we go the next dimension, we have found the
minimum embedding dimension d =dE. In this paper we
discuss variations of the false nearest-neighbor idea that
estimate how many dimensions dL are locally required to
describe the dynamics generating the data, without
knowing the equations of motion. Globally, one may re-
quire a dimension dz larger than dl, the dimension of the

active dynamics, to successfully reconstruct a dynamical
system.

If we are successful in establishing a value for dL, then
we can proceed to making models for prediction or con-
trol of the observed system in this dimension. Also if we
are interested in the predictability of the system, then by
locally estimating dL X dL dimensional Jacobian matrices,
we may directly compute only the dL true Lyapunov ex-
ponents [4—6]. As are the Lyapunov exponents, the local
dimension dL is invariant under smooth, invertible
diffeomorphisms of state-space coordinates, and should
thus be useful in classifying the dynamics. The minimum
global embedding dimension dE is not a similar invariant,
however, as one may find, for example, different dE for
scalar time series data taken from different variables of a
dynamical system, even though the underlying dynamics
are the "same. *'

We want to examine the true neighbors of a data point
y(k), as identified in dz, locally in state space to see if we
can describe the local geometry and dynamics with fewer
than dE coordinates. In the ideal case d is the dimen-

sionality of the manifold, embedded in R e that contains
the data, and so is often called the topological dimension.
If we find a dl &dE, it means that, depending on the glo-
bal topology, we may be able to apply a smooth state-
space transformation to the data to further unfold the at-

dEtractor from a set in IR to one in R that preserves all
the important dynamical features. At this time we have
no constructive method to find the required transforma-
tion. In other circumstances, the global topology might
be that of a torus of dimension dL or some combination
of a torus and Oat Euclidean space, but always with dl
degrees of freedom.

By using the term "active dynamics" we have in mind
the notion that even in a very-high-dimensional system,
perhaps even infinite dimensional, as in the continuum
description of a Quid, points in the full high-dimensional
state space will be drawn to an attractor which will occu-
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py zero volume in the full space. The dynamical dimen-
sion is that finite integer which quantifies the number of
degrees of freedom that captures motion on the observed
attractor. An infinite-dimensional system may relax onto
an attractor with finite degrees of freedom, but the active
number is unknown a priori. In a simpler situation, we
expect that a dynamical system in d variables, whether
continuous [x(t)=F(x(t))] or discrete [x(n +1)
=F(x(n ) ) ], always to produce behavior that we can cap-
ture in dL ~d dimensions. For example, in a system of
three autonomous first-order ordinary differential equa-
tions running in a chaotic regime, we expect to find a lo-
cal dimension of 3, though sometimes one would need
embedding dimensions up to 6 in order to reconstruct the
state space using data from one of the three scalar vari-
ables. As another simple example, note that a signal con-
sisting of N independent sine waves has dL =N, but re-
quires at least dE =N+ 1 to embed.

Note that we do not intend our nomenclature to imply
that there is a different local dimension for differing re-
gions of state space, but rather, that there is a single
number quantifying the degrees of freedom necessary, for
all neighborhoods, to successfully capture the determinis-
tic dynamical evolution in local regions of the state space.
If one were to define somehow integer valued "localized
dimensions, " one for each individual region of state
space, our intuition is that our local dimension ought to
be the maximum of these. However, we cannot immedi-
ately conceive of a reliable and useful definition for such
truly localized quantities.

II. LOCAL FALSE NEIGHBORS

We assume that, as in the Introduction, we are present-
ed with scalar data sampled at evenly spaced time inter-
vals. For all our investigations, we choose the time delay
T~, used in constructing vectors to be the first minimum,
when there is one, in the average mutual information [7]
over the attractor. If there is no minimum, as is the case
for many maps, we choose T= 1.

The essential idea of our methods is to find the nearest
neighbor, as viewed in dimension d, of a reference point
y, and to see if it moves a "large" distance from y by ex-
amining the (d+1)st coordinate of y and its nearest
neighbor in dimension d+1. If one selects the nearest
neighbor from among the total data set, one recovers the
global embedding dimension test. Now, we restrict the
selection of the nearest neighbor to lie inside a medium-
sized neighborhood surrounding our reference point. We
first choose a fixed number %~ of neighbors of y, as deter-
mined in the global embedding dimension dz. Then we
project the points in this neighborhood down to our trial
dimension d, compute the nearest neighbor in dimension
d and apply a test to see if it is a "local false neighbor. "
We look for errors that occur when we locally project a
neighborhood down to a space of insufficient dimension.
One may also define neighborhoods to encompass a fixed
radius instead of a fixed number of points without sub-
stantially changing the results, but then one encounters
some neighborhoods that are too sparse to extract good
statistics, and they somehow have to be identified and

discounted. So, for computational ease, we employ a
fixed number of neighbors.

A. The simple approach

(2)

The notation states that we are talking about the nearest
neighbor (NN), as seen in dimension dt with Euclidean
metric along the first dL components of the embedded
vector, and locally chosen from the ball surrounding the
point with time index n. The nearest neighbor has time
index m in the original data stream. We have projected

dE dLthe neighborhood down from IR to IR simply by tak-
ing the first dz components and finding the point closest
to the center: y' '( n ).

If x(m+dLT) x(n+dt T)—/~yz
' —yz' )Rr, for

some large cutofF Rr, then we designate y& '(n) a false

nearest neighbor. This means that points which are origi-
nally nearest neighbors have moved apart a large distance
in comparison to their initial separation.

In the second test, we compare the "extra distance"
x(n +dL T) —x(m +dL T)

~
to a characteristic size of the

entire neighborhood:

1
B

R~ (n)= g ~y', "'(n) —y„(n)~,
& r=1

with

B

y,„(n)= gy', "'(n) .
& r=i

(4)

If ~x(n +dr T) —x(m+dL T)
~ /Rz (n) )Rr, then we

B
also designate this point y( n ) as having a false nearest
neighbor in local dimension dL.

We repeat this for neighborhoods centered around all
y(n), and we record, as a function of dL, what fraction
have local false nearest neighbors. The methods we de-
scribe are insensitive to Rz as long as Rz) 2. We either
used Rz-=2. 41 or set Rz- ~. The latter ignores the test

The simplest approach is a direct application of the
tests in Ref. [1]. We embed our data in a space dimen-
sion at least as large as the minimum required dimension
dE. In this dimension, which we call the working dimen-
sion d~ dz, we identify X~ neighbors of each point
y( n ), n = 1,2, . . . , X, in our time series. Our focus is now
on these N~ neighbors. We label the %~+1 vectors in
this neighborhood as y'"'(n), r =0, 1,2, . . Ns . y' .'(n)
=y(n). From the time delay construction we know the
components and the time index for each neighbor.

We proceed then in the same fashion as with the global
false neighbor construction. First, we ask if the nearest
neighbor to y(n) as determined in trial local dimension

e L 2, and so forth until d
remains close when we go to local dimension dL + l.

We identify the nearest neighbor in dimension dL

among the X~ total neighbors,

y& '(n) =(x(m), x(m + T), . . . , x(m +(dL —1)T) ) .
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of change in the additional component relative to the
neighborhood extent. This was needed in [1] to distin-
guish high dimensional "noise, " but we are already deal-
ing with a low-dimensional system in this discussion, so
we need not really retain the second test to continually
check that we do not have a high-dimensional data set.

We begin with examples where we know the answer for
dl and dz and examine what this test indicates as we
vary the tolerances involved in the false neighbor test and
the number of neighbors X~.

The first example we consider is the familiar Lorenz at-
tractor [8]:

x =o (y —x ), y = —xz + rx —y, z =xy bz, —

tive to this parameter, we see in Fig. 5 the percentage of
local false nearest neighbors in dL =2, 3, and 4 as a func-
tion of X~. At dl =3 the method computes a very small
proportion of local false neighbors, independent of Xz.
It would be quite safe, as we already knew in this exam-
ple, to choose dl =3. Since the global false nearest
neighbors indicates dz =3 [1], we have only confirmed
that the global dimension is also the local dimension of
the dynamics, also equal to the number of differential
equations in the original system.

Next we turn to the Ikeda [9,10] map of the plane to it-
self:

z(n + l)=p+Bz(n)expIi~ ial—[1+ z(n)
~ ] I,

with parameter values o. =16, b=4, and r =45.92. In
Figs. 1 —4 we have taken dz=5 and analyzed 23000
points of x(t) data taken at a numerical time step of
~, =0.01. The time lag suggested by the mutual informa-
tion criterion is T=0.1=10~„and the time to make a
circuit around the attractor is approximately 0.5 in these
units. So this amount of data represents about 450 visits
of the orbit around the attractor. This is probably more
than is needed.

In Fig. 1 we see the percentage of local false nearest
neighbors as a function of X~ and Rz-. Clearly, dI =1
will not do for the Lorenz system. In Fig. 2, the situation
has much improved, while in Fig. 3, where dl =3, a care-
ful examination of the vertical scale shows yet further im-
provement. With a sufficient choice of dL, one should see
a wide plateau as a function of R& and X&, as in the glo-
bal false neighbors calculation [1]. Selecting an arbitrary
value of Rz-=30. 27, well within the range where the
number of local false nearest neighbors is rather insensi-

where p =1.0, B =0.9, a=0.4, a=6.0, and z(n) is com-
plex. The dimension of the attractor associated with this
map is d~ =1.8, and this is a dynamical system in two
variables, the real and imaginary parts of z(n). At these
parameter values, the data set composed of the real part
of z(n), embedded with time step T=l, requires a
minimum embedding dimension of dz=4. This dz is
also the sufficient dimension as determined from the
embedding theorem [2,3]. In Fig. 6 we show the analysis
of 43000 points of the real part of z(n) from the Ikeda
map with an embedding dimension dE =0~=5. In these
calculations we again choose Rz =30.27.

By virtue of the high proportion of false neighbors,
combined with a significant dependence on Xz, dl =1 is
excluded. In Fig. 7 we omit the dL =1 results on the
graph and concentrate on the remainder, and see that the
percentage of 1ocal false nearest neighbors for dimensions
2 through 4 is quite sma11, less than 0.25% for the range
15~%~ ~69 that we considered. While one might con-

4
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CS )

FIG. 1. From the simple ap-
proach to local false neighbors,
the percentage of local false
nearest neighbors (FNN's) for
23000 points from the x (t) com-
ponent of the Ref. [8] Lorenz
model. The working dimension
d w

=dz = 5 and dL = 1. The
percentage of local FNN is ex-
hibited as a function of the num-

ber of neighbors and of the toler-
ance R ~ in determining the
threshold for change in the dis-
tance of nearest neighbors in go-
ing from dimension dL to dL+ 1.
dz =1 is clearly not chosen as
the local dynamical dimension.

Lore
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FIG. 2. From the simple ap-
proacroach to local false neighbors,
the percentage of local FNN's
for 23000 points from the x(t)
component of the Ref. [8]
Lorenz model. The working di-
mension d ~=d& = 5 and dI ==2.
The percentage of local FNN's
is exhibited as a function of the
number of neighbors and of the
tolerance RT in determining the
threshold for change in the dis-
tance of nearest neighbors in go-
ing from dimension dL to dL+1.
The percentage of local FNN's
becomes rather independent of
N& and R „at this dL, so one
might choose dL =2 as the local
d namical dimension for thisyna
system.

elude t at L= ish d =2 '
thus quite acceptable for this data set,

dL =2 with the same force for the Lorenz system. ince
=2.06 for the Lorenz attractor, this is not unreason-d~= . or e

able to find, but nonetheless wrong. ) On y in
t the number ofhe Ikeda map would we conclude that ete earn

f lse local nearest neighbors has become pme inde endent of
X and thus feel safe about adopting this v
a se oca

value. There is
3(d =4, but we shall besome achievement here since

able to do better below by enlarging our considerations.

We have just s own ah th t this simple local false nearest
neighbor test works moderately well. Unfortunate y, it
seems not to e a sub Kciently sharp tool to discriminate
d =2 and 3 for the Ikeda map where we know the trueL
dL =2

One otential problem with this test is the method we
employ for deciding which
origina 1 N d -dimensional vectors to use in choosin
neig ors in im

'
hb

'
dimension d . Suppose, for examp e,

=2 but thethe poin s int the data set lie on a plane, so dL =, u e

Lorenz Attractor
dE = 5; d~ = 3

CS

O o

FIG. 3. From the simple ap-
proach to local false neighbors,
the percentage of local FNN's
for 23000 points from the x(t)
component of the Ref. [8]
Lorenz model. The working di-
mension d ~ =d E

= 5 and dL =3.
The percentage of local FNN's
is exhibited as a function of the
number of neighbors and of the
tolerance RT in determining the
threshold for change in the dis-
tance of nearest neighbors in go-

1.ing from dimension dL to dL+
Note the change in scale relative
to Figs. 1 and 2. dL, =3 would be
qui euite acceptable as the local di-
mension.
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points into the neighborhood of y(k) s in any given dL .
Principal component analysis using the eigendirections of
R(k) to determine a set of basis vectors in each dL will
suffice since it meets our requirements and is computa-
tionally undemanding.

In the principal component coordinate system a vector
y'"'(k) has components

(y'"(k) e(1),y'"'(k) e(2), . . . , y'"'(k) e(dz)),
and we select dL -dimensional vectors w'"'(dL ) from
among these components

w"'(dL )=(Y'"'(k) e(1),y'"'(k) e(2), . . . , y'"'(k) e(dL)),

FIG. 7. Percentage of local FNN as a function of N& for data
from the Ikeda map at d~=dF =5 for dL =2, 3,4. dL =2 is in
solid circles; dL=3 is in solid squares; dL =4 is in solid dia-
monds. 43000 points of the real part of z(n) are used. From
this figure we would probably conclude that dL =2 is not a good
local dimension, and be inclined to choose dL =3 since indepen-
dence of N& is achieved in this dimension.

er within the neighborhood in R of the X~ true neigh-
bors are inappropriately projected near to each other. To
avoid this we choose a local coordinate system in which
to select dL vectors by looking at the
principal components of the data set comprised of the
y'"'(k). The eigendirections of the local sample covari-
ance matrix relative to y(k):

for each of the N~ true neighbors in dz. Using these vec-
Ltors in R we evaluate the distances

w'"'(dI ) —w' '(dL )l and select the nearest neighbor
w (dL ) of w' '(dL ). Now we have identified that dz-
dimensional vector y (dL ) =y(m}, which is the nearest
neighbor of y(k} with nearness determined in dimension
dI . The "time" to+m~, associated with this vector has
no special relation to the time to+kr, of y(k) since its
nearness is a property of state space location, not tem-
poral sequence. At this stage we are finished with the
computations in the dL-dimensional rotated coordinate
system, and we return to the original dE-dimensional
space. The choice of trial local dimension affects only the
identity of that point we call a nearest neighbor to y(k),
i.e., the value of m.

We now ask what happens to these two nearest neigh-
bors as we move forward in time. In particular, we con-
sider the value of the difference

1 B

R &= g [y'"'(k) —y(k)] [y "(k)—y(k)]&, (6)
& r=1

namely the e(i), i = 1,2, . . . , dz satisfying

R(k) e(i) =o.(i)e(i),

e(i) e(j)=5~, cr(i) o~(i+1),

provides a local coordinate basis. We choose this set of
local coordinates for the sole purpose of selecting direc-
tions where most of the data are located, that is, those
eigendirections with the largest eigenvalues o.(i), and
selecting directions "pointing out of the data, " namely
those directions corresponding to the smallest eigenval-
ues. This is clearly an heuristic choice, and one could use
other criteria than capturing the most variance in the
data set, which is the intent of projecting on to the first
dl principal components. For example, one might wish
to minimize the entropy of the distribution of points pro-
jected along the first direction (as then it looks the least
like noise), then choose the second direction to minimize
the entropy of vectors projected orthogonal to the first
direction, etc. All of these choices have merit. Except
for principal components, they require a large amount of
computation. Our goal in this paper is really quite mod-
est with regard to the use of principal component
analysis. We only wish to avoid accidental projection of

lx(k+ (d~ —1)T+5)—x(m + (d~ —1)T+5)

as a function of the number of steps A~, forward in time
from the present reference vector. For every neighbor-
hood surrounding y(k) and for each trial local dimension
dl, we compute the smallest 5 for which this difference
grows larger than pR~, a significant fraction of the size
of whole attractor R„, and call it K(k;dl ). (If we run
off the end of the data set prematurely, we invalidate this
neighborhood and remove it from consideration. ) We
choose R~ as

N
x= g x(k) .

NA:

Other choices for R ~, such as the rms size of the attrac-
tor, do not change our conclusions. We have looked at P
in the range 0.05 ~ P ~ 0.2 and find no dependence on our
results on this fraction. Of course specific quantities may
depend on f3, but the value determined for dI should not
depend on P over a reasonable range. In fact, this is a
useful check to ensure a correct dL has been computed.
Note that now the question of local false neighbors is
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posed in dynamical terms, by looking at the future evolu-
tion of two local neighbors, rather than in purely geome-
trical language, as examining what happens as dimension
increases. However, in our context of time delay embed-
ding, these are clearly equivalent, as the embedding
theorem does not require one to take evenly spaced sam-
ples in time for each component, though it is certainly
common practice.

We collect the values of K(k;dL ) for each point on the
attractor, and ask for the proportion of K(k;dL ) less
than T, the information theoretic time delay used in the
time delay reconstruction itself, relative to the total num-
ber of neighborhoods surveyed. (We use T simply as a
useful characteristic time scale of the data. As with the
case for P, the exact value does not inhuence the resulting
determination of dL within a broad range. ) This leads us
to define

[number of K(k;dL ) ~ T]
(number of neighborhoods)

If K(k;dl ) is less than T, it indicates a lack of predicta-
bility beyond this time. We expect false neighbors to be
less predictable than true neighbors, because they are
near each other for geometrical rather than dynamical
reasons and, therefore, we will see more neighbors with
poor prediction times. As we increase dL, Px(dt ) will
decline, and once the correct dL occurs, the variation of
P~(dL ) with dr will cease as we encounter the natural
predictability of the dynamics. Furthermore, P~(di )

ceases to vary substantially with Nz at or above the
correct dL, but choosing an insufficient dL causes it to
change with Nz, because fewer or more points can be
spuriously projected down and show up as false nearest
neighbors as a function of the neighborhood size.

In Fig. 8 we show our results of this procedure for data
from the real part of z(n) of the Ikeda map. Here, and in
all data sets which follow, we employ 20000 scalar data
points. The Pz(dl ) where the indicated spatial diff'erence
grows larger than the fraction /3=0. 1 of R „,is shown for
various dL and various N~.

Starting at dL =2 we see a clear decrease to a very flat
plateau in Pz(dL ), at a level independent of Xz. The in-
terpretation is that the correct dL=2. We have taken
10~N~ 100, which is quite a large range for the num-
ber of neighbors, and global embedding dimension
d~ =dz+ 1 =5. In embedding dimensions 4, 6, and 7 we
have essentially identical results. This is an indication
that dL =2 is reliable.

Next we consider the three-dimensional model pro-
posed by Lorenz as a "tiny" representation of the circula-
tion of the atmosphere in a hemisphere [11]:
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FIG. 8. P~(dL) for 20000 points of the real part of z(n) from
the Ikeda map for various 10 Xz 100; d~=dz=5. dl =2 is
clearly chosen as the dimension where independence of di and
NB occurs for P&(dL ).

0.6

c g
O
o 04i

CL

O
CL (
O

O

O~ 0.2
(

Ne —10
& Ne=20~ Ne=30
aN =40
vN =50

Ne=65
= Ne=80
+ Ne=100

than 2.5. Global false nearest neighbors suggests that at
dz=4 one has less than 0.5%%ug false nearest neighbors,
and thus this would be a good value for dz. At dz =5
this number is less than 0.05%, so a cautious person
might choose dz=5. The sufficient condition from the

embedding theorem is dz=—6. We have chosen to work
with dtt, =6, and in Fig. 9 we show Pz(dL ) for this model
as a function of dL and with varying N~. From average
mutual information considerations we have T=23~, .
This was our criterion for a good or poor prediction time.
Clearly the method chooses dL =3. Again, changes in
embedding dimension made no difference.

Returning to the Lorenz [8] thr-e-dimensional model
of convection, we show in Fig. 10 the proportion of poor
predictions as a function of dl for various N~ and in
d ~ =5. Depending on how much one expands the verti-

x = —y —z —a(x F), —

y =xy —bxz —y+ G,
Z =bxy +XZ —z

(13) 0.0
3 4
Local Dimension

We use the values a =0.25, b =4.0, I' =8.0, and G = 1.0
where Lorenz points out irregular behavior is encoun-
tered. The attractor has a dimension d~ slightly greater

FIG. 9. Pt;(dL ) for 20000 points of x(t) from the Ref. [11]
Lorenz model for various 10~ N& & 100; d~=d& =6. dL =3 is
clearly chosen as the dimension where independence of dL and
X& occurs for P~(dL ).
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FICs. 10. Pz(dL ) for 20000 points of x(t) from the Ref. [8]
Lorenz model for various 10~N~ 100; d~=d& =5. From this
figure, which uses data read forward in time, one might choose

2I

FIG. 12. P&(dL ) for 20000 points of a voltage from the hys-
teretic circuit of Pecora and Carroll [13] for various
10~N~ 100; d~=dF =6. dL =3 is clearly chosen as the di-
mension where independence of dL and N~ occurs for P&(dL ).
This data set is read forward in time.

cal scale, this figure might indicate choosing dL =2 con-
trary to what the simple method above would have sug-
gested. This is resolved by looking at precisely the same
data set backward in time, as shown in Fig. 11. Since the
predictability forward and backward in the correct dL
should be the same, we argue that the apparent indica-
tion of dL =2 for the forward data is due to the large
magnitude of smallest Lyapunov exponent for this model
A. = —22. 5 [4]. This is also responsible for the nearness of
dz to 2. This suggests looking at data both forward and
backward, as in [6,12], to firmly establish dL. When this
forward-backward method is applied to data from the
Ikeda map for the Ref. [11]Lorenz model, no change in

dL from the forward results occurs.
As a final example we examine data from the hysteretic

circuit of Pecora and Carroll [13]. The sampling time for
this data was ~, =0. 1 ms, and from average mutual infor-
mation we determine T=6~, . Global false nearest neigh-
bors suggests an embedding dimension of dE =5, and we
use here d~=6. In Figs. 12 and 13 we see the local
false-nearest-neighbors determination of dl both looking
at the data forwards and backwards in time. It is clear in
each case that dL =3 is selected without ambiguity. This
is consistent with the models of the nonlinear circuit dis-
cussed by Carroll and Pecora. This example, in addition
to being an analysis of laboratory data, is also our first
discussion of contaminated data. There is a residual few
percent noise level in the hysteretic circuit data, as one
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FIG. 11. Px(dL) for 20000 points of x(t) from the Ref. [8]
Lorenz model for various 10~ N& ~ 100; d~ =d& =5. From this
figure, which uses data read backward in time, one clearly
would select dL =3.
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FIG. 13. P&(dL ) for 20000 points of a voltage from the hys-
teretic circuit of Pecora and Carroll [13] for various
10~N& 100; d~=dz=6. dL =3 is clearly chosen as the di-
mension where independence of dL and N~ occurs for P~(dL ).
This data set is read backward in time.
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can observe by looking carefully at the global false-
nearest-neighbor curves.

C. Contaminated data

We began our study of local false nearest neighbors be-
cause other methods [6,4, 12] were so sensitive to contam-
ination of the signal of interest, we felt we needed another
tool. We have tested the local false neighbor method
with varying amounts of noise in both the Lorenz model
[8] and the Ikeda map. Of course, the hysteretic data
comes automatically contaminated, as it is real laborato-
ry data and not from a digital simulation.

With Lorenz model [8] data, contaminated with addi-
tive Gaussian noise with variance 1% that of the clean
signal, we see in Fig. 14 Ptt(dL ) for various Ntt. Again,
dL =2 is indicated from the data read forward in time,
but looking at the data backward in time in Fig. 15, we
see that dl =3 is selected. The same level of contamina-
tion is shown for an analysis of Lorenz [11]data in Fig.
16. The choice of dL =3 is not changed for this model at
this noise level.

Using Ikeda map data contaminated by 1% uniform
additive noise we have the results in Fig. 17. Once again
the value dL =2 is selected, showing the robustness of the
method to noise. Other methods [6,12,4] fail at much
lower noise levels, typically 0.01%. By the way, 1% glo-
bal noise, which is what we are discussing here, can be
100% noise in one of our neighborhoods.

To investigate the deterioration of the method in the
presence of substantial amounts of contamination, we
show in Figs. 18—20 the effect of 2% noise on Ikeda map
data (dL =2 is still indicated), and the effect of noise lev-
els up to 50% on Ikeda map data with two different
choices of N~. The unambiguous signal that dL =2
remains until the noise level is 10%, but for noisier sig-
nals than that, we cannot determine a local dimension.
This is actually a very good sign since at that level of glo-
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ba/ noise, we are swamping the local dynamics with
unwanted contamination. Nonetheless, we conclude that
for quite substantial noise levels, the local false-nearest-
neighbor method which combines geometric ideas with a
bit of dynamics is quite robust.

We experimented using the proportion of poor predic-
tions as an alternative criterion for finding the minimum
embedding dimension, by embedding in successively
larger dimensions, searching for the nearest neighbor
(over all data) and computing the time for the two points
to separate a "large" distance. Unlike the situation for
local dimension, we did not see a definitively Aat plateau
once the correct dimension was used. Often we found a
distinct local minimum in the proportion of poor predic-

FIG. 15. Px(dL) for 20000 points of x(t) from the Ref. [8]
Lorenz model for various 10 N& 100; d~=d&=5. These
data are contaminated with 1%%A noise relative to the global size
of the attractor. From this figure, which uses data read back-
ward in time, one clearly would select dL =3.
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FIG. 14. Ptt(dL) for 20000 points of x(t) from the Ref. [8]
Lorenz model, for various 10 N& 100; d~=d&=5. These
data are contaminated with l%%uo noise relative to the global size
of the attractor. From this figure, which uses data read forward
in time, one might choose dL =2.

FIG. 16. Ptt(dL ) for 20000 points of x(t) from the Ref. [11]
Lorenz model for various lO~N~ &100; d~=d&=6. These
data are contaminated with 1% noise relative to the global size
of the attractor. dL =3 is clearly chosen as the dimension where
independence of dL and N& occurs for P&(dL ).
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FIG. 17. P&(dI ) for 20000 points of the real part of z(n)
from the Ikeda map for various 10 N& ~100' d —d —5.
These data are contaminated with noise of size 1% relative to
the global size of the attractor. dL =2 is clearly chosen as the
dimension where independence of dL and N& occurs for P&(dL ).

FIG. 19. P~(dL) for 20000 points of the real part of z(n)
from the Ikeda map with d~=dz=4, N& =100, and varying
amounts of noise added to the data. The percentage of noise is
given relative to the global size of the attractor and ranges from
0% to 50%. When the noise level is 10% or less, dL =2 is clear-
ly chosen. After that the method of local false nearest neigh-
bors is overwhelmed by the contamination. In this figure
N~ = 100 and P=0.5.

tions occurring at reasonable values for embedding di-
mension, but in other cases, such as with the Ikeda data
set, a distinct minimum occurred at a dimension known
to be insufficient.

III. CONCLUSIONS
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In this paper we examine two methods for establishing
the local or dynamical dimension dl of a system which
we have observed solely through a scalar variable and
whose state space we have reconstructed using time delay
embedding. The sufficient dimension dE required for that
embedding is governed by the global, topological theorem
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of Mani and Takens [14,15], which reveals that
dz )2d~, where d ~ is the box-counting [3] dimension of
the system attractor. The dimension dE we use here is
the necessary embedding dimension as established by the
method of false nearest neighbors [1] directly from the
data. The necessary dE is less than or equal to the
sufficient dimension and both are greater than or equal to
the dimension of the local dynamics dL we have sought in
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FIG. 18. P~(dL) for 20000 points of the real part of z(n)
from the Ikeda map for various 10~N~ «100; d~=d&=5.
These data are contaminated with noise of size 2% relative to
the global size of the attractor. dl =2 is clearly chosen as the
dimension where independence of dL and N& occu sr forP (d ).

FIG. 20. P&(dL ) for 20000 points of the real part of z(n)
from the Ikeda map with d ~ =dz =4, N& =40, and varying
amounts of noise added to the data. The percentage of noise is
given relative to the global size of the attractor and ranges from
O%%uo to 50%. When the noise level is 10% or less, dI =2 is clear-
ly chosen. After that the method of local false nearest neigh-
bors is over whelmed by the contamination. In this figure
X~ =40 and P=0.5.
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this paper.
We know of a few earlier (related) methods to deter-

mine dr . First is the work of Parlitz [6], who implement-
ed a suggestion (not known to him) of Eckmann and
Ruelle [2]. He looks at the global Lyapunov exponents of
the system forward and backward in time. True
Lyapunov exponents, of which there are dJ, will reverse
in sign under this operation of time reversal. Fake or
spurious exponents due solely to the choice dz )d~ will
do something else. Abarbanel and Sushchik [12] exam-
ined Parlitz's work by looking at local Lyapunov ex-
ponents [16,17], which give a repeated look at the effect
of time reversal and allow one to establish whether the
zero exponent present for a Row is true or spurious. No
local Lyapunov exponent for a How is necessarily exactly
zero, except in the limit as the number of observation
steps goes to infinity (recovering the global Lyapunov ex-
ponent), so one can determine when an exponent slightly
different from zero Hips sign under time reversal, remov-
ing the puzzle of identifying the sign reversal of the glo-
bal zero exponent.

Another method described in Ref. [12] focuses on the
more fundamental property being examined in the time
reversal of Lyapunov exponents: determinism of the data
set forward and backward in time. This method asks
when local maps from neighborhood to neighborhood
forward and backward in time in the reconstructed state
space are accurately inverses of one another. The actual
calculation uses polynomial local maps, but any paramet-
ric form would do.

In the examples presented in these papers each method
is remarkably successful when applied to clean, contam-
ination free data. Since much of the data are simulated,
it can be made very clean indeed. Unfortunately, as soon
as contamination is added to the data, even at the very
modest level of 0.1% of the global size of the attractor,
the method gives spurious results. The origin of these
spurious results can be traced to the necessity in each
case of determining distances between points on the at-
tractor with great accuracy. Small amounts of noise will
spoil one's ability to establish these distances, and since
the computations typically involve properties of rather
ill-conditioned matrices, reliable results depend sensitive-
ly on the accurate determination of all quantities entering
these matrices.

The present hunt for dz avoids these methods which
require the accurate measurement of local distances, and
time-consuming or potentially unreliable local parametric
fitting. We looked at two approaches in this paper: (1) a
simple local version of the global false neighbor tech-
nique, and (2) an improved variant using as estimator of
the predictability of the observed dynamics forward and
backward in time. Both are robust against noise contam-
ination, but the second, by probing how neighborhoods
evolve in dimensions less than or equal to dE is more ac-
curate, but even more importantly, gives a quite unambi-
guous indication of the correct value of d~. We applied
the methods to several examples: the Ikeda map of the
plane to itself, to two three-dimensional systems of ordi-
nary differential equations suggested by Lorenz as models
of various properties of the atmosphere, and to experi-

mental data from observations on a nonlinear circuit by
Carroll and Pecora. In three of the examples (Ikeda map,
Lorenz model in Ref. [11], and the experimental data)
dz )dz, so the challenge in identifying the active degrees
of freedom is precisely within the scope of this paper. In
the case of the Lorenz model in Ref. [8], dz =dr, but this
too is produced by the method. Furthermore, and cen-
tral to the goal of this work, the method works in a clear
fashion even up to the order of 10% contamination of the
data by noise. This is a level of global noise, so the con-
tamination at the local level is substantially more than
that. The concepts presented in the paper are simple,
and it would seem that a variety of statistical tests should
work well. In fact, we found it surprisingly difficult to
find tests that reliably produced clear and correct answers
in our model examples (achieving dz =2 for Ikeda map
data, and dz =3 for Ref. [8] Lorenz data is challenging)
with both clean and noisy signals.

We know of some earlier attempts to establish d~ and

d~ using essentially geometric ideas. The earliest, as far
as we can ascertain, is due to Froehling, et al. [18], who
determine a quantity close to what we call dz in this pa-
per. They identify neighborhoods of each phase space
point y(n) in dE and then seek the best local hyperplane
on which the points in the neighborhood of y(n) lie. The
criterion of "best" is that of a local least-squares fit of the
data to the hyperplane and then an evaluation of the re-
siduals in the data relative to all points lying in the hyper-
plane. They begin with "test" hyperplanes of dimension
zero, namely points, then of dimension one, namely lines,
etc. These residuals (called g in their paper) decrease
quite rapidly once the dimension of the local hyperplane
has exceeded what we call d~ here. The method is quite
reminiscent of the first approach we describe in this pa-
per.

The method proposed by Broomhead, Jones, and King
[19] attempts to discern dz by examining the scaling of
the singular values of a N~ Xdz matrix consisting of the
vector differences from the reference point, as a function
of the radius e considered in identifying neighborhoods.
These singular values are the square roots of the eigenval-
ues of the local sample covariance matrix that we use in
computing a local coordinate system. Essentially the
method of Ref. [19]examines how well the data fit a local
dz-dimensional hyperplane. For fractal attractors, iden-
tifying the correct local dimension from the plots of
o(i)' vs e [they choose y'"' —y(k) (e, and vary e, not
N~j does not always appear to be clear-cut, and it ap-
pears that noise could spoof this method on a local scale.
The method only examines geometrical properties of the
data, and combining the scaling results for different
neighborhoods into a single value for d~ is not automat-
ed.

It is amusing to note that the paper of Froehling et al.
[18]just cited contains, almost as a throwaway comment,
the basic idea of the singular value method. See their
Sec. 4 [18].

The work of Kaplan and Glass [20] is another attempt
to identify properties of the dynamics when only scalar
observations are available which does not require precise
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computation of distances on the attractor. They examine
the effective local vector field of the dynamics seeking a
dimension, which we would call dE, where crossings of
orbits as determined by the direction of the local vector
field in reconstructed state space cease. There is probably
a local version of their method which would establish dI,
but we have not pursued that.

There are two final considerations we wish to make.
First, we want to touch on the importance of knowing
dL, and second, we want to muse on the meaning of dL
when the underlying system producing the observations
is very high dimensional. Clearly this kind of qualitative
issue has been the main motivation for the work present-
ed here. dL is the number of degrees of freedom of the
underlying dynamical system which are activated in the
determination of the orbits on the observed attractor. If
one evaluates properties of the system which depend on
the dimension of the state space in which the reconstruc-
tion occurs, the Lyapunov exponents probably being the
most important physically because of their connection
with the predictability of the system, then in dimensions
larger than dL, false exponents will appear. There are ex-
amples [4] where one of the false exponents can be posi-
tive and can even be the largest positive exponent, so the
misinterpretation of the significance of a large positive
Lyapunov exponent is possible. If we have established
dI, then all exponents, whether we know them very accu-
rately or not, as might be the situation in the presence of
noise, are real. Further if one wants to build models of
the observed system, then working in the minimal num-
ber of dimensions, namely dl, will reduce the amount of
work in establishing and verifying that model as well as
reduce its sensitivity on noise which would occupy
without any dynamical significance any dimension offered
it.

In the case of analysis of a continuum system such as
Quid dynamics or a very-high-dimension system such as

represented by general circulation models of the climate
or weather, the number of variables in the basic
differential equations may be in the millions or, in princi-
ple, actually infinite for partial difFerential equations. A
finite hopefully small dL then represents the number of
degrees of freedom active on the attractor, namely the
number which one must model to produce ari accurate
representation of the orbits of the system for prediction
or possible for control purposes. In Ref. [12] for very
clean data this was demonstrated on a delay difFerential
equation where an infinite number of degrees of freedom
are in the basic equation. In some qualitative sense one
can think of the "other" degrees of freedom as frozen out
of the observations by their association with large, nega-
tive Lyapunov exponents which drive them onto the at-
tractor and thus, since the data are on the attractor
alone, make them in some practical sense unobservable.
While a more accurate quantitative characterization of
this view is not known to us, it may suffice in a pragmatic
sense to establish dI and proceed.
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